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ENTROPY THEOREMS ALONG TIMES WHEN x VISITS A
SET

TOMASZ DOWNAROWICZ AND BENJAMIN WEISS

Abstract. We consider an ergodic measure-preserving system in which
we fix a measurable partition A and a set B of nontrivial measure. In

a version of the Shannon-McMillan-Breiman Theorem, for almost every
x, we estimate the rate of the exponential decay of the measure of the
cell containing x of the partition obtained by observing the process only
at the times n when Tnx ∈ B. Next, we estimate the rate of the
exponential growth of the first return time of x to this cell. Then we

apply these estimates to topological dynamics. We prove that a partition
with zero measure boundaries can be modified to an open cover so that
the S-M-B theorem still holds (up to ε) for this cover, and we derive the

entropy function on invariant measures from the rate of the exponential
growth of the first return time to the (n, ε)-ball around x.

1. Introduction and preliminaries

The two fundamental pointwise limit theorems in dynamics are the ergodic
theorem and the Shannon-McMillan-Breiman theorem. For the former there
has been much work devoted to the question of what happens when the se-
quence f(Tnx) is replaced by a subsequence. In particular, Bourgain [B] has a
striking result in which he shows that the Birkhoff ergodic theorem continues
to remain valid when the n’s are restricted to the visit times of some fixed set.
It is rather natural to raise similar kinds of questions for the entropy limit
theorems. In some sense, such questions are more delicate, and our results are
correspondingly coarser in that we can only give bounds rather than precise
convergence results. Indeed, examples show that in general the quantities
that we study can fluctuate.

Let (X,µ, T ) be an ergodic measure-preserving transformation of a prob-
ability space (we omit the indication of the sigma-field in this notation, as it
remains fixed). Let A be a finite measurable partition of X. Let K = #A ∈ N
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be the cardinality of A. We denote by

An :=
n−1∨
j=0

T−jA

the partition into sets (often referred to as cells) of the form

An =
n−1⋂
j=0

T−j(Aj) (Aj ∈ A).

Every such cell will be identified with the corresponding n-string

(A0A1A2 . . . An−1)

over A viewed as a finite alphabet. By convention,

An(x) = (A(x)A(Tx)A(T 2x) . . . A(Tn−1x)),

where A(y) denotes the unique cell of A containing y, is the unique n-string
which contains x, and is called the n-name over A of x. (We often omit the
part “over A” if this is clear from the context.) We also denote by RnA(x) the
first return time of x to An(x):

RnA(x) = min{i > 0 : T i(x) ∈ An(x)}.
The famous Shannon-McMillan-Breiman Theorem (see, e.g., [W]) states

that for µ-almost every point x the measure of An(x) decreases nearly ex-
ponentially in n with the exponent approaching the entropy of the process
induced by the partition A:

lim
n→∞

−1
n

logµ(An(x)) = hµ(A, T ).

Another theorem, proved by Ornstein and Weiss [OW2], says that the first
return times RnA(x) increase nearly exponentially in n with the exponent ap-
proaching the same entropy:

lim
n→∞

1
n

logRnA(x) = hµ(A, T ).

Now we fix a set B with µ(B) ∈ (0, 1) (usually B is large, of nearly full
measure) and for each x we observe the process only at times j when T jx ∈ B.
This leads to a cell containing x defined as follows:

A∗n(x) =
⋂

j∈Jn(x)

T−j(A(T jx)),

where Jn(x) = {0 ≤ j ≤ n− 1 : T jx ∈ B}. Notice that the above set has the
general form of an enhanced string (A∗0A

∗
1A
∗
2 . . . A

∗
n−1), where in addition to

symbols from A we admit the symbol ∗ indicating that at the corresponding
time we allow the point to be anywhere in the space X. For example, the
string (A0 ∗ A2) represents the intersection A0 ∩ T−2(A2). In A∗n(x) the
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symbol ∗ occurs at coordinates j not belonging to Jn(x). Different enhanced
strings (of the same length) need not be disjoint, but this can only happen
if the distributions of the symbol ∗ in both of them are different. Whenever
a symbol belonging to A in one enhanced string is at the same position as
a different symbol from A in the other, the corresponding intersections are
obviously disjoint.

