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EFFECTIVE ACTIONS OF SUn ON COMPLEX
n-DIMENSIONAL MANIFOLDS

A. V. ISAEV AND N. G. KRUZHILIN

Abstract. For n ≥ 2 we classify all connected n-dimensional complex
manifolds admitting effective actions of the special unitary group SUn
by biholomorphic transformations.

0. Introduction

Let M be a complex manifold and Aut(M) the group of biholomorphic
automorphisms of M equipped with the compact-open topology. An action
of a Lie group G on M by biholomorphic transformations is a real-analytic
map

Φ : G×M →M,

such that for every g ∈ G we have Φ(g, ·) ∈ Aut(M), and the induced mapping
Ψ : G→ Aut(M), g 7→ Φ(g, ·), is a homomorphism. In this paper we consider
the special case G = SUn.

Actions of the group SUn on real manifolds have been studied extensively.
One motivation for such studies is the importance of SUn-actions in physics,
especially for small values of n (see, e.g., [KS]). SUn-actions have also been of
interest to mathematicians, and various classification results for such actions
have been obtained (see, e.g., [HsiWC], [HsiWY], [M]). There is, however, no
classification result for the case of SUn-actions by biholomorphic transforma-
tions on complex manifolds. We note, however, that in [U] all real compact
connected orientable manifolds of dimension 2n admitting actions of SUn were
found for n ≥ 5.

In the present paper we give a complete classification of complex n-dimen-
sional manifolds that admit effective actions of the group SUn by biholomor-
phic transformations for n ≥ 2. The effectiveness of an action means that the
map Ψ defined above is injective. For an effective action, Aut(M) contains a
subgroup isomorphic to SUn.
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In Section 1 we consider the simplest case when an action has a fixed point.
In this case M is equivalent to either the unit ball Bn ⊂ Cn, or Cn, or CPn

(Proposition 1.1).
The rest of the paper deals with actions without fixed points. In Section

2 we describe orbits of such actions (Theorem 2.3). It turns out that every
orbit is either a real or a complex hypersurface in M .

In Section 3 we show how orbits can be glued together. We first consider
the case when all orbits are real hypersurfaces and show that for n ≥ 3 a
manifold that admits such an action is equivalent to either a spherical shell in
C
n, or a Hopf manifold, or the quotient of one of these manifolds by the action

of a discrete subgroup of the center of Un. For n = 2, however, the situation
is more interesting. Apart from the above manifolds the classification in this
case also includes spherical shells in C2 with a non-standard complex structure
inherited from the non-standard complex structure on CP2 \ {0} introduced
in [R1] (Theorem 3.2).

Next, we consider the situation when at least one complex hypersurface
orbit is present in M and show that there can exist at most two such orbits.
They are biholomorphically equivalent to CPn−1 and, for n ≥ 3, can only
arise as a result of either blowing up Cn or a ball in Cn at the origin, or
adding the hyperplane ∞ ∈ CPn to the exterior of a ball in Cn, or blowing
up CPn at one point, or taking the quotient of any of these examples by the
action of a discrete subgroup of the center of Un. For n = 2 the classification
also includes the exterior of a ball in CP2 \ {0} with non-standard complex
structure to which the hyperplane ∞ ∈ CP2 is attached (Theorem 3.6).

One can attempt to obtain classifications analogous to ours in more general
settings, for example, for the group SUn acting on k-dimensional complex
manifolds with k 6= n. In fact, it can be shown that effective actions of SUn do
not exist on manifolds of dimension k < n. Thus, our classification is obtained
for the smallest possible dimension of manifolds for which there are effective
actions. Another generalization is possible if one considers not necessarily
effective actions, e.g., actions with non-trivial discrete kernel. For many of
our arguments the effectiveness of actions is essential. For non-effective actions
entirely new effects are possible; for example, a manifold may not have any
real hypersurface orbits and, if n = 2, totally real codimension 2 orbits can
occur.

In [IKru] we classified all complex manifolds of dimension n that admit
effective actions of the full unitary group Un. Our study in [IKru] was moti-
vated by a characterization of the complex space Cn obtained as a result of
the classification. Our original proof for the case of SUn was similar (however,
harder on the technical side) to that for Un. The shorter and more elegant
argument presented in this paper is to a great extent due to communications
that we have had with A. Huckleberry. He made extensive comments that
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significantly changed our original approach. We wish to thank him for his
interest in our work and many inspiring suggestions.

We acknowledge that a large part of this work was done while the first
author was visiting the University of Illinois at Urbana-Champaign.

1. Case of fixed point

In this section we list complex manifolds that admit effective actions of SUn
by biholomorphic transformations with fixed point. As shown in Proposition
1.1 below, the classification in this case easily follows from the results in [GK]
and [BDK]. First, we will introduce some notation.

For p ∈M let Ip be the isotropy subgroup of SUn at p, i.e., Ip := {g ∈ SUn :
gp = p}. As above, we denote by Ψ the continuous homomorphism of SUn into
Aut(M) induced by the action of SUn on M . Let Lp := {dp(Ψ(g)) : g ∈ Ip}
be the linear isotropy subgroup, where dpf is the differential of a map f at
p. Clearly, Lp is a compact subgroup of GL(Tp(M),C), where Tp(M) is the
tangent space to M at p. Since the action of SUn is effective, Lp is isomorphic
to Ip. The isomorphism is given by the map

(1.1) δ : Ip → Lp, δ(g) := dp(Ψ(g)).

We will now prove the following proposition.

Proposition 1.1. Let M be a connected complex manifold of dimension
n ≥ 2 endowed with an effective action of SUn by biholomorphic transforma-
tions that has a fixed point in M . Then M is biholomorphically equivalent to
either

(i) the unit ball Bn ⊂ Cn, or
(ii) Cn, or
(iii) CPn.

The biholomorphic equivalence f can be chosen to be either SUn-equivariant,
or, if n ≥ 3, SUn-antiequivariant, i.e., to satisfy either the relation

(1.2) f(gq) = gf(q),

or the relation

(1.3) f(gq) = gf(q),

for all g ∈ SUn and q ∈M . (Here manifolds (i)–(iii) are considered with the
standard action of SUn.)

Proof. Let p ∈M be a fixed point for the SUn-action. Then Ip = SUn, and
Lp is a subgroup of GL(Tp(M),C) isomorphic to SUn. Since Lp is compact,
one can find coordinates in Tp(M) such that Lp ⊂ Un. In these coordinates
Lp = SUn and therefore Lp acts transitively on the unit sphere in Tp(M).

