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RELATIVE FATOU THEOREM FOR α-HARMONIC
FUNCTIONS IN LIPSCHITZ DOMAINS

KRZYSZTOF MICHALIK AND MICHA L RYZNAR

Abstract. We prove a relative Fatou theorem for α-harmonic functions
on bounded Lipschitz domains D that vanish outside D. We also discuss

the case when the normalizing function corresponds to the Hausdorff
measure on the boundary of D.

1. Introduction

The problem of the boundary behaviour of harmonic functions on bounded
regular domains has been studied intensively, both in analytic and in prob-
abilistic contexts (see [2], [3], [15], [27]). These functions are related to the
Brownian motion process, and since this process hits the boundary when
leaving sufficiently regular domains, it follows that harmonic functions have
nontangential limits at the boundary as well as other important properties
(see [4], [18], [27], [29]).

When considering α-harmonic functions and the potential theory of Riesz
kernels, a probabilistic approach leads to the α-stable rotation invariant Lévy
process. This process is a jump process that, usually, leaves the domain
without entering its boundary (see [14], [28], [30]). This is the reason why
the analytic approach to the boundary behaviour of α-harmonic functions is
different from the one used in the classical case. In the α-stable case the
natural objects to be considered are ratios of α-harmonic functions vanishing
outside the domain. These functions can be analyzed in the context of their
boundary behaviour, and they have been investigated in the classical case (see
[17], [29]). The α-stable case has been studied in the literature; see [12] for
the latest results in smooth domains.

In this paper we present some results in the α-stable case for bounded Lip-
schitz domains (see below for the details). The main part of the paper follows
the general outline presented in [29], but we will need different estimates since
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the α-stable Lévy motion has discontinuous paths when α < 2. We will use
the estimates for the Martin kernels and the Green functions of Lipschitz do-
mains, smooth domains (see [16], [19], [22]) and cones (see [1], [25]). We will
also use a version of the Boundary Harnack Principle, presented in [26].

In Section 2 we present the basic concepts and definitions. Section 3 pro-
vides some estimates for the Green function and the Martin kernel in Lipchitz
domains. Some of these estimates may be useful in other applications. Sec-
tion 4 contains the most important results of this paper, including the main
theorem (Theorem 4.2), an α-stable version of a relative Fatou theorem for
classical harmonic functions (see [29, Theorem 3]). We also give a simple ex-
ample which shows that the assumptions of this theorem cannot be weakened.
Section 5 deals with the case when the normalizing α-harmonic function cor-
responds to the surface measure σ. The main results of this section, Theorems
5.3 and 5.4, generalize the results of [12] and, together with the counterex-
ample presented, show the difference between Lipschitz domains and smooth
domains.

After completing this paper, the authors have been informed by the ref-
eree that similar results for κ-fat sets, which are a wider class than Lipschitz
sets, have recently been obtained by Panki Kim, with the use of probabilistic
methods (see [21]).

2. Preliminaries

We denote by | · | the Euclidean norm of vectors. For a set B ∈ Rd, d ≥ 2,
we denote its complement by Bc and its characteristic function by 1B . For
x ∈ Rd, B(x, r) denotes an open ball centered at x of radius r. For a Borel
set B and r > 0 we define rB = {rx : x ∈ B}.

Let D denote a bounded open set in Rd. We say that D is a Lipschitz
domain if there exist constants R0 (localization radius) and λ > 0 (Lipschitz
constant) such that for every z ∈ ∂D there is a function F : Rd−1 → R and
an orthonormal coordinate system y = (y1, . . . , yd) such that

D ∩B(z,R0) = {y : yd > F (y1, . . . , yd−1)} ∩B(z,R0)

and the function F is Lipschitz with Lipschitz constant not greater than λ.
If, in addition, F is differentiable and ∇F is Lipschitz with Lipschitz constant
not greater than λ, then D is called a C1,1 domain.

Let (Xt, P
x) be the rotation invariant (‘symmetric’) α-stable Lévy motion

(i.e., homogeneous with independent increments) on Rd with index α ∈ (0, 2)
(see [6]). For a Borel subset B of Rd let TB and τB denote, respectively, the
first entry time and the first exit time of B, i.e., TB = inf{t ≥ 0 : Xt ∈ B}
and τB = TBc .