Also, we denote by

R∗nA (x) = min{i > 0 : T i(x) ∈ A∗n(x)},
the first return time of x to A∗n(x).

Clearly, A∗n(x) ⊃ An(x), so the measure of A∗n(x) is not smaller, while the
first return time to it is not larger, than the corresponding values for An(x),
and so behave the limit values appearing in the above two theorems:

lim sup
n→∞

−1
n

logµ(A∗n(x)) ≤ hµ(A, T ) and lim sup
n→∞

1
n

logR∗nA (x) ≤ hµ(A, T ).

In this work we provide the opposite limit inequalities, possibly modified by
small correction terms. In fact, simple examples show that our estimates can-
not be essentially improved without affecting their generality (see Example 1
below).

Notice that the sets A∗n(x) neither form a partition nor do they appear
naturally in the map induced on B (with the partition A restricted to B)
because different points x′ from the same cell A∗n(x) usually generate different
sets of times Jn(x′).

Later we will apply our estimates to settle the following question in topo-
logical dynamics: Can we modify a partition A to obtain an open cover V
so that the measures of and the first return times to the cells V n(x) of Vn
obey approximately the same exponential laws as in the S-M-B and O-W the-
orems. We will show how this can be done for a partition A into sets whose
boundaries have measure zero. As a consequence we derive two topological
ways of evaluating the entropy function on invariant measures by observing
the (n, ε)-balls (one of which is already known from the work of Brin and
Katok [BK]).

2. The main results

With the notation and setup as introduced above, we have the following
theorems:

Theorem 1A (S-M-B Theorem along times when x visits a set). If
(X,µ, T ) is an ergodic measure-preserving transformation, A is a finite par-
tition of X, and B is a set with µ(B) ∈ (0, 1), then for µ-almost every x we
have

lim inf
n→∞

−1
n

logµ(A∗n(x)) ≥ hµ(A, T )− hµ(B, T )− µ(Bc) logK,
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where B is the partition of X into B and its complement Bc.

Theorem 1B (O-W Theorem along times when x visits a set). If (X,µ, T )
is an ergodic measure-preserving transformation, A is a finite partition of X,
and B is a set with µ(B) ∈ (0, 1), then for µ-almost every x we have

lim inf
n→∞

1
n

logR∗nA (x) ≥ hµ(A, T )− hµ(B, T )− µ(Bc) logK.

Example 1. To see that our estimates cannot be significantly improved,
consider the independent product of two Bernoulli shifts, say

B( 1
K ,

1
K , . . . ,

1
K )× B(p, 1− p).

Let A be the partition into 2K sets corresponding to the pairs of symbols
in both shifts, and let B be the set corresponding to the first symbol in
the latter shift, so that µ(B) = p. Then hµ(A, T ) = logK + H(p), where
H(p) = −p log p− (1− p) log(1− p) is the entropy hµ(B, T ). Then for almost
every point x it is easily calculated that µ(A∗n(x)) ≈ (p/K)pn. Substituting
this into our estimate of Theorem 1A, we get

p logK − p log p ≥ (logK +H(p))−H(p)− (1− p) log 2K.

This inequality differs from an equality by the term (1−p) log 2−p log p. But
for p near 1, −p log p is approximately 1− p, so the additional term is nearly
(1− p)(1 + log 2), much smaller than both of our correction terms H(p) and
(1 − p) log 2K. (The derivative of H(p) is minus infinity at 1; K is assumed
large in this example.) This shows that our estimate is in a sense optimal.
The same example works for the estimate of Theorem 1B; we skip the details.

The proofs of both statements differ only in few details. The basic method
is taken from [OW1] and [OW2]. After presenting the first proof, we will only
sketch the second by indicating the necessary changes.

