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A POISSON LIMIT THEOREM FOR TORAL
AUTOMORPHISMS

MANFRED DENKER, MIKHAIL GORDIN, AND ANASTASYA SHAROVA

Abstract. We introduce a new method of proving Poisson limit laws
in the theory of dynamical systems, which is based on the Chen-Stein

method ([8], [21]) combined with the analysis of the homoclinic Laplace
operator in [12] and some other homoclinic considerations. This is ac-
complished for the hyperbolic toral automorphism T and the normalized
Haar measure P . Let (Gn)n≥0 be a sequence of measurable sets with no
periodic points among its accumulation points and such that P (Gn)→ 0

as n→∞, and let (s(n))n>0 be a sequence of positive integers such that
limn→∞ s(n)P (Gn) = λ for some λ > 0. Then, under some additional
assumptions about (Gn)n≥0, we prove that for every integer k ≥ 0

P

s(n)∑
i=1

1Gn ◦T
i−1 = k

→ λk exp (−λ)/k!

as n → ∞. Of independent interest is an upper mixing-type estimate,

which is one of our main tools.

1. Introduction

Let (X,F , P, T ) be a dynamical system, where X is a compact metrizable
space with the Borel σ-field F , P is a probability measure on F and T is an
invertible continuous P -preserving transformation of X. Let (Gn)n≥1 be a
sequence of measurable subsets of X and (s(n))n∈Z+ be a sequence of integers
such that s(n)→∞ and for some λ > 0, s(n)P (Gn)→ λ as n→∞. In this
note we are interested in the distributional behaviour of the number of visits
to Gn in the time span up to s(n). There are various results known in the liter-
ature showing that under appropriate assumptions about the transformation
T and the sequence (Gn)n≥1 the limit distribution is a Poisson law.
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A Poisson limit law is well known for arrays of independent Bernoulli ran-
dom variables and variants of such processes. Some results are also known
for dependent random variables (see, e.g., [5]). The first result for dynami-
cal systems seems to be contained in Pitskel’s paper [19], where finite state
Markov chains and two-dimensional toral automorphisms are considered. The
result for Markov chains is proved in [19] by the method of moments (using
a general result from [20]), and the limit law for toral automorphisms is de-
duced from it via a representation by symbolic dynamics ([3]). The symbolic
part was extended to general Gibbs measures in [10] and convergence in finite
dimensional distributions.

Axiom A diffeomorphisms and some classes of Gibbs measures are con-
sidered in Hirata’s paper [15], which contains the multidimensional Poisson
theorem for the joint distribution of the number of visits for several succes-
sive time intervals. The method of proof there is symbolic dynamics and
perturbation theory of transfer operators.

A Poisson limit theorem for maps of the interval has been first obtained in
[9], and later in [17] also for non-hyperbolic transformations, while in Haydn’s
paper [14] the analogous result is proved for rational maps of the Riemann
sphere, even in the case when critical points belong to the Julia set.

We also mention a recent paper ([7]), in which some earlier references about
Poisson limit theorems for dynamical systems can be found.

In all these papers the sequence of shrinking sets Gn is assumed to approach
a typical point of the distribution. On the other hand, examples in [19] and
[15] show that one cannot expect the Poisson limit law for sequences of sets
Gn shrinking to a periodic point. Dolgopyat [11] established convergence to
the Poisson law for a sequence of balls shrinking to an arbitrary aperiodic
point. This problem has been stated in [16]. We are able to extend this result
to more general families of shrinking sets in the case when T is a hyperbolic
automorphism of the d-dimensional torus Td with normalized Haar measure
P . Moreover, we only need the weaker condition that the set of accumulation
points of the sequence Gn is contained in the set of aperiodic points. The
main achievement of the present note, however, is the new method of proof
for such results.

We briefly explain this method, which is completely different from the
method of moments, perturbations or other methods used before in the con-
text of dynamical systems. All these other methods are based on some form
of symbolic dynamics, while ours does not use such a representation at all.

The starting point is a difference equation (due to Chen [8]; see also Arratia
et al. [4]) characterizing the convergence to a Poisson law (Proposition 2.1).
Recently, this method has been used in [1] to study Poisson approximation for
(probabilistically) mixing stationary processes. The sufficient condition given
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by the Chen-Stein equation will be reduced to

(1)
s(n)∑
i=1

E 1T−i+1Gn ψ
(
Ẇ (i)
n

)
− P (Gn)Eψ

(
Ẇ (i)
n

)
→ 0

as n→∞, where ψ is any bounded function and

(2) Ẇ (i)
n =

∑
j:1≤j≤s(n);j 6=i

1T−j+1Gn .

This relation is expected to hold, if for every i (1 ≤ i ≤ s(n)) some form of
weak dependence between the random variables 1T−iGn and ψ(Ẇ (i)

n ) can be
shown. This weak dependence together with the “small size” of the sets Gn
should imply (1). The relation (1) cannot always be true, because otherwise it
implies convergence to a Poisson law, which contradicts the counterexamples
mentioned above. We prove (1) for every suitable sequence (Gn)n≥1 shrinking
to an arbitrary aperiodic point by splitting the problem into two. To begin
with, enlarge the number of missing iterates in the sum Ẇ

(i)
n by

(3) Ẇ (i,m(n))
n =

∑
j:1≤j≤s(n), m(n)≤|i−j|

1T−j+1Gn ,

where (m(n))n≥1 is a sequence tending to infinity. The first problem (given in
Section 3.2) is to show (1) when Ẇ (i)

n is replaced by Ẇ (i,m(n))
n . This step may

be considered as an asymptotic decorrelation property, and requires that m(n)
grows rapidly enough. The proof is based on the homoclinic Laplace operator
introduced in [12]. The second problem is to prove that the replacement in (1)
does not affect the asymptotic relation. This will be established by counting
homoclinic points. It follows from our estimates that this equivalence holds
even in the case when (m(n))n≥1 grows rather rapidly. Thus one has enough
freedom to choose (m(n))n≥1 so that both requirements are satisfied.