For x ∈ Rd we define the α-harmonic measure of D by ωxD(B) = P x(XτD ∈
B). If D is Lipschitz then this measure is concentrated on (D)c and has a
density with respect to the Lebesgue measure, called the Poisson kernel (see
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[8]). This kernel will be denoted by PD(x, y), x ∈ D, y ∈ (D)c. It satisfies
the scaling property

PD(x, y) = (1/rd)P(1/r)D(x/r, y/r), r > 0.(1)

When D = B(0, r), r > 0, the Poisson kernel is given by the explicit formula

Pr(x, y) = Cd,α

(
r2 − |x|2

|y|2 − r2

)α/2 1
|x− y|d

, |x| < r, |y| > r,

where Cd,α = Γ(d/2)π−d/2−1 sin(πα/2) (see [7], [23]).
For x ∈ B let δx(B) = dist(x, ∂B) and δx = δx(D).
In this paper constants are always positive numbers. In equations and

inequalities the constants may change under arithmetic transformations, but
they will be denoted by the same symbols. A notation of the form c = c(a, b)
means that the constant c depends only on a, b.

A nonnegative Borel function h on Rd is said to be α-harmonic on D if for
each bounded open set B with B ⊂ D and for all x ∈ B we have

h(x) = Exh(XτB ) <∞.(2)

If h ≡ 0 on Dc then h is called singular α-harmonic on D. If B can be
replaced by D in (2) then h is called regular α-harmonic on D. In particular,
for B fixed the harmonic measure ωxD(B) is regular α-harmonic on D as a
function of x (see [8]).

From now on we will assume that r > 0, x ∈ D, y ∈ (∂D)c, z,Q ∈ ∂D.
x0 ∈ D will be a fixed reference point. For r ≤ R0/32 and Q ∈ ∂D we
denote by AQ,r a point for which B(AQ,r, κr) ⊂ B(Q, r) for a certain absolute
constant κ = κ(D) = 1/(2

√
1 + λ2). The set of such points is nonempty and

AQ,r is not unique. For r > R0/32 we set AQ,r = x1, where x1 ∈ D is another
fixed point such that |x0 − x1| = R0/4. See [19] for details.

The following theorems (Harnack Principles) constitute some of the basic
tools in our paper.

Theorem 2.1 (Harnack Principle). Let B be an open set. Assume that for
some positive integer k and all x, y ∈ B we have |x−y| < 2k min(δx(B), δy(B)).
Let u be α-harmonic in B(x, δx(B)) ∪ B(y, δy(B)). Then there exists a con-
stant C = C(d, α) such that

C−12−k(d+α)u(y) ≤ u(x) ≤ C2k(d+α)u(y).

Theorem 2.2 (Boundary Harnack Principle). Let D be an open set, z ∈
∂D, r, ρ ∈ (0, 1), and B(A, ρr) a ball in D ∩ B(z, r). Then there exists a
constant C = C(d, α) > 1 such that for any two functions u, v that are positive
regular α-harmonic in D ∩B(z, 2r) and vanish in Dc ∩B(z, r) we have

C−1ρd+α v(x)
v(A)

≤ u(x)
u(A)

≤ Cρd+α v(x)
v(A)

, x ∈ D ∩B(z, r/2).
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Theorem 2.1 is a version of [8, Lemma 2] and Theorem 2.2 can be found
in [26].

For all nonnegative Borel measurable functions f we define the Riesz po-
tential of f by

Uf(x) = Ex
∫ ∞

0

f(Xt)dt =
∫
Ad,α|x− y|α−df(y)dy,

where Ad,α = 2−απ−d/2Γ((d− α)/2)/Γ(α/2) (see [6]).
For an open set B we define the Green potential of f by

GBf(x) = Ex
∫ τB

0

f(Xt)dt =
∫
GB(x, y)f(y)dy,

where GB(x, y) is the Green function of B defined by

GB(x, y) = Ad,α(|x− y|α−d − Ex|x−XτB |α−d), x, y ∈ B, x 6= y,(3)