Assume first that M is non-compact. Then by [GK] the manifold M is
biholomorphically equivalent to either Bn or Cn, and a biholomorphism may
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be chosen to satisfy F (gq) = γ(g)F (q) for all g ∈ SUn and q ∈ M and some
automorphism γ of SUn, where the action of SUn on Cn in the right-hand
side is standard. Every automorphism of SUn has either the form

(1.4) g 7→ h0gh
−1
0 ,

or the form

(1.5) g 7→ h0gh
−1
0 ,

with h0 ∈ SUn. Thus, setting f := ĥ−1
0 ◦F , where ĥ0 is the automorphism of

CP
n corresponding to h0, we obtain either (1.2), or (1.3), respectively.
Assume now that M is compact. Then by [BDK] M is biholomorphically

equivalent to CPn. As above, we denote the equivalence map by F . We
will now show that a biholomorphism between M and CPn can be chosen to
satisfy (1.2) or (1.3).

The action of SUn on M induces an injective homomorphism Ψ̃ : SUn →
Aut(CPn). Since Ψ̃(SUn) has a fixed point in CPn, Ψ̃(SUn) is conjugate in
Aut(CPn) to SUn embedded in Aut(CPn) in the standard way. Hence there
exists an automorphism γ of SUn such that for some s ∈ Aut(CPn) we have
(s ◦ F )(gq) = γ(g)(s ◦ F )(q) for all g ∈ SUn and q ∈ M , where the action of
SUn on CPn in the right-hand side is standard. We again use that γ has an
explicit expression as in (1.4) or (1.5), and setting f := ĥ−1

0 ◦ s ◦ F obtain a
map that satisfies either (1.2), or (1.3), respectively.

The proof is complete. �

2. Description of orbits

In this section we assume that SUn acts on M without fixed points and
give a description of orbits that such SUn-actions can have. We start with
examples.

Example 2.1.

(I) Denote by Cn \ {0}/Zm, with m ∈ N, the manifold obtained from
C
n\{0} by identifying every point z in Cn\{0} with e2πi/mz. Let SUn act on
C
n\{0}/Zm in the standard way. Then the lens manifold L2n−1

m := S2n−1/Zm
is an orbit of this action.

(II) We recall the example of a non-standard complex structure on CP2\{0}
given by Rossi in [R1]. Let (w0 : w1 : w2 : w3) be homogeneous coordinates
in CP3. Consider in CP3 the variety W given by

(2.1) w1w2 = w3(w3 + w0).
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Let (z0 : z1 : z2) denote homogeneous coordinates in CP2. Consider the map
π : CP2 \ {0} → W defined by the formulas

(2.2)

w0 = z2
0 ,

w1 = z2
1 −

z1z2

|z1|2 + |z2|2
z2

0 ,

w2 = z2
2 +

z1z2

|z1|2 + |z2|2
z2

0 ,

w3 = z1z2 −
|z2|2

|z1|2 + |z2|2
z2

0 .

The map π is everywhere 2-to-1, and its image is W \ Γ, where Γ is given by

(2.3) w0 = 1, , w2 = −w1, w3 ∈ R.

Consider the unique complex structure on CP2 \ {0} that makes π locally
biholomorphic. Denote CP2 \ {0} with this new complex structure by X . It
can be checked that the standard action of SU2 on X is in fact an action by
biholomorphic transformations. Denote by S3

R the sphere of radius R in X
with the induced CR-structure. It is an orbit under the action of SU2 on X
and therefore its CR-structure is invariant under the standard action of SU2

on the sphere. It follows from the results in [R1] (see also [R2]) that none of
the surfaces S3

R is CR-equivalent to the ordinary sphere S3 and hence none
of S3

R is spherical, unlike the orbit in (I) above. Further, it can be shown (for
example, by using the approach that utilizes classifying algebras as in [Kr])
that every CR-structure on S3 invariant under a transitive action of SU2 by
CR-transformations is equivalent to either S3 equipped with the standard
CR-structure or S3

R for some R > 0 by means of an SU2-equivariant CR-
diffeomorphism, and that the manifolds S3

R are not pairwise CR-equivalent.
(III) Let Ĉn be the blow-up of Cn at the origin, i.e.,

Ĉ
n :=

{
(z, w) ∈ Cn × CPn−1 : ziwj = zjwi, for all i, j

}
,

where z = (z1, . . . , zn) are coordinates in Cn and w = (w1 : · · · : wn) are
homogeneous coordinates in CPn−1. We define an action of SUn on Ĉn as
follows. For (z, w) ∈ Ĉn and g ∈ SUn we set

g(z, w) := (gz, gw),

where in the right-hand side we use the standard actions of SUn on Cn and
CP

n−1. Then CPn−1 embedded in Ĉn as the set of all points (0, w) ∈ Ĉn is
an SUn-orbit.

In this section we will show that every orbit of an SUn-action on M is
equivalent to an orbit of one of the tree types specified in Example 2.1: a lens
manifold L2n−1

m for some m ∈ N, S3
R for some R > 0 (here n = 2), or CPn−1

(see Theorem 2.3 for a precise statement).
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An action of SUn on M is given by a real-analytic map

Φ : SUn ×M →M.

Fix p ∈ M and let O(p) := {gp : g ∈ SUn} be the SUn-orbit of p. The
group SUn is a totally real submanifold in the complex Lie group SLn(C),
and therefore we can locally extend the map Φ to a holomorphic map

(2.4) Φ̃ : V ×Mp →M,

where V is a connected neighborhood of SUn in SLn(C) and Mp is a neigh-
borhood of O(p) in M . We refer to Φ̃ as a local holomorphic action of SLn(C)
on M .

For a point p ∈ M , let Jp := {g ∈ V : gp = p} be the local isotropy
subgroup of p under the local SLn(C)-action. Clearly, Ip = Jp ∩ SUn. We
now define the normalizer Np of Jp in SLn(C) as follows (see [Huck, p. 145]):
denote by jp the Lie algebra of Jp and set

Np :=
{
g ∈ SLn(C) : gjpg−1 = jp

}
.

Clearly, Np is an algebraic subgroup of SLn(C) and Jp ⊂ Np ∩ V . Further,
since we consider actions without fixed points, Np is a proper subgroup of
SLn(C) such that dimC SLn(C)/Np ≤ n.

We need the following proposition whose proof is similar in part to that of
Theorem 3.4 in [Huck] (see p. 169).