2. Poisson limit laws

There are several methods to prove Poisson limit laws in the context of
dynamical systems (see, e.g., [7]). Here we add another method based on the
following result of Chen ([8]; see also Barbour et al. [5]).

Proposition 2.1. Let λ > 0 and (Xn)n≥1 be a sequence of random vari-
ables with values in Z+. In order that (Xn)n≥1 converges in distribution to
the Poisson law with parameter λ, it is necessary and sufficient that, for every
bounded function ϕ : Z+ → R,

(4) lim
n→∞

EXnϕ(Xn)− λEϕ(Xn + 1) = 0.



4 MANFRED DENKER, MIKHAIL GORDIN, AND ANASTASYA SHAROVA

Let Td = R
d/Zd denote the d-dimensional torus with distance function

ρ(·, ·) induced by the standard Euclidean metric on Rd. We denote by P the
normalized Haar measure on Td, and by B(z, r) the ball of radius r around z.

Before formulating the result of the paper we need to specify the class of
sequences of sets (Gn)n≥1 shrinking to an aperiodic point.

Definition 2.2. Let α ≥ 0, β ≥ 0 and K > 0 be real numbers. A
measurable set S ⊂ Td is said to belong to the class HP (α, β,K), if for every
g ∈ Td the set S satisfies the inequality

P (S \ (S + g) ∪ (S + g) \ S) ≤ Kρα(g, 0)P β(S).

Theorem 2.3. Let T be a hyperbolic automorphism of the d-dimensional
torus Td equipped with the normalized Haar measure P . Assume that for
some real number λ > 0, some sequence (s(n))n≥1 of positive integers and
some sequence (rn)n≥1 of positive real numbers the following conditions are
satisfied:

(i) s(n)→∞ as n→∞.
(ii) s(n)P (Gn)→ λ as n→∞.
(iii) diamGn < 2rn for every n ≥ 1.
(iv) P (B(zn, rn)) ≤ ξP (Gn) for some ξ > 0 and all n ≥ 1, where Gn ⊂

B(zn, rn).
(v) Gn ∈ H(α, β,K), where α > 0, β ≥ 0 and K > 0 denote some

constants, independent of n ≥ 1.
(vi) The set of accumulation points of the sequence (Gn)n≥1 is contained

in the set of aperiodic points.

Then for every integer k ≥ 0

lim
n→∞

P

s(n)∑
i=1

1Gn ◦T i−1 = k

 = λk exp (−λ)/k!.

The proof of Theorem 2.3 will be given in the next section.

Remark 2.4. We briefly mention some examples of sequences (Gn)n≥1

satisfying the assumptions in the theorem.

(1) Balls (B(zn, rn))n≥1 satisfy the conditions of the theorem, whenever
the sequence (s(n)rdn)n≥1 converges to a finite positive number. In
this case we can take α = 1 and β = (d− 1)/d.

(2) Slightly more generally, we can take a bounded open set satisfying (v)
with α = 1, β = (d− 1)/d and use similarities to obtain the sequence
(Gn)n≥1 of suitable measure. It follows from the Steiner formula that
every bounded convex open set satisfies (v).
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(3) We may extend the class of bounded convex open sequences replacing
the similarities in (2.) by the assumption that a certain Minkowski-
type functional (see (11) below for its definition) evaluated at the
sequence (Gn)n≥1 is uniformly bounded from above and below.

(4) Finally, it suffices to assume that every Gn is bi-Lipschitz homeomor-
phic to a ball of equal measure, so that, uniformly in n ∈ Z+, the
Lipschitz constants are bounded from above.

3. Proof of Theorem 2.3

Throughout this section we use the same notation as in the theorem. For a
sequence of setsGn as in Theorem 2.3 define f (i)

n = 1T−i+1Gn , fn = f
(1)
n = 1Gn

and pn = P (Gn). The partial sums will be denoted by

Wn =
s(n)∑
j=1

f (i)
n =

s(n)−1∑
j=0

1Gn ◦T j .

The random variables Ẇ (·)
· introduced in (2) and (3) will be called punctured

sums. In order to prove Theorem 2.3 we shall verify the assumption (4) of
Proposition 2.1 for Xn = Wn and for every fixed bounded measurable function
ϕ : Z+ → R. In the sequel we use C to denote a generic constant depending
only on the automorphism T . All other constants will be given explicitly.

3.1. Reduction to punctured sums. In this subsection we prove:

Proposition 3.1. If M := ‖ϕ‖∞ and if m(n) is any sequence of positive
integers, then

|EWnϕ(Wn)− λEϕ(Wn + 1)|

≤
∣∣∣∣s(n)∑
i=1

E
(
(f (i)
n − Ef (i)

n )ϕ(Ẇ (i,m(n))
n + 1)

)∣∣∣∣
+ 2M

s(n)∑
i=1

∑
j:1≤|i−j|≤m(n)

E(f (i)
n f (j)

n )

+ 4Mm(n)s(n)p2
n +M |s(n)pn − λ|.