GB(x, x) = ∞, x ∈ B, and GB(x, y) = 0 otherwise. This function is sym-
metric (i.e., GB(x, y) = GB(y, x)), positive in int(B), and if B1 ⊂ B2 then
GB1 ≤ GB2 . Furthermore, GB satisfies the scaling property

GB(x, y) = (1/rd−α)G(1/r)B(x/r, y/r), r > 0.(4)

For other properties of the Green function see [9] and [16].
Every nonnegative function that is singular α-harmonic on D has a unique

representation (called Martin representation)

f(x) =
∫
∂D

M(x, z)µ(dz),(5)

where µ is a finite Borel measure on ∂D (see [9]). The kernel function M(x, z),
called Martin kernel, may be defined by

M(x, z) = lim
D3y→z

GD(x, y)
GD(x0, y)

, x ∈ D, z ∈ ∂D.(6)

The existence of this limit follows from the Boundary Harnack Principle (see
[9]). We will use the following estimates for M (see [19, Theorem 3]):

c
φ(x)

|x− z|d−αφ2(Az,|x−z|)
≤M(x, z) ≤ C φ(x)

|x− z|d−αφ2(Az,|x−z|)
,(7)

where c, C depend on d, α, λ and

φ(x) = min(GD(x, x0), Cd,α(R0/4)α−d).(8)

Note that for x sufficiently close to ∂D we simply have φ(x) = GD(x, x0).
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3. Estimates for Green functions and Martin kernels

First we define an unbounded circular cone with vertex at 0 = (0, 0, . . . , 0)
and symmetric with respect to the d-th axis as a set V of the form

V = {x : η · |(x1, x2, . . . , xd−1)| < xd},

where η ∈ (−∞,∞). The aperture of V is the angle γ = arccos(η/
√

1 + η2) ∈
(0, π). More generally, an unbounded cone with vertex at Q is a set V ′

isomorphic to the cone V defined above and such that r(V ′ − Q) = V ′ − Q
for any r > 0. For a cone V with vertex at Q we denote by 1 a point on the
axis of V such that |1−Q| = 1.

Let V be a cone with vertex at 0 and aperture γ ∈ (0, π). Assume that
1 = (0, 0, . . . , 0, 1). By [1, Theorem 3.2] there exists a so-called Martin kernel
with pole at infinity. This is a unique nonnegative function MV on Rd such
that MV (1) = 1, MV ≡ 0 on V c, and MV is regular α-harmonic on every
open bounded subset of V . Moreover, MV is locally bounded on Rd and
homogeneous of degree β ∈ [0, α), that is,

MV (x) = |x|βMV (x/|x|), x ∈ V.(9)

Furthermore, β = β(V, α) is a strictly decreasing function of γ (see [1, Lemma
3.3]). We will call β the characteristics of V . If γ = π/2 then V is the half-
space {(x1, x2, . . . , xd) : xd > 0}. In this case MV (x) = x

α/2
d , x ∈ V , and this

gives β = α/2 (see [1]).
From [25, Lemma 3.3] we have

c|x−Q|β−α/2δα/2x (V ) ≤MV (x) ≤ C|x−Q|β−α/2δα/2x (V ),(10)

where c, C depend on d, α and the aperture of V .
For r > 0 and any cone V with vertex at Q we define a bounded cone Vr

by Vr = V ∩B(Q, r).
By the properties of Lipschitz domains (see [9]) we know that there exists

R0 > 0 such that for every z ∈ ∂D and every r ≤ R0 there exist cones Γ, Γ′

with vertices at z and such that

Γr ⊂ D ∩B(z, r),Γ′r ⊂ Dc ∩B(z, r).

We call Γr an inner cone and Γ′r an exterior cone.
If Γr is an exterior cone with its vertex at z ∈ ∂D then Γ̃r = Γ

c

r is also a
cone with its vertex at z. We see that

D ∩B(z, r) ⊂ Γ̃r.

We will call Γ̃r a covering cone.
In our subsequent analysis we will often refer to inner cones and covering

cones with vertices located at z ∈ ∂D. We denote the characteristics of these
cones by β and β̃, respectively. Furthermore, we note that by the Lipschitz
property there exists a number γ0 such that for all z ∈ ∂D there exists an
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inner cone ΓR0 of aperture γ0 and vertex at z and a covering cone Γ̃R0 of
aperture π − γ0 and vertex at z. Simple calculations yield

γ0 = arccos(λ/
√

1 + λ2).