Before we proceed, we recall an interpretation of the S-M-B Theorem in the
language of strings. The theorem says that for a typical x the measure of its
m-name is approximately e−mhµ(A,T ). This has two consequences concerning
cardinalities of m-names:

(A) There is a collection of no more than em(hµ(A,T )+δ) m-names which
fills up a set of nearly full measure (improving with m).

(B) Conversely, for any fixed set X ′ of positive measure, say µ(X ′) = λ,
the cardinality of m-names occurring in points x ∈ X ′ exceeds, for
large m, the number λem(hµ(A,T )−δ), for any given δ > 0.

We omit detailed proofs for these classic statements.

Proof of Theorem 1A. Clearly A∗n(x) ⊂ A∗n−1(Tx). Thus the function

Φ(x) = lim inf
n→∞

−1
n

logµ(A∗n(x))
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is subinvariant. By preservation of the measure µ by T , Φ is µ-almost every-
where invariant, and hence, by ergodicity, constant. Denote that constant by
C. In the remainder of the proof we need to appropriately estimate C from
below.

Fix a δ > 0 and let N1 ∈ N be larger than 1/δ. There is an N2 such that
the set

G =
{
x :
−1
n

logµ(A∗n(x)) < C + δ for some n ∈ [N1, N2]
}

has measure strictly larger than 1 − δ. For each x ∈ G we choose one value
of n as above and denote it by n(x). By ergodicity, for almost every x there
exists mx such that for all m′ ≥ mx,

(a) card{i ∈ [0,m′ − 1] : T ix ∈ G} > m′(1− δ) and card{i ∈ [0,m′ − 1] :
T ix ∈ B} > m′(µ(B)− δ).

For m ∈ N denote by Xm the set of points x for which mx ≤ m. Clearly, Xm

grows with m to a full measure set. Moreover, by the interpretation (A) of
the S-M-B theorem applied to the partition B, there exist sets Ym with µ(Ym)
converging to 1, such that:

(b) The number of m-names over B of points x belonging to Ym is less
than em(hµ(B,T )+δ).

We now modify the sets Ym so that they grow (with respect to inclusion)
along a certain subsequence of indices m. Namely, passing to a subsequence
we may assume that the measures of the complements Y cm form a convergent
series. Then

Y ′m =
⋂

m′≥m

Ym′

provides the desired modification. From now on Ym will denote members of
this modified subsequence.

Let m0 be such that X ′ = Xm0 ∩ Ym0 has positive measure λ > 0. Then
fix m ≥ m0 so large that the consequence (B) of the S-M-B Theorem holds.
Clearly, X ′ ⊂ Ym. Hence (b) holds with X ′ in place of Ym.

Consider an element x ∈ X ′. Let i1 be the first index i such that T ix ∈ G
and set n1 = n(T i1x) (where n(·) is defined as above). Let i2 be the smallest
index i ≥ i1 +n1 with T ix ∈ G and set n2 = n(T i2x), and so on. The intervals
[il, il+nl−1] will be called good intervals. They contain all indices i for which
T ix ∈ G. Hence, by (a), they cover at least m(1− δ) elements of the interval
[0,m− 1].

We will now estimate from above the cardinality of the set of possible m-
names (over A) for points x ∈ X ′. In each step below we formally partition X ′

(or a class created in the previous step) into subclasses according to certain
variable parameters and we count the number of such subclasses. The total
number is then estimated by the product of the counts for each step.
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(1) We first partition X ′ into classes according to the m-names with respect
to the partition B. By (b), there are no more than em(hµ(B,T )+δ) such classes.
We further restrict our counting to one such class, so henceforth all points x
yield the same set Jm(x) (= {i ∈ [0,m− 1] : T ix ∈ B}).