Proof. As the functions f (i)
n , i = 1, . . . , s(n), are indicator functions, we see

that

E(Wnϕ(Wn)) =
s(n)∑
i=1

Ef (i)
n ϕ(Wn) =

s(n)∑
i=1

Ef (i)
n ϕ(Ẇ (i)

n + f (i)
n )

=
s(n)∑
i=1

Ef (i)
n ϕ(Ẇ (i)

n + 1).
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Hence we can write

E[Wnϕ(Wn)− λϕ(Wn + 1)] = Σ1,n +Σ2,n +Σ3,n,

where

Σ1,n =
s(n)∑
i=1

Ef (i)
n ϕ(Ẇ (i)

n + 1)−
s(n)∑
i=1

Ef (i)
n Eϕ(Ẇ (i)

n + 1),

Σ2,n =
s(n)∑
i=1

Ef (i)
n Eϕ(Ẇ (i)

n + 1)−
s(n)∑
i=1

Ef (i)
n Eϕ(Wn + 1)

and

Σ3,n =
s(n)∑
i=1

Ef (i)
n Eϕ(Wn + 1)− λEϕ(Wn + 1).

We first estimate Σ2,n and Σ3,n.
Since

ϕ(Ẇ (i)
n + 1)− ϕ(Wn + 1) = f (i)

n

(
ϕ(Ẇ (i)

n + 1)− ϕ(Wn + 1)
)
,

it follows that

|Σ2,n| =
∣∣∣∣s(n)∑
i=1

Ef (i)
n E

(
ϕ(Ẇ (i)

n + 1)− ϕ(Wn + 1)
)∣∣∣∣

= pn

∣∣∣∣s(n)∑
i=1

Ef (i)
n

(
ϕ(Ẇ (i)

n + 1)− ϕ(Wn + 1)
)∣∣∣∣

≤ 2Mpn

s(n)∑
i=1

Ef (i)
n = 2Ms(n)p2

n.

It is also immediate that

|Σ3,n| = |Eϕ(Wn + 1)|
∣∣∣∣s(n)∑
i=1

Ef (i)
n − λ

∣∣∣∣ ≤M |s(n)pn − λ|.
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It remains to estimate Σ1,n. Letting ψ(·) = ϕ(· + 1), we can rewrite Σ1,n

as follows:

s(n)∑
i=1

(
Ef (i)

n ψ(Ẇ (i)
n )− Ef (i)

n Eψ(Ẇ (i)
n )
)

=
s(n)∑
i=1

E
(
(f (i)
n − Ef (i)

n )ψ(Ẇ (i)
n )
)

=
s(n)∑
i=1

E
(
(f (i)
n − Ef (i)

n )ψ(Ẇ (i,m(n))
n )

)
+
s(n)∑
i=1

E
(
(f (i)
n − Ef (i)

n )(ψ(Ẇ (i)
n )− ψ(Ẇ (i,m(n))

n ))
)

= Σ
(1)
1,n +Σ

(2)
1,n.

Now

|Σ(2)
1,n| ≤

s(n)∑
i=1

E
(
f (i)
n |ψ(Ẇ (i)

n )− ψ(Ẇ (i,m(n))
n |

)
+
s(n)∑
i=1

Ef (i)
n E|ψ(Ẇ (i)

n )− ψ(Ẇ (i,m(n))
n )|

≤ 2M
s(n)∑
i=1

E
(
f (i)
n 1

Ẇ
(i)
n 6=Ẇ (i,m(n))

n

)
+ 2M

s(n)∑
i=1

Ef (i)
n P (Ẇ (i)

n 6= Ẇ (i,m(n))
n )

≤ 2M
s(n)∑
i=1

E
(
f (i)
n

∑
j:1≤|j−i|<m(n)

f (j)
n

)

+ 2M
s(n)∑
i=1

∑
j:1≤|j−i|<m(n)

Ef (i)
n Ef (j)

n

= 2M
s(n)∑
i=1

∑
j:1≤|j−i|≤m(n)

E(f (i)
n f (j)

n ) + 2M(2m(n)− 1)s(n)p2
n,
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and we obtain the inequality

|Σ1,n| ≤
∣∣∣∣s(n)∑
i=1

E
(
(f (i)
n − Ef (i)

n )ψ(Ẇ (i,m(n))
n )

)∣∣∣∣
+ 2M

s(n)∑
i=1

∑
j:1≤|j−i|≤m(n)

E(f (i)
n f (j)

n )

+ 2M(2m(n)− 1)s(n)p2
n.

This finishes the proof of the proposition. �

From now on we assume that the sequence (m(n))n≥1 tends to∞ at a rate
o(s(n)). Some further conditions on the sequence (m(n))n≥1 will be imposed
below.

This condition and assumption (ii) in Theorem 2.3 imply that
limn→∞m(n)s(n)p2

n = 0 and limn→∞ s(n)pn = λ. Hence (4) holds if the
two summands

(5)
s(n)∑
i=1

E
(
(f (i)
n − Ef (i)

n )φ(Ẇ (i,m(n))
n + 1)

)
and

(6)
s(n)∑
i=1

∑
j:1≤|i−j|≤m(n)

E(f (i)
n f (j)

n )

tend to zero.

3.2. Punctured sums. As explained in the introduction, the second step
in the proof of Theorem 2.3 is the estimation of enlarged punctured sums. This
is the content of the proposition proved in this subsection.

Let L2 be the space of all complex-valued functions on the torus Td, square
integrable with respect to the Haar measure P , and let L0

2 consist of all
functions from L2 with vanishing integral with respect to P . We denote
by ‖ · ‖2, (·, ·) and I the norm, the inner product and the identity operator in
L2, respectively. For an operator S defined on L2 let S∗ denote its conjugate,
and let U denotes the unitary operator defined by Uf = f ◦ T, f ∈ L2. Set

f̂ (i)
n = f (i)

n − Ef (i)
n .