We will denote the characteristics of these cones by β0 and β̃0, respectively.
Because of [1, Lemma 3.3], for any z ∈ ∂D it suffices to consider those

inner bounded cones Γr and covering bounded cones Γ̃r for which 0 < β̃0 ≤
β̃ ≤ β ≤ β0 < α. Note that β, β̃ may depend on z, r, while β0, β̃0 do not
depend on z. Furthermore, for any z ∈ ∂D and r ≤ R0/32 we may assume
that B(Az,r, κr) ⊂ Γr ⊂ Γ̃r.

We now present some estimates for Martin kernels. We start with the
following lemma.

Lemma 3.1. Let r ≤ R0. For Q ∈ ∂D consider two cones Γ, Γ̃ with
vertices at Q and characteristics β, β̃, respectively, such that Γr is an inner
bounded cone and Γ̃r is a covering bounded cone. Then there exist constants
c = c(Q, β, β̃) and C = C(Q, β, β̃) such that:

(i) If x is in Γr/4 then

φ(x) ≥ c |x−Q|
β−α/2δ

α/2
x (Γ)

rβ
φ(AQ,r).

(ii) If x is in D ∩B(Q, r/4) then

φ(x) ≤ C |x−Q|
β̃−α/2δ

α/2
x (Γ̃)

rβ̃
φ(AQ,r) ≤ C

(
|x−Q|

r

)β̃
φ(AQ,r).

Proof. We may assume that x0 /∈ Γ̃2r. Set Br = Γ ∩ (B(Q, 2r) \ B(Q, r))
and define

fD(x) = P x(XτD∩B(Q,r) ∈ Br),
fΓ(x) = P x(XτΓ∩B(Q,r) ∈ Br),
fΓ̃(x) = P x(XτΓ̃∩B(Q,r)

∈ Br).

Obviously, fΓ ≤ fD ≤ fΓ̃ on Rd. Next, the scaling property of the harmonic
measures implies that

fΓ̃(AQ,r) = PAQ,r (XτΓ̃∩B(Q,r)
∈ Br) = PAQ,1(XτΓ̃∩B(Q,1)

∈ B1) > 0,

and, similarly,

fΓ(AQ,r) = PAQ,1(XτΓ∩B(Q,1) ∈ B1) > 0.

Hence cfΓ̃(AQ,r) ≤ fD(AQ,r) ≤ CfΓ(AQ,r), and consequently

c
fΓ(x)

fΓ(AQ,r)
≤ fD(x)
fD(AQ,r)

≤ C
fΓ̃(x)

fΓ̃(AQ,r)
,(11)
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where c, C depend on the apertures of Γ, Γ̃, and therefore on β, β̃.
The construction of AQ,r implies that

κr ≤ c|AQ,r −Q| ≤ δAQ,r (Γ) ≤ C|AQ,r −Q| ≤ r

and
κr ≤ c|AQ,r −Q| ≤ δAQ,r (Γ̃) ≤ C|AQ,r −Q| ≤ r.

Therefore, by (10) we get crβ ≤ MΓ(AQ,r) ≤ Crβ and crβ ≤ MΓ̃(AQ,r) ≤
Crβ̃ . Note that the functions fD(·)/fD(AQ,r), fΓ̃(·)/fΓ̃(AQ,r), and
fΓ(·)/fΓ(AQ,r) are regular α-harmonic on D ∩ B(Q, r), Γ̃ ∩ B(Q, r), and
Γ∩B(Q, r), respectively, vanish on Dc∩B(Q, r), Γ̃c∩B(Q, r), and Γc∩B(Q, r),
respectively, and are equal to 1 at AQ,r. Therefore, if |x − Q| ≤ r/4, using
the Boundary Harnack Principle, (8) and (10), we obtain

c
fD(x)

fD(AQ,r)
≤ φ(x)
φ(AQ,r)

=
GD(x, x0)

GD(AQ,r, x0)
≤ C fD(x)

fD(AQ,r)
, x ∈ D.