Proposition 2.2. Np is conjugate in SLn(C) to one of the following
subgroups:

(2.5)




1/det A c
0
... A
0

 , A ∈ GLn−1(C), c ∈ Cn−1

 ,

(2.6)
{(

1/det A 0 . . . 0
d A

)
, A ∈ GLn−1(C), d ∈ Cn−1

}
(n ≥ 3),

(2.7) S1 :=
{(

a 0
0 1/a

)
, a ∈ C∗

}
(n = 2),

(2.8) S2 :=
{(

a 0
0 1/a

)
,

(
0 b
−1/b 0

)
, a, b ∈ C∗

}
(n = 2),

where in (2.5) and (2.6), c is a row vector and d is a column vector, respec-
tively.
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Proof. We say that SLn(C)/Np cannot be fibered if there does not exist a
proper algebraic subgroup G ⊃ Np in SLn(C) such that dimC SLn(C)/G <
dimC SLn(C)/Np (cf. [Huck, p. 169]). Suppose first that SLn(C)/Np cannot
be fibered.

Assume further that Np is not reductive and consider its unipotent radical
U . Since Np is not reductive, U is non-trivial. Let N(U) be the normalizer
of U in SLn(C). Clearly, N(U) is a proper algebraic subgroup of SLn(C).
Consider the unipotent radical W of N(U). Suppose first that W = U .
It then follows from Corollary B in [Hum, p. 186] that N(U) is parabolic.
Since N(U) ⊃ Np and SLn(C)/Np cannot be fibered, we have dimC N(U) =
dimC Np. Since N(U) is connected, we obtain that Np = N(U) is a maximal
proper parabolic subgroup of SLn(C).

Assume now that U 6= W . Since U ⊂ W , we have Np ⊂ WNp. Further,
WNp is a proper algebraic subgroup of SLn(C) and, since SLn(C)/Np cannot
be fibered, we have dimCWNp = dimC Np. Hence W ⊂ Np and therefore
W = U , which is a contradiction. Thus Np is a maximal proper parabolic
subgroup in SLn(C).

Since dimC SLn(C)/Np ≤ n, Np is conjugate either to subgroup (2.5), or,
if n ≥ 3, to subgroup (2.6), or, if n = 4, to the subgroup

(2.9)
{(

B C
0 D

)
, B,D ∈ GL2(C), detB · detD = 1, C ∈ gl2(C)

}
.

Let n = 4 andNp be conjugate to subgroup (2.9). Since dimC SL4(C)/Np =
4, we have dimC Jp = dimC Np = 11. Further, Np ∩ SU4 is connected and
therefore Ip = Jp ∩ SU4 = Np ∩ SU4. Calculating Np ∩ SU4 we obtain that
Ip is conjugate in SU4 to (U(2)× U(2)) ∩ SU4. It then follows that SU4 acts
transitively on M . Thus the elements of the center of SU4 act trivially on M
and the action in this case is not effective. Hence Np for n = 4 cannot be
conjugate to subgroup (2.9).

Assume next that Np is reductive and let K ⊂ SLn(C) be its compact
form. Conjugating K if necessary, we can assume that K ⊂ SUn. Since
dimC SLn(C)/Np ≤ n, we have dimK ≥ n2−n− 1. By Lemma 2.1 of [IKra],
such subgroups do not exist for n ≥ 3. Hence n = 2, and it follows from
Lemma 2.1 of [IKru] that Kc, the connected component of the identity of K,
is conjugate in SU2 to (U(1) × U(1)) ∩ SU2. Therefore, N c

p is conjugate to
S1 and thus Np is conjugate in SL2(C) to either S1 or S2 (see (2.7), (2.8)).
However, SL2(C)/S1 clearly can be fibered since S1 is contained in parabolic
subgroup (2.5). Hence Np is in fact conjugate to S2.

Suppose now that SLn(C)/Np can be fibered, i.e., there exists a proper
algebraic subgroup G ⊃ Np such that dimC SLn(C)/G < dimC SLn(C)/Np ≤
n. We can assume that SLn(C)/G cannot be fibered. Arguing as above
for G in place of Np and taking into account that dimC SLn(C)/G < n,
we obtain that G is conjugate in SLn(C) either to subgroup (2.5), or, if
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n ≥ 3, to subgroup (2.6). In particular, dimC SLn(C)/G = n − 1 and hence
dimC Jp = dimC Np = n2 − n− 1.

Let g and np denote the Lie algebras of G and Np, respectively. Suppose
first that G is conjugate to subgroup (2.5). Then g is conjugate in sln(C) to
the subalgebra

(2.10)



− trα β

0
... α
0

 , α ∈ gln−1(C), β ∈ Cn−1

 ,

where β is a row vector and trα denotes the trace of the matrix α. Clearly,
np is a codimension 1 complex subalgebra in g, which is not an ideal in g. It
is not hard to determine all such subalgebras in g to obtain that either n = 2
and np is conjugate in sl2(C) to the subalgebra of diagonal matrices, or n = 3
and np is conjugate in sl3(C) to the subalgebra of upper triangular matrices.
We consider these two cases separately.

If n = 2, N c
p is conjugate in SL2(C) to subgroup S1. Then Np is conjugate

to either S1 or S2. Since SL2(C)/Np can be fibered, Np is in fact conjugate
to S1.

If n = 3, N c
p is conjugate in SL3(C) to the subgroup of upper triangular

matrices. Therefore N c
p ∩ SU3 is connected and hence Icp = (Jp ∩ SU3)c =

N c
p ∩ SU3. Calculating N c

p ∩ SU3 we obtain that Icp is conjugate in SU3 to
(U(1)×U(1)×U(1))∩SU3. It then follows that SU3 acts transitively on M .
This implies that the elements of the center of SU3 act trivially on M and
the action in this case is not effective. Thus in fact n 6= 3.

The case when G is conjugate to subgroup (2.6) is treated similarly.
The proof is complete. �

We will now obtain the main result of this section.

Theorem 2.3. Let M be a connected complex manifold of dimension n ≥
2 endowed with an effective action of SUn by biholomorphic transformations.
Assume that there exist no fixed points for this action. Then for p ∈ M the
orbit O(p) is either a complex or a real hypersurface in M . In the first case
O(p) is biholomorphically equivalent to CPn−1. In the second case O(p) is
CR-equivalent to either

(i) a lens manifold L2n−1
m for some m ∈ N, (m,n) = 1, or

(ii) S3
R for some R > 0 (here n = 2).