(2) By the second part of (a), there are at most m(µ(Bc) + δ) indices i in
[0,m−1] outside Jm(x). We partition our class according to the configurations
of symbols in the m-names over A occurring at the indices outside Jm(x).
There are at most Km(µ(Bc)+δ) different such configurations.

(3) We now compute the number of ways the good intervals can be posi-
tioned along [0,m−1]. Since consecutive indices il are separated by at least N1

positions (each nl is ≥ N1), there are at most mδ of them in [0,m− 1]. Thus,
by a standard estimate involving Stirling’s formula, the number of possible
ways of positioning these indices along [0,m − 1] is smaller than em(H(δ)+δ)

(if m is sufficiently large), where, as before,

H(δ) = −δ log δ − (1− δ) log(1− δ).

With the positions of the indices il fixed, there are no more than mδ numbers
in [0,m − 1] not belonging to the good intervals, which can happen again in
at most em(H(δ)+δ) different ways. Every such way is equivalent to choos-
ing the numbers nl, except perhaps for the last one (if il + nl > m), for
which we have no more than N2 possibilities. Altogether, there are no more
than N2e

2m(H(δ)+δ) classes in X ′ determined by the positioning of the good
intervals contained in or intersecting [0,m− 1].

(4) With the choice of the sequence of good intervals fixed, there are at most
Kmδ configurations of symbols from A at the (not yet established) coordinates
i outside good intervals.

(5) It remains to count the number of possible m-names of points from X ′

within a class with a fixed (common) set Jm(x), a fixed positioning of good
intervals, with a fixed pattern of symbols at all positions outside good intervals
and at all positions outside Jm(x). Notice that the positions which are yet
to be filled coincide with the union of the sets Jnl(T ilx) (which does not
depend on x within the considered class) over the indices l enumerating the
good intervals. For each such index l, establishing the values along Jnl(T ilx)
is equivalent to establishing the enhanced nl-string A∗nl(T ilx). Because the
distribution of the symbol ∗ in such a string is common for all points x in
the considered class, different enhanced strings A∗nl(T ilx) represent disjoint
sets. On the other hand, since T ilx ∈ G and nl = n(T ilx), all such enhanced
strings are associated with sets A∗nl(T ilx) of measure larger than e−nl(C+δ).
By disjointness, there are thus at most enl(C+δ) such choices for each index l.
Since the sum of the lengths nl of good intervals does not exceed m+N2, the
total number of choices in this step is not larger than e(m+N2)(C+δ).
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Multiplying the estimates from steps (1)–(5), we see that the total number
of m-names over A appearing in the elements of X ′ does not exceed

em(hµ(B,T )+δ) ·Km(µ(Bc)+δ) ·N2e
2m(H(δ)+δ) ·Kmδ · e(m+N2)(C+δ).

Combining this with the lower estimate (B), taking logarithms, dividing
by m and letting m grow to infinity, we obtain

hµ(A, T )−δ ≤ hµ(B, T )+δ+(µ(Bc)+δ) logK+2(H(δ)+δ)+δ logK+C+δ,

which holds for δ arbitrarily small. Passing to the limit as δ → 0 and rear-
ranging terms, we conclude that

C ≥ hµ(A, T )− hµ(B, T )− µ(Bc) logK. �

Proof of Theorem 1B. We begin by noting that, because of the inequality

R∗n−1
A (Tx) ≤ R∗nA (x),

the function Ψ(x) = lim infn 1
n logR∗nA (x) is subinvariant, and hence µ-almost

everywhere equal to some constant C. From here on we proceed as in the
proof of Theorem 1A with the following few modifications:

• The set G is different:

G =
{
x :

1
n

logR∗nA (x) < C + δ for some n = n(x) ∈ [N1, N2]
}
.