First note that the group Γ = {γ ∈ Td : Tn(γ) → 0 as |n| → ∞} can be
described as the intersection of the stable subgroup Γs = {γ ∈ Td : Tn(γ)→
0 as n → ∞} and the unstable subgroup Γu = {γ ∈ Td : Tn(γ) → 0 as n →
−∞} of Td. It is known ([12]) that for a hyperbolic automorphism T , Γ is a
dense T -invariant subgroup of Td. Since Γ is an Abelian group, it is a free
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group on d generators. Fix generators γ1, . . . , γd and observe that there exist
constants A > 0, κ > 0 such that for every p ∈ Z, 1 ≤ l ≤ d we have

(7) ρ(T pγl, 0) ≤ A exp(−κ|p|).

Proposition 3.2. Let κ be as in (7). If σ > 2(1 − β)(ακ)−1 and if
(m(n))n≥1 satisfies m(n) ≥ [σ log s(n)] + 1 for n ∈ Z+, then

s(n)∑
i=1

E
(
(f (i)
n − Ef (i)

n )ψ(Ẇ (i,m(n))
n )

)
→ 0 as n→∞.

In the remaining part of this subsection we prove the proposition.
For any g ∈ Td we denote by Hg the unitary operator defined by the

translation by g: (Hgf)(·) = f(g + ·). We have UnHgU
−n → I as |n| → ∞

(in the strong operator topology) if and only if g ∈ Γ (note that UnHgU
−n =

HTng). Any operator of the form Hγ with γ ∈ Γ is called a homoclinic
translation operator or simply a homoclinic operator. Let us denote by Hp,l

the homoclinic operator corresponding to T pγl, p ∈ Z, l ∈ {1, . . . , d}, so that
UnHp,lU

−n = Hp+n,l for every p, n ∈ Z, l ∈ {1, . . . , d}. Then we set

∆ =
d∑
l=1

∑
p∈Z

(I −H∗p,l)(I −Hp,l).

The operator ∆ is called the homoclinic Laplace operator in [12]. More pre-
cisely, the above expression defines an unbounded symmetric operator on a
dense subset of L2, which commutes with U . As has been established in [12],
there exists a constant c > 0 such that for any f from a dense subset of L0

2

we have

(8) (∆f, f) ≥ c‖f‖22.
By this property ∆ is Friedrichs closable, and from now on ∆ denotes this
closure.

Notice that Tnγ → 0 exponentially fast as |n| → ∞, if γ ∈ Γ; hence the
rate of convergence in

(9) ‖(I −HTnγ)f‖2 → 0 as |n| → ∞
(which holds for every f ∈ L2) can be made specific under mild assumptions
on f . For instance, if f is Hölder continuous in L2-sense, we have exponential
rate in (9) (in particular, this is why the operator ∆ is densely defined). Given
such a function f , and p, l ∈ Z (1 ≤ l ≤ d), define

rl(f, p) = ‖(I −Hp,l)f‖2
and

w(f, p) =
d∑
l=1

∑
q∈Z

rl(f, q)rl(f, q + p).
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Lemma 3.3. With the above notation we have

|Ef̂ (i)
n ψ(Ẇ (i,m(n))

n )| ≤ 4c−1M
∑

|p|≥m(n)

w(fn, p).

Proof. In view of the property (8) the operator ∆ has a bounded right
inverse ∆−1 on L0

2 whose norm does not exceed c−1. Note that for every
g ∈ Td and ψ with |ψ(·)| ≤M we may write

‖(I −Hg)ψ(Ẇ (i,m(n))
n )‖2

≤ 2M(P (HgẆ
(i,m(n))
n 6= Ẇ (i,m(n))

n ))1/2

≤ 2M

 ∑
j:|i−j|≥m(n);1≤j≤s(n)

P (Hgf
(j)
n 6= f (j)

n )

1/2

= 2M
∑

j:|i−j|≥m(n);1≤j≤s(n)

‖(I −Hg)f (j)
n ‖2.

Therefore we have

|E(f̂ (i)
n ψ(Ẇ (i,m(n))

n ))|

= |(f̂ (i)
n , ψ(Ẇ (i,m(n))

n ))| = |
(
∆∆−1f̂ (i)

n , ψ(Ẇ (i,m(n))
n )

)
|

≤
d∑
l=1

∑
q∈Z

|
(
(I −H∗q,l)(I −Hq,l)∆−1f̂ (i)

n , ψ(Ẇ (i,m(n))
n )

)
|

=
d∑
l=1

∑
q∈Z

|
(
(I −Hq,l)∆−1f̂ (i)

n , (I −Hq,l)ψ(Ẇ (i,m(n))
n )

)
|

=
d∑
l=1

∑
q∈Z

|
(
∆−1(I −Hq,l)f̂ (i)

n , (I −Hq,l)ψ(Ẇ (i,m(n))
n )

)
|

≤ 1
c

d∑
l=1

∑
q∈Z

‖(I −Hq,l)f̂ (i)
n ‖2‖(I −Hq,l)ψ(Ẇ (i,m(n))

n )‖2

≤ 2
c
M

d∑
l=1

∑
q∈Z

∑
j:|i−j|≥m(n)

‖(I −Hq,l)f (i)
n ‖2‖(I −Hq,l)f (j)

n ‖2

=
2
c
M

d∑
l=1

∑
q∈Z

∑
j:|i−j|≥m(n)

‖(I −Hq−i+1,l)fn‖2‖(I −Hq−j+1,l)fn‖2

=
2
c
M

d∑
l=1

∑
q∈Z

∑
|p|≥m(n)

‖(I −Hp+q,l)fn‖2‖(I −Hq,l)fn‖2
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=
2
c
M

d∑
l=1

∑
q∈Z

∑
|p|≥m(n)

rl(fn, p+ q)rl(fn, q)

=
2
c
M

∑
|p|≥m(n)

w(fn, p). �

Recall thatGn ∈ HP (α, β,K) for some constants α, β andK by assumption
(v) of Theorem 2.3.