The biholomorphic equivalence in the first case and CR-equivalence in the
second case can be chosen to be either SUn-equivariant or, if n ≥ 3, SUn-
antiequivariant (see (1.2), (1.3), respectively).
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Proof. We apply Proposition 2.2. Suppose first that Np is conjugate to the
maximal parabolic subgroup (2.5). Then SLn(C)/Np is biholomorphically
and SLn(C)-equivariantly equivalent to CPn−1. Since dimC sln(C)/jp ≤ n
and dimC SLn(C)/Np = n − 1, we have either dimC Jp = dimC Np = n2 − n
or dimC Jp = dimC Np − 1 = n2 − n− 1.

Let first dimC Jp = n2 − n. We set

(2.11) Λ := {gp : g ∈ V0},

(2.12) Λ1 := {gNp : g ∈ V0},

where V0 ⊂ V is a connected neighborhood of SUn in SLn(C). Let Ô be the
SUn-orbit of the element Np ∈ SLn(C)/Np. Clearly, Λ and Λ1 are germs of
complex manifolds that contain O(p) and Ô, respectively. The map

ρ : Λ1 → Λ, gNp 7→ gp,

is well-defined and biholomorphic if V0 is sufficiently small. The restriction of
ρ to Ô is an SUn-equivariant map onto O(p).

Calculating Np ∩ SUn, we see that it is conjugate in SUn to the subgroup

(2.13)
{(

1/detB 0
0 B

)
, B ∈ Un−1

}
.

Since Np ∩ SUn is connected, we obtain Ip = Jp ∩ SUn = Np ∩ SUn, and
hence dimO(p) = 2n − 2. On the other hand, since dimC Jp = n2 − n, we
have dimC Λ = n − 1 and therefore O(p) = Λ. The same calculation shows
that Ô = Λ1 = SLn(C)/Np. This proves that O(p) is a complex hypersurface
in M , biholomorphically and SUn-equivariantly equivalent to CPn−1.

Suppose now that dimC Jp = n2 − n − 1. Clearly, jp is a codimension 1
complex normal subalgebra of np. The subalgebra np is conjugate in sln(C)
to subalgebra (2.10). It is not hard to see that jp is then conjugate in sln(C)
to the subalgebra of (2.10) for which α ∈ sln−1(C). Let H ⊂ SLn(C) be the
connected subgroup with Lie algebra jp. Clearly, H is conjugate in SLn(C)
to the subgroup 


1 r
0
... Q
0

 , Q ∈ SLn−1(C), r ∈ Cn−1

 ,

where r is a row vector. Further, H ∩ SUn is conjugate in SUn to SUn−1

embedded as the subgroup


1 0 . . . 0
0
... P
0

 , P ∈ SUn−1

 .
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In particular, H∩SUn is connected and therefore for the connected component
of the identity Icp of Ip we have Icp = H ∩ SUn. It then follows that O(p) is a
real hypersurface in M .

Consider the germ of the complex manifold Λ defined in (2.11). In this
case Λ is a neighborhood of O(p) in M . Denote now by Ô the SUn-orbit of
the element H ∈ SLn(C)/H and set

Λ2 := {gH : g ∈ V0}.

Ô is a real hypersurface in SLn(C)/H and Λ2 is its neighborhood. The
holomorphic map

σ : Λ2 → Λ, gH 7→ gp,

is well-defined if V0 is sufficiently small. The restriction σ̂ of σ to Ô is an
SUn-equivariant covering CR-map onto O(p). The fibers of σ̂ are given by
σ̂−1(gp) = gIpH for g ∈ SUn. It is easy to see that SLn(C)/H is biholo-
morphically and SLn(C)-equivariantly equivalent to Cn \ {0}. Hence Ô is
equivalent to the sphere S2n−1 ⊂ Cn by means of an SUn-equivariant CR-
diffeomorphism. Thus we obtain that S2n−1 covers O(p) by means of an
SUn-equivariant CR-map σ̃ : S2n−1 → O(p).

We will now determine the fibers of σ̃. For this we need to find the full
isotropy group Ip. Suppose first that n ≥ 3 and apply Lemma 4.4 of [IKru].
Since Icp is conjugate in SUn to SUn−1, we obtain that Ip is conjugate in SUn
to Gmn · SUn−1, m ∈ N, where Gmn is the subgroup{(

s 0
0 t · id

)
, s, t ∈ C∗, sm = 1, stn−1 = 1

}
.

We will now show that this also holds for n = 2. Let Tp(O(p)) be the tangent
space at p to O(p) in the tangent space Tp(M) at p to M . Choose coordinates
in Tp(M) in which the linear isotropy subgroup Lp ⊂ GL(Tp(M),C) becomes
a subgroup of U2 and consider the orthogonal complement W to Tp(O(p)) ∩
iTp(O(p)). Clearly, dimC Tp(O(p))∩ iTp(O(p)) = dimCW = 1. The group Lp
preserves both Tp(O(p))∩iTp(O(p)) and W . In addition, it preserves Tp(O(p))
and hence the line W ∩ Tp(O(p)). Therefore it can only act as ± id on W .
Since O(p) is covered by S3, it is strongly pseudoconvex and therefore Lp can
only act trivially on W . Thus Lp and hence Ip are isomorphic to a subgroup
of U1. This implies that Ip is a finite cyclic group, i.e., Ip = {Cl, 0 ≤ l < m}
for some C ∈ SU2 and m ∈ N such that Cm = id. Choosing new coordinates
in which C is in the diagonal form we see that Ip is conjugate in SU2 to the
group Gm2 .

Thus, we have proved that for all n ≥ 2, Ip is conjugate in SUn to Gmn ·
SUn−1. This implies that the fibers of σ̃ are given as follows: σ̃−1(gp) =
{µg(1, 0, . . . , 0) : µm = 1}, where g(1, 0, . . . , 0) denotes the ordinary action of
the element g ∈ SUn on the vector (1, 0 . . . , 0) ∈ S2n−1. (Here we assume
that σ̃ is chosen to satisfy σ̃((1, 0, . . . , 0)) = p.) Since S2n−1 covers the lens
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manifold L2n−1
m by means of an SUn-equivariant CR-map with exactly the

same fibers, we obtain that O(p) is CR- and SUn-equivariantly equivalent to
L2n−1
m . The SUn-action on M (and hence on O(p)) can only be effective if

(m,n) = 1.
Suppose now that n ≥ 3 and Np is conjugate to the maximal parabolic sub-

group (2.6). This case is almost identical to the preceding one. The subgroup
(2.6) is mapped into subgroup (2.5) by the following outer automorphism of
SLn(C): γ(g) = (gT)−1, where gT denotes the transposed matrix. The re-
striction of γ to SUn is an outer automorphism of SUn: γ(g) = g. This
observation shows that O(p) in the case dimC Jp = n2 − n is equivalent to
CP

n−1 by means of a biholomorphic SUn-antiequivariant map, and in the
case dimC Jp = n2 − n − 1 it is equivalent to L2n−1

m by means of an SUn-
antiequivariant CR-diffeomorphism.