In a similar way we get

fΓ(x)
fΓ(AQ,r)

≥ c MΓ(x)
MΓ(AQ,r)

≥ c |x−Q|
β−α/2δ

α/2
x (Γ)

rβ
, x ∈ Γr/4

and

fΓ̃(x)
fΓ̃(AQ,r)

≤ C
MΓ̃(x)

MΓ̃(AQ,r)
≤ C |x−Q|

β̃−α/2δ
α/2
x (Γ̃)

rβ̃

≤ C
(
|x−Q|

r

)β̃
, x ∈ D,

which, combined with (11), completes the proof. �

Lemma 3.2. Let r ≤ R0. For Q ∈ ∂D consider two cones Γ, Γ̃ with
vertices at Q and characteristics β, β̃, respectively, such that Γr is an inner
bounded cone and Γ̃r is a covering bounded cone. Moreover, let x ∈ D, z ∈
∂D and |x − Q| ≤ |x − z|. Then there exist constants c = c(r,D, β, β̃) and
C = C(r,D, β, β̃) such that

c

(
|x−Q|
|x− z|

)d−α+2β

≤ M(x, z)
M(x,Q)

≤ C
(
|x−Q|
|x− z|

)d−α+2β̃

.

Proof. By (7) we have

c

(
|x−Q|
|x− z|

)d−α φ2(AQ,|x−Q|)
φ2(Az,|x−z|)

≤ M(x, z)
M(x,Q)

≤ C
(
|x−Q|
|x− z|

)d−α φ2(AQ,|x−Q|)
φ2(Az,|x−z|)

,
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so we need to show that

c

(
|x−Q|
|x− z|

)β
≤
φ(AQ,|x−Q|)
φ(Az,|x−z|)

≤ C
(
|x−Q|
|x− z|

)β̃
.(12)

First assume that |x − Q| ≤ |x − z| ≤ r/4. Recall that we can choose
AQ,|x−Q| so that B(AQ,|x−Q|, κ|x − Q|) ⊂ Γr. Then, using Lemma 3.1 with
r := 4|x− z|, we obtain

c
|AQ,|x−Q| −Q|β−α/2δ

α/2
AQ,|x−Q|

(Γ)

(4|x− z|)β
φ(AQ,|x−z|) ≤ φ(AQ,|x−Q|)(13)

≤ C
( |AQ,|x−Q| −Q|

(4|x− z|)

)β̃
φ(AQ,|x−z|).

From the definition of AQ,|x−Q| we have

κ|x−Q| ≤ δAQ,|x−Q|(Γ) ≤ δAQ,|x−Q| ≤ |AQ,|x−Q| −Q| ≤ |x−Q|

and
δAz,|x−z| ≥ κ|x− z|, δAQ,|x−z| ≥ κ|x− z|.

Combining this with (13) we obtain

c

(
|x−Q|
|x− z|

)β
φ(AQ,|x−z|) ≤ φ(AQ,|x−Q|) ≤ C

(
|x−Q|
|x− z|

)β̃
φ(AQ,|x−z|).

(14)

If |x−Q| ≤ |x− z| then |z −Q| ≤ |x− z|+ |x−Q| ≤ 2|x− z|. Therefore, we
get

|Az,|x−z| −AQ,|x−z|| ≤ |Az,|x−z| − z|+ |z −Q|+ |AQ,|x−z| −Q|(15)

≤ 4|x− z| ≤ 4/κ(δAQ,|x−z| ∧ δAz,|x−z|).

Hence from the Harnack Principle we obtain

cφ(Az,|x−z|) ≤ φ(AQ,|x−z|) ≤ Cφ(Az,|x−z|),

and together with (14) we get (12).
Now let |x − Q| ≤ r/4 ≤ |x − z|. As in the previous case we get, again

using Lemma 3.1,

c

(
|x−Q|

r

)β
φ(AQ,r) ≤ φ(AQ,|x−Q|) ≤ C

(
|x−Q|

r

)β̃
φ(AQ,r).(16)

Since δAz,|x−z| ≥ κ|x− z| ≥ κr/4 we see that

0 < inf{φ(x) : δx ≥ κr/4} ≤ φ(Az,|x−z|) ≤ Cd,α(R0/4)α−d,

and the same estimates hold for φ(AQ,r). This implies that cφ(Az,|x−z|) ≤
φ(AQ,r) ≤ Cφ(Az,|x−z|), where c, C depend on r and D. Moreover,
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|x − z|r/diam(D) ≤ r ≤ 4|x − z|. Combining this with (16) we again ob-
tain (12).