Lemma 3.4. There exists a constant C0 = C(T, α, β,K) such that∣∣∣∣s(n)∑
i=1

E
(
f̂ (i)
n ψ(Ẇ (i,m(n))

n )
)∣∣∣∣ ≤ C0Ms(n)m(n)e(−ακm(n)/2)P β(Gn).

Proof. Since Gn ∈ HP (α, β,K), we have for fn = f
(1)
n and |p| large enough

rl(fn, p) = ‖(I −Hp,l)fn‖2
= P 1/2((Gn \ (Gn + T pγl)) ∪ ((Gn + T pγl) \Gn))

≤ K1/2ρα/2(T pγl, 0)P β/2(Gn) ≤ K1/2Aα/2e(−(ακ|p|/2)P β/2(Gn)

and

w(fn, p) =
d∑
l=1

∑
q∈Z

rl(fn, q)rl(fn, p+ q)

≤ dKAαP β(Gn)
∑
q∈Z

exp (−ακ(|q|+ |p+ q|)/2)

≤ 2dKAαP β(Gn)

(
2
∑
q≥0

e−
ακ
2 (2q+|p|) +

∑
0<q<|p|

e−
ακ|p|

2

)

≤ 2dKAαP β(Gn)
(
|p| − 2 +

2
1− e−ακ

)
e−

ακ|p|
2 .

Then, by Lemma 3.3,

|Ef̂ (i)
n ψ(Ẇ (i,m(n))

n )| ≤ 4c−1M
∑

|p|≥m(n)

w(fn, p)

≤ 8dKM
c

A
α
2 P β(Gn)

∑
p≥m(n)

(
p− 2 +

2
1− e−ακ

)
e−

ακ|p|
2

≤ C0Mm(n)e−ακm(n)/2P β(Gn),

where C0 = C(T, α, β,K) denotes some constant.
The lemma follows by summation over i = 1, . . . , s(n). �
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Proof of Proposition 3.2. In view of the assumptions in Theorem 2.3 we
have P (Gn) = pn = O(s(n)−1) as n → ∞. By the choice of m(n) it follows
that

s(n)m(n) exp (−ακm(n)/2)P β(Gn)

= O
(
(log s(n)) exp [(1− β − (σακ)/2) log s(n)]

)
= o(1),

and the proposition follows from Lemma 3.4. �

3.3. Estimating the puncturing effect. In this subsection we show
that the second summand (6) in Proposition 3.1 converges to zero if m(n)
tends to infinity at a rate o(s(n)). This implies that the punctured and en-
larged punctured sums are stochastically equivalent. We shall prove this re-
lation by embedding the sets Gn into parallelograms Rn in the sense of [3],
[6] or [2]. (The precise definition of a parallelogram is also given below.) In
order to explain the statement and the proof of our main proposition we need
more details about hyperbolic toral automorphisms.

Let T : Td → T
d be an algebraic automorphism of Td. The covering map

of T is an invertible linear map T̃ : Rd → R
d, leaving the lattice Zd invariant.

Hence pr T̃ = T pr, where pr : Rd → T
d denotes the canonical map onto

the quotient group. The spectrum spec(T̃ ) of the operator T̃ splits into three
disjoint components

spec(T̃ ) = σs(T̃ ) ∪ σu(T̃ ) ∪ σn(T̃ ),

located outside, inside and on the unit circle {z : |z| = 1} ⊆ C, respectively.
Since we assume that T is a hyperbolic automorphism, σn(T̃ ) = ∅. The
decomposition of the spectrum spec(T̃ ) = σs(T̃ )∪σu(T̃ ) induces a T̃ -invariant
decomposition Rd = Ls ⊕ Lu into the direct sum of its stable and unstable
subspaces Ls and Lu. Denote by ds and du their dimensions (so that d =
ds + du), and let ps and pu be the corresponding projections (with kernels
Lu and Ls, respectively). Set R∗s = maxλ∈σs |λ|, r∗s = minλ∈σs |λ|, R∗u =
maxλ∈σu |λ|, r∗u = minλ∈σu |λ|, and fix some Q ∈ (max(R∗u, r

∗
s
−1),∞) and

q ∈ (1,min(r∗u, R
∗
s
−1). Note that Q ≥ q > 1, and that for some A ≥ 1 and

every n ∈ Z+ we have the estimates

(10) ‖T̃n|Ls‖ ≤ Aq−n, ‖T̃−n|Lu‖ ≤ Aq−n

and
‖T̃−n|Ls‖ ≤ AQn, ‖T̃n|Lu‖ ≤ AQn,

where the operator norm ‖ · ‖ is derived from the Euclidean norm in Ls ⊂ Rd
and Lu ⊂ Rd, respectively. The map pr is injective when restricted to either
Ls or Lu, and we have pr(Ls) = Γs ⊂ T

d and pr(Lu) = Γu ⊂ T
d. For

t ∈ Td we set Γs(t) = Γs + t and Γu(t) = Γu + t, so that Γs(t) and Γu(t) are
the stable and the unstable leaves (or cosets) of the point t. The restriction
of the standard Riemannian metric of Td to every Γs(t) defines the inner
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distance ρs(·, ·) and the measure µs (ds-dimensional Riemannian volume) on
Γs(t). Denote by diams(A) the diameter of a set A ∈ Γs(t) relative to ρs.
Quite analogously we introduce the distance ρu, the measure µu and the
diameter function diamu on Γu(t). The transformation Tn (n ∈ Z) maps Γs(t)
onto Γs(Tn(t)) and Γu(t) onto Γu(Tn(t)), scaling µs and µu by exp (−hn)
and exp (hn), respectively, where h =