Let now n = 2 and Np be conjugate to subgroup S1 (see (2.7)):

Np = g0S1g
−1
0 ,

for some g0 ∈ SL2(C). Conjugating the above identity by a suitable t ∈ SU2

and replacing g0 by g0s for a suitable s ∈ S1, we obtain

tNpt
−1 = h0S1h

−1
0 ,

where

h0 =
(

1 c
0 1

)
, c ∈ R.

Let first c 6= 0. In this case h0S1h
−1
0 ∩ SU2 is the center of SU2. Since

tIpt
−1 ⊂ h0S1h

−1
0 ∩ SU2, Ip is discrete. Hence O(p) is a real hypersurface

in M . The effectiveness of the SU2-action on M and hence on O(p) then
implies that Ip is in fact trivial, and therefore O(p) is diffeomorphic to S3.
Let Ô be the SU2-orbit of Np ∈ SL2(C)/Np. Ô is a real hypersurface in
SL2(C)/Np. Consider Λ given by (2.11) and Λ1 given by (2.12). Clearly, Λ1

is a neighborhood of Ô in SL2(C)/Np. Since dimC SL2(C)/Np = 2, we have
dimC Jp = dimC Np = 1 and therefore Λ is a neighborhood of O(p) in M . The
holomorphic map

(2.14) τ : Λ→ Λ1, gp 7→ gNp,

is well-defined if V0 is sufficiently small. The restriction of τ to O(p) is a 2-to-1
SU2-equivariant covering CR-map onto Ô. Further, SL2(C)/Np is equivalent
biholomorphically and SL2(C)-equivariantly to the quadric Q ⊂ C3 given by

(2.15) z2
1 + z2

2 + z2
3 = 1

(see [AHR]). The quadric Q is affinely equivalent to the finite part of the
quadricW defined in (2.1). Therefore O(p) has a non-spherical SU2-invariant
CR-structure, and it now follows from the discussion in Example (2.1)(II)
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that O(p) is equivalent to S3
R for some R > 0 by means of an SU2-equivariant

CR-diffeomorphism.
Assume now that c = 0. In this case h0S1h

−1
0 ∩ SU2 = S1 ∩ SU2 is the

following subgroup:

T1 :=
{(

α 0
0 α

)
, |α| = 1

}
.

Therefore, Ip is conjugate in SU2 to T1 and hence O(p) is a 2-dimensional
submanifold of M . Consider the map τ defined in (2.14). Its restriction to
O(p) is a diffeomorphism onto Ô. Since the SU2-orbit Ô of Np in SL2(C)/Np
is totally real, O(p) is totally real as well.

Let Tp(O(p)) denote the tangent space to O(p) at p. Since O(p) is totally
real, we have Tp(M) = Tp(O(p)) + iTp(O(p)). Consider the map δ defined in
(1.1). The effectiveness of the SU2-action implies that δ is an isomorphism
and therefore δ(− id) is a non-trivial element of the linear isotropy subgroup
Lp. On the other hand, − id ∈ Ip and therefore δ(− id) acts trivially on
Tp(O(p)). Since δ(− id) is a complex linear transformation of Tp(M) it is in
fact the identity. This contradiction shows that c 6= 0 and thus O(p) is CR-
and SU2-equivariantly equivalent to S3

R for some R > 0.
Let now n = 2 and Np be conjugate to subgroup S2 (see (2.8)). This case is

treated similarly to the preceding one. If c 6= 0, h0S2h
−1
0 ∩ SU2 is isomorphic

to Z4 and consists of the following four elements:{(
±1 0
0 ±1

)
,

(
±ic/

√
1 + c2 ±i/

√
1 + c2

±i/
√

1 + c2 ∓ic/
√

1 + c2

)}
.

It then follows that Ip is discrete. Hence O(p) is a real hypersurface in M .
All non-trivial subgroups of h0S2h

−1
0 ∩ SU2 contain the center of SU2. The

effectiveness of the SU2-action on M and hence on O(p) then implies that
Ip is in fact trivial and therefore O(p) is diffeomorphic to S3. Consider the
map τ (see (2.14)). The restriction of τ to O(p) is a 4-to-1 SU2-equivariant
covering CR-map onto Ô. Further, SL2(C)/Np is biholomorphically and
SL2(C)-equivariantly equivalent to Q/Z2, which as before implies that O(p)
is equivalent to S3

R for some R > 0 by means of an SU2-equivariant CR-
diffeomorphism.

If c = 0, h0S2h
−1
0 ∩ SU2 = S2 ∩ SU2 is the following subgroup:

T2 :=
{(

α 0
0 α

)
,

(
0 β

−β 0

)
, |α| = |β| = 1

}
.

Therefore, Ip is conjugate in SU2 to either T1 or T2. Hence O(p) is a 2-
dimensional submanifold of M . The restriction of τ to O(p) is a map onto Ô,
which is 2-to-1 if Ip is conjugate to T1 and a diffeomorphism if Ip is conjugate
to T2. As before, this gives that O(p) is totally real, which contradicts the
effectiveness of the SU2-action. Hence in fact c 6= 0.

The proof is complete. �
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3. Classification of actions without fixed points

In this section we obtain a complete classification of connected n-dimensio-
nal complex manifolds that admit effective actions of SUn by biholomorphic
transformations. As in the preceding section, we consider actions without
fixed points.

We start with the case when all orbits are real hypersurfaces.

Definition 3.1. Let Snr,R := {z ∈ Cn : r < |z| < R}, 0 ≤ r < R ≤ ∞, be
a spherical shell in Cn. Further, denote by S2

r,R, 0 ≤ r < R ≤ ∞, the spherical
shell S2

r,R equipped with the non-standard complex structure induced by the
complex structure of X (see Example 2.1). Finally, for d ∈ C∗, |d| 6= 1, denote
by Mn

d the Hopf manifold obtained by identifying z ∈ Cn \ {0} with d · z.

We will now prove the following theorem.