The case r/4 ≤ |x−Q| ≤ |x− z| is similar to the previous one, but simpler
as it does not require Lemma 3.1. The proof is complete. �

Recall that β0, β̃0 are the characteristics of the inner cones and the covering
cones that are suitable for all z ∈ ∂D. Therefore, from Lemma 3.2 we obtain
the following corollary:

Corollary 3.3. Let z, z′ ∈ ∂D. If |x − z′| ≤ |x − z| then there exist
constants c = c(R0, D, β0, β̃0) and C = C(R0, D, β0, β̃0) such that

c

(
|x− z′|
|x− z|

)d−α+2β0

≤ M(x, z)
M(x, z′)

≤ C
(
|x− z′|
|x− z|

)d−α+2β̃0

.

Note that if D is a C1,1 domain, then from [16] we get

cδα/2x /|x− z|d ≤M(x, z) ≤ Cδα/2x /|x− z|d,
and Lemma 3.2 gives

c

(
|x−Q|
|x− z|

)d
≤ M(x, z)
M(x,Q)

≤ C
(
|x−Q|
|x− z|

)d
for all x ∈ D and z,Q ∈ ∂D. Hence the lemma provides global estimates that
are much stronger that those in Corollary 3.3.

Lemma 3.4. Let r ≤ R0. For Q ∈ ∂D consider two cones Γ, Γ̃ with
vertices at Q and characteristics β, β̃, respectively, such that Γr is an inner
bounded cone and Γ̃r is a covering bounded cone. Let x ∈ D, z ∈ ∂D, and
|z − Q| ≤ 2|x − z|. Then there exist constants c = c(r,D, β, β̃) and C =
C(r,D, β, β̃) such that

c
φ(x)

|x− z|d−α+2β̃
≤M(x, z) ≤ C φ(x)

|x− z|d−α+2β
.

Furthermore, if β = β0 and β̃ = β̃0, then c = c(R0, D, β0, β̃0) and C =
C(R0, D, β0, β̃0). In this case the above estimates hold for all z ∈ ∂D, x ∈ D.
Finally, by (8), φ(x) can be replaced by GD(x, x0) for x close to ∂D.

Proof. Due to (7) it suffices to show that

c|x− z|β ≤ φ(Az,|x−z|) ≤ C|x− z|β̃ .(17)

Suppose that |x− z| ≤ r/4. Using Lemma 3.1 and the same arguments as for
(14) we obtain

c

(
|x− z|
r

)β
φ(AQ,r) ≤ φ(AQ,|x−z|) ≤ C

(
|x− z|
r

)β̃
φ(AQ,r).(18)
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Since |z −Q| ≤ 2|x− z|, (15) remains true. Hence from the Harnack Princi-
ple we obtain cφ(Az,|x−z|) ≤ φ(AQ,|x−z|) ≤ Cφ(Az,|x−z|), and (18) therefore
implies (17).

The case |x − z| ≥ r/4 is analogous to the second case in the proof of
Lemma 3.2. The proof is complete. �

4. Main results

In this section we study the behaviour of the ratio of two singular α-
harmonic functions. We identify the set of boundary points for which the
limit of this ratio exists, either in the usual sense or in the nontangential
sense. In Theorem 4.1 we deal with both the ordinary limit and the non-
tangential limit. In Theorem 4.2, which is the main result of this paper, we
investigate nontangential convergence.

We fix two Borel measures µ, ν on Rd, which are finite and concentrated
on ∂D, and we define u(x) =

∫
∂D

M(x, z)µ(dz), v(x) =
∫
∂D

M(x, z)ν(dz).
The functions u and v are both (singular) α-harmonic on D (see [9]).