∑
λ∈σu log |λ| denotes the topological

entropy of T .
Let R ⊂ Td be an open set with the following property: For each t ∈ R

relatively open bounded sets Rs(t) ⊂ Γs(t) and Ru(t) ⊂ Γu(t) are specified
such that Rs(t) ⊂ R, Ru(t) ⊂ R, t ∈ Rs(t) ∩ Ru(t), and for every t1, t2 ∈ R
the sets Rs(t1) and Rs(t2) are either disjoint or agree, and likewise for Ru(t1)
and Ru(t2), and the map [·, ·]R : Ru(t) × Rs(t) → R is well defined by the
unique point in the intersection Rs(t1)∩Ru(t2). The set R is called an (open)
parallelogram if for every t1, t2 ∈ R the map [·, ·]R : Rs(t1) × Ru(t2) → R is
a homeomorphism onto R. In this case we write R = [Rs(t1), Ru(t2)]R. If
t = t1 = t2, we call Rs(t) and Ru(t) the s-section and the u-section of R
through t. For every t ∈ R the map R 3 x 7→ [t, x]R ∈ Rs(t) is a continuous
open map which projects R onto Ru(t) and sends the Riemannian measure
on R to the measure cTµu(Ru(y))µs (here y ∈ R is arbitrary). The map R 3
x 7→ [x, t]R ∈ Ru(t) is a projection of R onto Rs(t) with analogous properties.
Moreover, the map Ru(t1) 3 x 7→ [x, t2]R ∈ Ru(t2) is a homeomorphism
and preserves the measure µu. For a parallelogram R we denote by Rs and
Ru the isomorphism classes (as topological and measure spaces) of its s- and
u-sections. We call Rs and Ru the edges of R. Topologically and measure-
theoretically every parallelogramR is isomorphic to the direct productRs×Ru
of its edges.

More precisely, we have the following relation between the restriction of
the Haar measure (proportional to the d-dimensional Riemannian measure)
and the direct product of the ds- and du-dimensional Riemannian measures
µs and µu:

P |R = cTµs|Rs × µu|Ru ,

where cT is a constant depending only on the position of Ls and Lu in Rd.
(If d = 2 and ϕ is the angle between Ls and Lu, then cT = | sinϕ|.)

The projections described above send the Riemannian measure on R to the
measures cTµu(Ru(x))µs and cTµs(Rs(x))µu, respectively.

Set M ′ = max(||ps||, ||pu||), where || · || is the operator norm relative to
the Euclidean norm in Rd. If ρ(x, y) < 1/M ′ for some x, y ∈ Td, then there
exists a unique point [x, y] ∈ Γs(x) ∩ Γu(y) such that ρs([x, y], x) < 1 and
ρu([x, y], y) < 1. (Indeed, consider a pair x̃, ỹ ∈ Rd with pr(x̃) = x,pr(ỹ) = y
and distRd(x̃, ỹ) = ρ(x, y) and set [x, y] = x+pr(ps(ỹ− x̃)).) A parallelogram
R is said to be small whenever diam(R) < 1/M ′ and the map (x, y) 7→ [x, y]R
agrees with (x, y) 7→ [x, y] restricted to R × R. For a small parallelogram
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R, diams(Rs(x)) < 1 and diamu(Ru(x)) < 1 for every x ∈ R. Let S be a
bounded convex subset of a p-dimensional Euclidean space E. For l = 0, . . . , p
we define numbers Vl(S) by the relation

Vl(S) =
bp
bp−l

sup
L∈GR(l)

µp−l(ΠL′S),

where GR(l) is the set of all l-dimensional subspaces of E, L′ is the or-
thogonal complement of the subspace L ⊂ E, ΠL′ denotes the orthogonal
projection onto L′, µp−l is the (p − l)-dimensional Riemannian measure and
bl = πl/2/Γ(1 + l/2). We also set

(11) e(S) = max
l=0,...,p

Vl(S)1/(p−l)/µp(S)1/p.

We shall apply the quantities just defined to convex sets contained in the
subspaces Ls, Lu and their translates, and, moreover, to those contained in
the stable and the unstable leaves of Td, since they are immersed into the
leaves. Denote the corresponding functionals by Vs,l (l = 0, . . . , ds), Vu,l
(l = 0, . . . , du), es and eu. For a parallelogram R = [Rs, Ru] we set

(12) E(R) = max

(
µ

1/ds
s (Rs)

µ
1/du
u (Ru)

,
µ

1/du
u (Ru)

µ
1/ds
s (Rs)

)
.

We now state the main proposition of this section.

Proposition 3.5. Let R = [Rs, Ru] be a small convex parallelogram.
Then for every l > 0, s,m ∈ Z+

s∑
i=1

∑
j:l<|i−j|≤m

P (T i(R) ∩ T j(R))

≤ CsP (R)edss (Rs)eduu (Ru)Ed(R)
(
q−l +mP 1/d(R)

)d
,

where the quantities on the right hand side are defined in (10), (11) and (12).

The proof of this proposition is based on three lemmas.

Lemma 3.6. There exists a constant C > 0 such that for every k ∈ Z+,
every x ∈ Td and all bounded convex sets Ss ⊂ Γs(x), Su ⊂ Γu(x) we have

(13) Vs,l(T−k(Ss)) ≤ Cq−lk exp (kh)Vs,l(Ss), l = 0, . . . , ds,

(14) Vu,l(T k(Su)) ≤ Cq−lk exp (kh)Vu,l(Su), l = 0, . . . , du.

Proof. Standard. �
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For two parallelograms R(i) = [R(i)
s , R

(i)
u ] (i = 1, 2) the following represen-

tation holds:

(15) P (R(1) ∩R(2)) = cT

∫
R

(1)
u

∫
R

(2)
s

#{R(1)
s (t1) ∩R(2)

u (t2)}dµu(t1)dµs(t2).