Theorem 3.2. Let M be a connected complex manifold of dimension
n ≥ 2 endowed with an effective action of SUn by biholomorphic transfor-
mations. Assume that all orbits of this action are real hypersurfaces. Then
M is biholomorphically equivalent to either

(i) Snr,R/Zm, or
(ii) Mn

d /Zm, or
(iii) S2

r,R (here n = 2),
for some 0 ≤ r < R ≤ ∞, d ∈ C∗, |d| 6= 1, m ∈ N, (m,n) = 1. The
biholomorphic equivalence can be chosen to be either SUn-equivariant or, if
n ≥ 3, SUn-antiequivariant. (Here manifolds (i)–(iii) are considered with the
standard SUn-actions.)

Proof. If n ≥ 3 or n = 2 and there exists a spherical orbit, i.e., an orbit
equivalent to a lens manifold, then, repeating the proof of Theorem 2.7 in
[IKru], we obtain that M is biholomorphically equivalent to either Snr,R/Zm
or Mn

d /Zm by means of an SUn-equivariant or SUn-antiequivariant map.
Suppose now that n = 2 and the orbit of every point in M is non-spherical.

Assume first that M is non-compact. Let p ∈ M . Then there exists ρ > 0
such that O(p) is equivalent to S3

ρ ⊂ X by means of an SU2-equivariant CR-
diffeomorphism f . The map f extends to a biholomorphic SU2-equivariant
map between a neighborhood U of O(p) (U can be taken to be a connected
union of orbits) and S2

ρ1,ρ2
⊂ X with 0 ≤ ρ1 < ρ < ρ2 ≤ ∞.

Let D be a maximal domain in M such that there exists an SU2-equivariant
biholomorphic map f from D onto a spherical shell in X . Let this shell be
S2
ρ′,ρ′′ for some 0 ≤ ρ′ < ρ′′ ≤ ∞. As shown above, such a domain D exists.

Assume that D 6= M and let x be a boundary point of D. Consider the
orbit O(x). Since O(x) is non-spherical, there exists an SU2-equivariant CR-
diffeomorphism h from O(x) onto S3

ρ̃ for some ρ̃ > 0. This diffeomorphism
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extends to an SU2-equivariant biholomorphic map between a neighborhood
V of O(x) (that can be taken to be a union of orbits) and S2

ρ̃1,ρ̃2
for some

0 ≤ ρ̃1 < ρ̃ < ρ̃2 ≤ ∞. For s ∈ V ∩D we consider the orbit O(s). The CR-
diffeomorphisms f and h map O(s) into some surfaces S3

r1 and S3
r2 . Hence

the CR-diffeomorphism F := h ◦ f−1 maps S3
r1 SU2-equivariantly onto S3

r2 .
Since the surfaces S3

r1 and S3
r2 are not CR-equivalent unless r1 = r2, it follows

that r1 = r2 = t, and F is an SUn-equivariant holomorphic automorphism of
S3
t .
We now need the following lemma.

Lemma 3.3. For any t > 0, every holomorphic automorphism of S3
t ex-

tends to an automorphism of the finite part X ′ of X , namely X ′ := X \ {(0 :
z1 : z2)}.

Proof. Fix p ∈ S3
t . Since S3

t is real-analytic and strongly pseudoconvex,
there exist local coordinates (z, w = u + iv) near p in which the equation of
S3
t is given in the Chern-Moser normal form [CM]:

(3.1) v = |z|2 +
∑

k≥2,l≥2

Fkl(z, z, u),

where Fkl denote terms of order k in z and order l in z, and the following
normalization conditions hold:

F22 ≡ 0, F23 ≡ 0, F33 ≡ 0.

Since S3
t is homogeneous and not spherical, F24 6≡ 0.

Consider the Lie group Aut(S3
t ) of all holomorphic automorphisms of S3

t

and denote by Autp(S3
t ) the isotropy subgroup of p. Since S3

t is not spherical
at p, by [KL] in some normal coordinates near p all elements of Autp(O(p))
can be written in the form

(3.2) z 7→ eiαz, w 7→ w,

where α ∈ R. Observe now that among all transformations of the form (3.2),
equation (3.1) with F24 6≡ 0 can only be invariant under

z 7→ ±z, w 7→ w.

Thus for every p the isotropy subgroup Autp(S3
t ) consists of no more than

two elements. Since Aut(S3
t ) is transitive on S3

t , it follows that Aut(S3
t ) has

either one or two connected components, respectively. Let G0 denote the con-
nected component of the identity. Since for every p Autp(S3

t ) is discrete, we
have dim Aut(S3

t ) = 3, and hence G0 consists exactly of the automorphisms
induced by the standard action of SU2 on X . We will now show that Aut(S3

t )
has indeed another connected component (that we denote by G1) and describe
it. We will find a holomorphic automorphism f of S3

t such that f 6∈ G0. Then
G1 = {fg : g ∈ G0}.
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Recall that π defined in (2.2) is a 2-to-1 covering map from X onto W \ Γ,
whereW a quadric defined in (2.1) and Γ is an exceptional set defined in (2.3).
The restriction of π to X ′ is a covering map onto W ′ \ Γ, where W ′ is the
finite part of W. It is easy to see that W ′ is affinely equivalent to the quadric
Q introduced in (2.15), and under the affine equivalence W ′ \ Γ is mapped
onto Q \R3. Hence there exists a 2-to-1 covering map π̃ : X ′ → Q\R3. It is
clear from the definition of π that π̃(x) = π̃(y) iff x = ±y.

Consider the following automorphism h of Q \ R3:

z1 7→ z1, z2 7→ z2, z3 7→ −z3.

The automorphism h has fixed points in Q \ R3, e.g., p0 = (
√

2, i, 0). Let H
be a lift of h to the universal cover X ′. The map H is an automorphism of
X ′ and satisfies π̃ ◦H = h ◦ π̃. Let π̃−1(p0) = {±q0}. Then either H(q0) = q0

or H(q0) = −q0. In the first case we set f := H, and in the second case
f := −H. Hence f ∈ Aut(X ′) is non-trivial and has a fixed point in X ′.

A direct calculation shows that there exists a surjective homomorphism
φ : SU2 → SO3(R) such that π̃(gq) = φ(g)π̃(q) for all q ∈ X ′ and g ∈ SU2,
where SO3(R) acts on C3 in the standard way. Therefore, π̃ maps SU2-orbits
to SO3(R)-orbits. Since h preserves every SO3(R)-orbit, f ∈ Aut(S3

R) for
every R > 0.

It remains to show that f 6∈ G0. Indeed, otherwise in a neighborhood of
S3
t the automorphism f would coincide with an automorphism induced by an

element of SU2, and hence would coincide with it everywhere and thus would
not have a fixed point in X ′.