However, it still has measure greater than 1−δ for an appropriate N2.
• When defining il and nl, we also define Rl = R∗nlA (T ilx).
• We replace the estimate (5) by the following argument:

(5’) With a fixed choice of the sequence of good intervals, let l′ be the
largest l such that il+nl+Rl < m. Good intervals to the right of il′ +nl′ −1
can occur only to the right of m− eN2(C+δ)−N2 (because eN2(C+δ) estimates
all possible values of Rl and N2 estimates all possible values of nl). Thus
there are at most eN2(C+δ) + N2 positions contained in the good intervals
with indices larger than l′. Hence there are at most KeN2(C+δ)+N2 ways to fill
these positions. We now choose and fix one such way.

(6) There are at most enl′ (C+δ) possible values of Rl′ . Once the value of
Rl′ is specified, the block over the good interval [il′ , il′ +nl′ − 1] is completely
determined, because, by the definition of R∗nA (x), the values at its positions
i where T ix ∈ B (the remaining positions have been fixed in step (2)) are
repeated in the already established section at a specified distance. (This
works even if Rl′ < nl′ , i.e., when the block overlaps with its repetition;
in this case we reconstruct the block from right to left, using periodicity.)
Again, we choose the value of Rl′−1, for which we have enl′−1(C+δ) options.
This determines the block over [il′−1, il′−1 + nl′−1 − 1]. We continue in this
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manner until the first good interval is filled. The total number of choices in
this step does not exceed

e
∑l′
l=1 nl(C+δ) ≤ em(C+δ).

Multiplying the estimates from steps (1)–(6), the total number of blocks
over [0,m− 1] appearing in the elements of X ′ does not exceed

em(hµ(B,T )+δ) ·Km(µ(Bc)+δ) ·N2e
2m(H(δ)+δ) ·Kmδ ·KeN2(C+δ)+N2 · em(C+δ).

The final step of the proof requires no modifications. �

Remark. It is not very hard to see that the term logK in the estimates
of Theorems 1A and 1B can be replaced by the entropy hµBc (A,TBc ) of the
transformation induced on the complement of B with respect to the (suitably
restricted) partition A. We skip the details of this improvement.

3. Applications to topological dynamics

Suppose µ is a regular Borel probability measure that is invariant and
ergodic for an action of a continuous map T on a compact Hausdorff space X.
For a finite open cover V of X, the cover Vn is defined by exactly the same
formula as for partitions. We denote by V n(x) the union of all elements of
the cover Vn containing x, and by RnV(x) the first return time of x to V n(x).

Definition 1. Given a partition A of cardinality K, we say that an open
cover V of X of cardinality K + 1 is ε-inscribed in A if it consists of K sets,
each contained in a different element of A, and an open set V0 with µ(V0) ≤ ε.

Note that if A consists of sets whose boundaries are of measure zero, then,
by regularity, there exist covers that are ε-inscribed in A for every ε > 0. For
instance, V may consist of the interiors of the sets A ∈ A and an open set
V0 of small measure containing the union of all boundaries of these sets. It
is well known that in metric spaces such “zero measure boundary” partitions
into sets of arbitrarily small diameter exist for any Borel probability measure.

Theorem 2. Let µ be an ergodic measure in a topological dynamical sys-
tem (X,T ) and let V be a cover that is ε-inscribed in a finite Borel partition
A. Then for µ-almost every x we have

lim inf
n→∞

−1
n

logµ(V n(x)) ≥ hµ(A, T )−H(ε)− ε logK

and

lim inf
n→∞

1
n

logRnV(x) ≥ hµ(A, T )−H(ε)− ε logK.
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Proof. Set B = X \ V0 and notice that

V n(x) ⊂
⋂

j∈Jn(x)

T−j(A(T jx)) = A∗n(x).

This can be seen by considering in the intersection the entire space X at times
j when T jx falls into V0, i.e., when it belongs to more than one element of V.
At other times j such an element of V is unique and is contained in A(T jx).
The assertions now follows directly from Theorems 1A and 1B. �

In our next application we assume that X is a metric space with metric
d, and, in addition to the sets of the form V n(x), we consider the (n, ε)-balls
around x defined by

B(n,ε)(x) = {y : d(T jx, T jy) < ε for each 0 ≤ j < n}.