Hence we need to estimate #{Rs(x) ∩ T k(Ru(y))}.

Lemma 3.7. Let x, y ∈ Td and Ss ∈ Γs(x), Su ∈ Γu(y) be bounded convex
sets. Then for every integer k ≥ 0 we have

#{Ss ∩ T k(Su)}

≤ C exp (kh)edss (Ss)eduu (Su)Ed(Ss, Su)
(
q−k/2 + (µs(Ss)µu(Su))1/d

)d
,

where E(Ss, Su) is defined by the right hand side of (12) with Rι replaced by
Sι.

Proof. Choose some x̃, ỹ such that pr(x̃) = x,pr(ỹ) = y. Then pr is a
bijective map from Ls + x̃ onto Γs(x) and from Lu + x̃ onto Γu(x). (Ob-
serve that pr is compatible with the Riemannian metrics and measures on
these submanifolds.) Thus, the sets S̃s ⊂ Ls + x̃ and S̃u ⊂ Lu + ỹ are
defined uniquely by pr(S̃s) = Ss and pr(S̃u) = Su. Note that S̃s and S̃u
are determined up to a translation by an element of Zd, but such ambigu-
ity plays no role in the sequel. Since pr T̃ = T pr, pr also maps T̃ k(S̃u)
isomorphically onto T k(Su) for any k ∈ Zd. Analyzing pr-preimages, we
see that points t ∈ Ss ∩ T k(Su) are in one-to-one correspondence with pairs
(ts, tu) ∈ S̃s × T̃ k(S̃u) such that ts − tu ∈ Zd, or, because of translation
invariance, with pairs (t′s, t

′
u) ∈ (S̃s − pu(x̃)) × (T̃ k(S̃u) − ps(ỹ)) such that

t′s− t′u ∈ Zd. Observe that S̃s−pu(x̃) ⊂ Ls and T̃ k(S̃u)−ps(ỹ) ∈ Lu. Finally,
substituting the latter set by its opposite, we arrive at

(16) #{S̃s ∩ T̃ k(S̃u)} = #{a ∈ Zd : a = ts + tu, ts ∈ S̃′s, tu ∈ T̃ k(S̃′u)},

where S̃′s ⊂ Ls and S̃′u ⊂ Lu are the sets isometric to Ss and Su. Note
that we used the representation of S̃s ∩ T̃ k(S̃u) as a Minkowski sum S̃′s ⊕
T̃ k(S̃′u). Thus we reduced the problem of counting homoclinic points to that
of counting integer lattice points in a “parallelogram” with edges S̃′s and
T̃ k(S̃′u). Denoting by NZd(G) the number of integer lattice points in a set G,
we can rewrite (16) as

#{S̃s ∩ T̃ k(S̃u)} = NZd(S̃′s ⊕ T̃ k(S̃′u)).

The action of T̃ preserves the righthand side of this equation, and for every
l ∈ Z we can write

#{S̃s ∩ T̃ k(S̃u)} = NZd(T̃−l(S̃′s)⊕ T̃ k−l(S̃′u)).
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For any bounded set G ∈ Rd we estimate the number NZd(G) of integer
lattice points in G in the following way: Assign to any lattice point in G the
translate of the unit cube at the origin translated to the lattice point; observe
that NZd(G) equals the volume of the union of these cubes, and estimate the
latter from above by the volume of the d1/2-neighbourhood (with respect to
the Euclidean distance) of the set G. Denote by B(r), Bs(r), Bu(r) the balls
of radius r centered at the origin in the Euclidean spaces Rd, Ls and Lu,
respectively. Then we take a convex parallelogram [Gs, Gu] as G and use the
inclusion of a neighborhood of the Minkowski sum of two linearly independent
sets into the Minkowski sum of their neighborhoods, taken in corresponding
lower dimensional affine subspaces; after this we apply the Steiner formula to
obtain

NZd(T̃−l(S̃′s)⊕ T̃ k−l(S̃′u))

≤ µ(T̃−l(S̃′s)⊕ T̃ k−l(S̃′u)⊕B(d1/2))

≤ µ(T̃−l(S̃′s)⊕Bs(M ′d1/2))⊕ (T̃ k−l(S̃′u)⊕Bu(M ′d1/2)))

= µs(T̃−l(S̃s)⊕Bs(M ′d1/2))µu(T̃ k−l(S̃u)⊕Bu(M ′d1/2))

=
ds∑
a=0

CadsWa(T̃−l(S̃s))(M ′d1/2)a
du∑
b=0

CbduWb(T̃ k−l(S̃u))(M ′d1/2)b

≤
ds∑
a=0

CadsVs,a(T̃−l(S̃s))(M ′d1/2)a
du∑
b=0

CbduVu,b(T̃
k−l(S̃u))(M ′d1/2)b.