Therefore, Aut(S3
t ) has indeed two connected components and G1 = {fg :

g ∈ G0}. Since f and every g ∈ G0 extend to automorphisms of X ′, so does
every element of Aut(S3

t ).
The proof is complete. �

It now follows from Lemma 3.3 that F extends to an automorphism of
X ′. (In fact, since F is in addition SU2-equivariant, the proof of Lemma 3.3
implies that F is from the center of SU2 and thus extends to all of X .) Hence

F :=

{
F ◦ f on D
h on V

is a holomorphic map on D ∪ V , provided that D ∩ V is connected. As the
proof of Theorem 2.7 in [IKru] shows, V can be chosen so that D∩V is indeed
connected, and F is one-to-one on D ∪ V . Hence D is not maximal. This
contradiction implies that in fact D = M .

Assume now that M is compact and consider a domain D defined as above.
Since M is compact, D 6= M . For a boundary point x of D we consider the
orbit O(x). Choose a connected neighborhood V of O(x) as above, and let
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V = V1 ∪ V2 ∪ O(x). As in the proof of Theorem 2.7 in [IKru], it turns out
that Vj ⊂ D, j = 1, 2, and hence M = D ∪O(x).

We can now extend f |V1 and f |V2 to SU2-equivariant biholomorphic maps
f1 and f2, respectively, that are defined on V , and map it onto spherical
shells in X ′. Then f1 and f2 map O(x) onto S3

r1 and S3
r2 , respectively, for

some r1, r2 > 0. Clearly, r1 6= r2. However, the surfaces S3
R are not pairwise

CR-equivalent. This contradiction shows that M cannot be compact.
The proof is complete. �

We will now turn to the case when at least one complex hypersurface orbit
is present. We need the following proposition.

Proposition 3.4. Let M be a connected complex manifold of dimension
n ≥ 2 endowed with an effective action of SUn by biholomorphic transforma-
tions. Suppose that every orbit is a real or complex hypersurface in M and
there exists a complex hypersurface orbit. Then there are at most two complex
hypersurface orbits.

If, in addition, n = 2 and there exists a non-spherical real hypersurface orbit
in M , then there is exactly one complex hypersurface orbit. All sufficiently
small tubular neighborhoods of this orbit constructed from an SUn-invariant
distance on M are strongly pseudoconcave.

Proof. Suppose first that all orbits in M are complex hypersurfaces. Recall
from the proof of Theorem 2.3 that the isotropy subgroup of every point in
a complex hypersurface orbit is conjugate in SUn to subgroup (2.13) and
therefore contains the center of SUn. Hence the center of SUn acts trivially
on every complex hypersurface orbit and, since M is a union of such orbits,
the SUn-action on M is not effective. This contradiction shows that there
is at least one real hypersurface orbit in M . It then follows from [N] (see
Corollary 5.8 there) that there can exist at most two complex hypersurface
orbits in M .

Let n = 2 and suppose there is a non-spherical real hypersurface orbit in
M . It then follows from Theorem 3.2 that in fact every real hypersurface orbit
in M is non-spherical. Suppose there exist two complex hypersurface orbits
O1 and O2 in M . Fix an SU2-invariant distance function on M and consider a
tubular ε-neighborhood Uε of O1 not containing O2. Clearly, if ε is sufficiently
small, ∂Uε is a connected SUn-invariant real hypersurface in M and hence it
is a real hypersurface orbit. Therefore, Uε is either strongly pseudoconvex
or strongly pseudoconcave. Suppose that Uε is strongly pseudoconvex. Then
blowing down O1 in Uε we obtain a Stein analytic space with boundary ∂Uε
(see, e.g., [GR]). But this is impossible since it is shown in [R1] (see also
[R2]) that none of S3

R can bound a Stein analytic space. Hence Uε is strongly
pseudoconcave. Therefore M \ Uε is a strongly pseudoconvex neighborhood
of O2, which is impossible by the same argument.
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The proof is complete. �

To formulate our next result we need the following definition.

Definition 3.5. Let as before Ĉn denote the blow-up of Cn at the origin
and, analogously, let B̂n and ĈPn denote the blow-ups of the unit ball Bn and
CP

n at the origin, respectively. Let further S̃nr,∞ ⊂ CPn for r > 0 be the union
of the spherical shell Snr,∞ with infinite outer radius and the hypersurface at

infinity in CPn. Similarly, let ˜S2
r,∞ ⊂ X for r > 0 be the union of the spherical

shell S2
r,∞ ⊂ X with infinite outer radius and the hypersurface at infinity in

X .

We are now ready to formulate our final classification theorem.

Theorem 3.6. Let M be a connected complex manifold of dimension n ≥
2 endowed with an effective action of SUn by biholomorphic transformations.
Suppose that each orbit of this action is either a real or a complex hypersurface
and there exists a complex hypersurface orbit. Then M is biholomorphically
equivalent to either

(i) B̂n/Zm, or
(ii) Ĉn/Zm, or
(iii) ĈPn/Zm, or
(iv) S̃nr,∞/Zm, or

(v) ˜S2
r,∞ (here n = 2)

for some r > 0, m ∈ N, (m,n) = 1. The biholomorphic equivalence can be
chosen to be either SUn-equivariant or, if n ≥ 3, SUn-antiequivariant. (Here
manifolds (i)–(v) are considered with the standard SUn-actions.)

Proof. Assume first that there is only one complex hypersurface orbit O.
Consider M̃ := M \O. Since M̃ is clearly non-compact, by Theorem 3.2 the
manifold M̃ is equivalent to M̂ , where M̂ is either Snr,R/Zm or S2

r,R, for some
0 ≤ r < R ≤ ∞, m ∈ N, (m,n) = 1, by means of a biholomorphic map
f : M̃ → M̂ that is either SUn-equivariant or SUn-antiequivariant. We shall
assume that f is SUn-equivariant; the other case can be dealt with in the
same manner.

Let φ and ψ be the sun-anticanonical maps defined on M and M̂ , respec-
tively (see [Huck, pp. 166–167] for the definition of a g-anticanonical map).
They map M and M̂ into a projective space, and are holomorphic on M̃ and
M̂ , respectively. A priori φ is only a meromorphic map with possible points
of indeterminacy in O. However, since O is a complex hypersurface in M and
φ is SUn-equivariant, it follows that φ is in fact holomorphic on all of M .