Also, we let Rnε (x) denote the first return time of x to its (n, ε)-ball:

Rnε (x) = min{i > 0 : T i(x) ∈ B(n,ε)(x)}.

The investigations of this paper lead us to consider the following (topolog-
ical) entropy functions defined on invariant measures:

Definition 2. Fix an open cover V of X and an ε > 0.

hBK(µ,V) =
∫

lim sup
n→∞

−1
n

logµ(V n(x))dµ(x),

hBK(µ, ε) =
∫

lim sup
n→∞

−1
n

logµ(B(n,ε)(x))dµ(x),

hOW (µ,V) =
∫

lim sup
n→∞

1
n

logRnV(x)dµ(x),

hOW (µ, ε) =
∫

lim sup
n→∞

1
n

logRnε (x)dµ(x).

Remarks. (A) All four integrals above are easily seen to be of invariant
functions (by an argument similar to that given at the beginning of the proofs
of Theorems 1A and 1B). Hence, for µ ergodic, they are constant almost every-
where, so that the integration in the ergodic case can be omitted. Obviously,
due to the integration, the same entropy notions are obtained for non-ergodic
invariant measures by averaging with respect to the ergodic decomposition.

(B) The label BK stands for Brin-Katok, who first considered the epsilon
version of this entropy (see [BK]) and proved the corresponding convergence as
in Theorem 3 below. For this notion, our methods allow us to derive the same
result in a different way. The label OW stands for Ornstein and Weiss, who
derived the formula for entropy based on the first return time for partitions
(see [OW2]). We do not know of any previous investigations of the notion of
entropy based on the first return time for covers or balls.
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(C) We refer the reader to [D], where these and similar notions are inves-
tigated as so-called entropy structures.

(D) Replacing lim sup by lim inf can lead to slightly different notions, but,
as is easily verified, the convergence result of Theorem 3 below still holds.

Theorem 3. Let (Vk)k∈N be a sequence of finite open covers with maximal
diameters of elements decreasing to zero. The following convergence results
hold for every invariant measure µ:

lim
k
hBK(µ,Vk) = lim

k
hOW (µ,Vk) = lim

ε→0
hBK(µ, ε) = lim

ε→0
hOW (µ, ε) = hµ(T ).

Proof. It suffices to prove the convergences for the case when µ is ergodic.
In this case we can find a sequence of partitions Aµ,k into sets of maximal
diameter εk decreasing to 0, and with boundaries of µ-measure zero. Note
that then hµ(Aµ,k, T ) →

k
hµ(T ). For each k we find a cover Vµ,k which is

εk/ log #Aµ,k-inscribed in Aµ,k. By a direct application of Theorem 2 we
have

lim inf
k→∞

hBK(µ,Vµ,k) ≥ hµ(T ), and lim inf
k→∞

hOW (µ,Vµ,k) ≥ hµ(T ).

Further, for each k0, εk becomes eventually smaller than the Lebesgue number
of Vµ,k0 ; in particular, the covers Vk are eventually inscribed in Vµ,k0 . So, for
each n, B(n,εk)(x) ⊂ V nµ,k0

(x) and V nk (x) ⊂ V nµ,k0
(x). This easily implies that

all four lower limits in question are not smaller than the entropy. Conversely,
the partitionsAµ,k satisfy Anµ,k(x) ⊂ B(n,εk)(x) and, for each k0, we eventually
have Anµ,k(x) ⊂ V nk0

(x), which implies that the four upper limits do not exceed
the entropy. �

The following natural question arises: How far is the convergence of Theo-
rem 3 from being uniform on invariant measures? The answer to this question
is provided in [D], where it is shown that uniform convergence of any of these
four sequences (as well as of several other entropy functions with topological
flavor) is equivalent to the system (X,T ) being asymptotically h-expansive
(which is a relatively strong topological restriction; see [M] for the definition).
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