Setting l = [k/2] and applying (13), (14) and the definition of the functionals
es and eu, we obtain

NZd(T̃−l(S̃′s)⊕ T̃ k−l(S̃′u))

≤ C
ds∑
a=0

Cadsq
− ak2 e

kh
2 Vs,a(Ss)

du∑
b=0

Cbduq
− bk2 e

kh
2 Vu,b(Su)

≤ C exp (kh)
ds∑
a=0

Cadsq
− ak2 eds−as (Ss)µ

ds−a
ds

s (Ss)

du∑
b=0

Cbduq
− bk2 edu−bu (Ss)µ

du−b
du

u (Su)

≤ C exp (kh)es(Ss)dseu(Su)du
(
q−k/2 + µ1/ds

s (Ss)
)ds(

q−k/2 + µ1/du
u (Su)

)du
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≤ C exp (kh)edss (Ss)eduu (Su)E2dsdu/d(Ss, Su)(
q−k/2 + (µs(Ss)µu(Su))1/d

)ds(
q−k/2 + (µs(Ss)µu(Su))1/d

)du
≤ Cekhedss (Ss)eduu (Su)Ed(Ss, Su)

(
q−k/2 + (µs(Ss)µu(Su))1/d

)d
,

since

µ1/ds
s (Ss) = µdu/(dsd)

s (Ss)µ1/d
s (Ss) ≤ Edu/d(Ss, Su)(µs(Ss)µu(Su))1/d,

µ1/du
u (Su) = µds/(dud)

u (Su)µ1/d
u (Su) ≤ Eds/d(Ss, Su)(µu(Su)µs(Ss))1/d

and 2duds/d ≤ d. �

Lemma 3.8. Let R = [Rs, Ru] be a small convex parallelogram. Then for
every k ∈ Z

P (R ∩ T k(R)) ≤ Cedss (Rs)eduu (Ru)Ed(Rs, Ru)(17)

P (R)(q−|k|/2 + P 1/d(R))d.

Proof. Both sides of (17) do not change under a sign change of k. Hence, it
suffices to consider the case k ≥ 0. By formula (15) and Lemma 3.7 we have

P (R ∩ T k(R))

= cT

∫
Ru

∫
Tk(Rs)

#{Rs(t1) ∩ T k(Ru(t2))}dµu(t1)dµs(t2)

≤ C exp (kh)edss (Rs)eduu (Ru)Ed(Rs, Ru)(
q−k/2 + (µs(Rs)µu(Ru))1/d

)d ∫
Ru

∫
Tk(Rs)

dµu(t1)dµs(t2)

≤ Cekhedss (Rs)eduu (Ru)Ed(Rs, Ru)(
q−k/2 + (µs(Rs)µu(Ru))1/d

)d
e−khµs(Rs)µu(Ru)

= Cedss (Rs)eduu (Ru)Ed(Rs, Ru)µs(Rs)µu(Ru)(
q−k/2 + (µs(Rs)µu(Ru))1/d

)d
≤ Cedss (Rs)eduu (Ru)Ed(Rs, Ru)P (R)(q−k/2 + P (R)1/d

)d
. �

Proof of Proposition 3.5. In view of Lemma 3.8 we have
s∑
i=1

∑
j:l<|i−j|≤m,j 6=i

P (T i(R) ∩ T j(R))

≤ 2CsP (R)edss (Rs)eduu (Ru)Ed(R)
∑

j:l<j≤m

(q−j/2 + P 1/d(R))d

≤ CsP (R)edss (Rs)eduu (Ru)Ed(R)((1− q−1)−1q−l +mP 1/d(R))d

≤ CsP (R)edss (Rs)eduu (Ru)Ed(R)(q−l +mP 1/d(R))d. �
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3.4. Proof of the theorem. Let (Gn)n≥1 and (rn)n≥1 be the sequences
satisfying the conditions of Theorem 2.3. We begin the proof of the theorem
with the following simple lemma whose proof is an easy consequence of the
continuity of the automorphism T and condition (vi) in the theorem.

Lemma 3.9. We have

l(n) = min{l ≥ 1 : ∃i ∈ {j : 1 ≤ |j| ≤ l} 3 Gn ∩ T i(Gn) 6= ∅} → ∞.

By conditions (i) and (ii) of the theorem P (Gn)→ 0. This implies, in view
of conditions (iii) and (iv), that rn → 0, and we may assume that the numbers
rn are small enough. Then every ball B(zn, rn) can be inscribed into a paral-
lelogram Rn in the following way. Choose some z̃n ∈ Rd such that pr(z̃n) = zn
and take a ball B̃(z̃n, rn) in Rd of radius rn around z̃n. The latter ball can be
inscribed into a parallelogram in R̃n = [ps(B̃(z̃n, rn)), pu(B̃(z̃n, rn))] (where
ps and pu denote projections onto the stable and unstable subspaces), which
projects by pr to a parallelogram Rn such that B(zn, rn) ⊂ Rn. Note that
all Rn are similar and, up to similarity, depend only on the geometry of the
pair of subspaces Ls, Lu ⊂ Rd. In particular, the characteristics es,eu and E
of such parallelograms are the same and depend only on T . In view of this
and condition (iv) we have

P (Gn) ≥ Cξ−1P (Rn).

It follows from the similarity of all {Rn} and from rn → 0 that diam(Rn)→ 0.
Let l(n) be as in Lemma 3.9. Choose (m(n))n≥1 so that m(n) ≥ [σ log s(n)]

+ 1 for n ∈ Z+ and m(n) = O(s1/d(n)) as n → ∞, where σ is the number
from the statement of Proposition 3.2. Then by Proposition 3.5 we have

s(n)∑
i=1

∑
j:1≤|i−j|≤m(n)

E(f (i)
n f (j)

n )

=
s(n)∑
i=1

∑
j:l(n)<|i−j|≤m(n)

P (T i(Gn) ∩ T j(Gn))

≤
s(n)∑
i=1

∑
j:l(n)<|i−j|≤m(n)

P (T i(Rn) ∩ T j(Rn))

≤ Cs(n)P (Rn)
(
q−l(n) +m(n)P 1/d(Rn)

)d
≤ Cs(n)P (Gn)

(
q−l(n) +m(n)P 1/d(Gn)

)d
= O

(
q−l(n) +m(n)s−1/d(n)

)
= o(1)

as n→∞. Therefore the sum (6) tends to zero. With this choice of m(n), by
Proposition 3.2, the summand (5) also tends to zero. The proof is completed
using Proposition 3.1.
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