We will be interested in the level sets of φ and ψ, which form SUn-invariant
families of analytic subsets in M and M̂ , respectively. A direct calculation



54 A. V. ISAEV AND N. G. KRUZHILIN

shows that the level sets of ψ are of the form L/Zm, where L is the intersection
of a complex line passing through the origin in Cn with either Snr,R or S2

r,R

(in the case M̂ = S2
r,R we set m = 1). Since f is SUn-equivariant, it maps the

intersections of the level sets of φ with M̃ into the level sets of ψ. Hence the
level sets of φ form an SUn-invariant family of holomorphic curves in M , and
for every level set S, the intersection S ∩ M̃ is biholomorphically equivalent
to either an annulus of modulus (R/r)m (if 0 < r < R <∞), or a punctured
disk (if r = 0, R < ∞ or r > 0, R = ∞), or C∗ (if r = 0 and R = ∞). On
the other hand, S ∩ M̃ is obtained from the holomorphic curve S by deleting
the points where S intersects O. Hence S ∩ M̃ cannot be equivalent to an
annulus, which implies that S intersects O at a single point, and we have
r = 0 or R = ∞. Let {εj} be a sequence of positive numbers convergent
to 0. For every j we construct, as in the proof of Proposition 3.4, a tubular
neighborhood Uεj of O. Since ∂Uεj is an SUn-orbit and f is SUn-equivariant,
f(∂Uεj ) is either rjS2n−1/Zm or S3

rj for some rj > 0. As j → ∞ we have
either rj → 0 or rj →∞.

Assume that rj → 0 as j → ∞ (here r = 0). Then Uεj is strongly pseu-
doconvex. It now follows from Proposition 3.4 that in this case M̂ 6= S2

0,R.
Hence M̂ = Sn0,R/Zm. Let BnR be the ball of radius R in Cn and B̂nR its
blow-up at the origin (see Example 2.1 (III) for notation). Consider the holo-
morphic embedding ν : Sn0,R/Zm → B̂nR/Zm defined by the formula

ν([z]) := {(z, w)},

where w = (w1 : · · · : wn) is uniquely determined by the conditions ziwj =
zjwi for all i, j, [z] ∈ (Cn \ {0})/Zm is the equivalence class of the point
z = (z1, . . . , zn) ∈ Cn \ {0} and {(z, w)} ∈ B̂nR/Zm is the equivalence class of
the point (z, w) ∈ B̂nR. Clearly, ν is SUn-equivariant. Now let fν := ν ◦ f .
We claim that fν extends to O to a biholomorphic SUn-equivariant map of
M onto B̂nR/Zm.

Let Ô be the unique complex hypersurface orbit in B̂nR/Zm. Take p ∈ O
and find the level set Sp of φ passing through p. Let p̂ be the unique point
at which fν(Sp \ {p}) intersects Ô. Define the extension Fν of fν by setting
Fν(p) = p̂. Clearly, Fν is SUn-equivariant. We must show that it is continuous
at every p ∈ O. Let {qj} be a sequence of points in M converging to p. Since
all accumulation points of the sequence {Fν(qj)} lie in Ô and Ô is compact, it
suffices to show that every convergent subsequence of {Fν(qj)} converges to
p̂. Let a subsequence {Fν(qjk)} converge to q ∈ Ô. For every qjk there exists
gjk ∈ SUn such that gjkqjk ∈ Sp. We select a convergent subsequence {gjkl }
and denote its limit by g. Then {gjkl qjkl } converges to gp. Since gp ∈ O
and gjkl qjkl ∈ Sp, it follows that gp = p, i.e, g ∈ Ip. By definition, Fν is
continuous on Sp and we have Fν(gjkl qjkl ) → Fν(p). On the other hand,
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since Fν is SUn-equivariant, we have Fν(gjkl qjkl ) = gjklFν(qjkl ) → gq. Since
g ∈ Ip, this implies that q = Fν(p). Thus {Fν(qj)} converges to Fν(p), which
shows that Fν is continuous and therefore holomorphic on M . Hence M is
equivalent to either B̂n/Zm or Ĉn/Zm.

Assume that rj → ∞ as j → ∞ (here R = ∞). If M̂ = Snr,∞/Zm, we

consider the holomorphic embedding σ : Snr,∞/Zm → S̃nr,∞/Zm, defined by

σ([z]) := {(1 : z1 : · · · : zn)},

where (z0 : · · · : zn) are homogeneous coordinates in CPn, the hyperplane at
infinity in CPn is given by {z0 = 0}, and {(1 : z1 : · · · : zn)} ∈ S̃nr,∞/Zm

denotes the equivalence class of (1 : z1 : · · · : zn) ∈ S̃nr,∞. By an analogous
argument one can now show that the map fσ := σ ◦ f extends to O and gives
rise to a biholomorphic map from M onto S̃nr,∞/Zm. If M̂ = S2

r,∞ we regard

σ as a map from S2
r,∞ into ˜S2

r,∞ (setting m = 1) and the same proof gives
that fσ extends to O and establishes a biholomorphic equivalence between M
and ˜S2

r,∞.
Assume now that there exist two complex hypersurface orbits O1 and O2.

As above, we consider the manifold M̃ obtained from M by removing O1 and
O2. For some m ∈ N, (m,n) = 1, and 0 ≤ r < R ≤ ∞, it is biholomorphically
equivalent to Snr,R/Zm by means of a map f that is either SUn-equivariant
or SUn-antiequivariant. Arguments very similar to the ones used above show
that in this case we have r = 0 and R =∞, and the map fτ := τ ◦ f extends
to a biholomorphic map M → ĈP

n/Zm. Here τ : (Cn \ {0})/Zm → ĈP

n
/Zm

is the SUn-equivariant map defined as follows:

τ([z]) :=
{(

(1 : z1 : · · · : zn), w
)}
,

where w = (w1 : · · · : wn) is uniquely determined from the conditions ziwj =

zjwi for all i, j and
{(

(1 : z1 : · · · : zn), w
)}
∈ ĈP

n
/Zm is the equivalence

class of
(

(1 : z1 : · · · : zn), w
)
∈ ĈP

n
.

The proof is complete. �

Remark 3.7. In the proof of Theorem 3.6 we extended the maps fν , fσ
and fτ along an SUn-invariant family of holomorphic curves. This family was
constructed by considering the level sets of the sun-anticanonical map on M .
There are two more constructions that lead to the same family of curves. One
approach is to use the isotropy subgroups of points in the exceptional orbits
as we did in [IKru] for the group Un (see the proof of Theorem 3.3 there).
Another approach comes from [N]: for an SUn-invariant Hermitian metric one
considers the collection of all geodesics passing through a fixed point in an
exceptional orbit and orthogonal to it.
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