We may represent µ as dµ = fdν + dµs, where f ∈ L1(∂D, ν) and µs is
singular to ν. Consider all points Q ∈ ∂D for which

lim
r→0

∫
B(Q,r)

(|(f(z)− f(Q)|ν(dz) + µs(dz))

ν(B(Q, r))
= 0.(19)

It is well-known that the set of such points Q is of full measure ν.
In this section we prove the following theorems.

Theorem 4.1. Let u(x) =
∫
∂D

M(x, z)µ(dz), v(x) =
∫
∂D

M(x, z)ν(dz).
Assume that dµ = fdν and that f is continuous at Q. Let
limx→Q v(x)/GD(x, x0) =∞. Then

lim
x→Q

u(x)
v(x)

= f(Q).

If we assume that limx→Q v(x)/GD(x, x0) =∞ nontangentially, then the limit
above must be taken nontangentially.

Remark 1. The condition limx→Q v(x)/GD(x, x0) = ∞ is essential (see
Example 2 below).

Theorem 4.2 (Relative Fatou Theorem). Let u(x) =
∫
∂D

M(x, z)µ(dz),
v(x) =

∫
∂D

M(x, z)ν(dz). Assume that dµ = fdν + dµs, where µs is singular
to ν. Then for ν-almost every point Q ∈ ∂D we have

lim
x→Q

u(x)
v(x)

= f(Q)

as x → Q nontangentially. More precisely, the convergence holds for every
Q ∈ ∂D such that (19) holds and limx→Q v(x)/GD(x, x0) = ∞ nontangen-
tially.
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To prove these results we need several technical lemmas.

Lemma 4.3. Let Q ∈ ∂D and v(x) =
∫
∂D

M(x, z)ν(dz). If
limx→Q v(x)/GD(x, x0) =∞ then for every ε > 0 we have

lim
x→Q

∫
∂D∩{|z−Q|≥ε}M(x, z)µ(dz)

v(x)
= 0.

If we assume that limx→Q v(x)/GD(x, x0) =∞ nontangentially then the limit
above must be taken nontangentially.

Proof. If |z−Q| ≥ ε and |x−Q| ≤ ε/2 then |x− z| ≥ ε/2. As GD(x, x0) =
φ(x) for x close to Q, using Lemma 3.4 we have

M(x, z) ≤ CGD(x, x0)
|x− z|d−α+2β0

with C = C(R0, D, β0, β̃0). This implies that∫
∂D∩{|z−Q|≥ε}

M(x, z)µ(dz) ≤ CGD(x, x0)
∫
∂D∩{|z−Q|≥ε}

µ(dz)
|x− z|d−α+2β0

≤
CGD(x, x0)

∫
∂D∩{|z−Q|≥ε} µ(dz)

εd−α+2β0
≤ C|µ|GD(x, x0).

Since |µ| <∞ we see that∫
∂D∩{|z−Q|≥ε}M(x, z)µ(dz)

v(x)
≤ C|µ|
v(x)/GD(x, x0)

→ 0

as x→ Q. The proof is complete. �

Proof of Theorem 4.1. We have∣∣∣∣u(x)
v(x)

− f(Q)
∣∣∣∣ ≤

∫
∂D
|f(z)− f(Q)|M(x, z)ν(dz)

v(x)
=
I1(x)
v(x)

+
I2(x)
v(x)

,

where

I1(x) =
∫
∂D∩{|z−Q|≥ε}

|f(z)− f(Q)|M(x, z)ν(dz),

I2(x) =
∫
∂D∩{|z−Q|<ε}

|f(z)− f(Q)|M(x, z)ν(dz).

Next, observe that

I2(x)
v(x)

≤ sup {|f(z)− f(Q)| : z ∈ ∂D, |z −Q| < ε} .
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By the continuity of f , for every r > 0 we can choose ε > 0 such that
I2(x)/v(x) ≤ r. For this ε we have, by Lemma 4.3, limx→Q I1(x)/v(x) = 0.
Thus,

lim sup
x→Q

∣∣∣∣u(x)
v(x)

− f(Q)
∣∣∣∣ ≤ r

for every r > 0, which completes the proof. �

The next lemma provides more details on the boundary behaviour of v(x) =∫
∂D

M(x, z)ν(dz) and may be regarded as an α-stable version of [29, Lemma
5.1].

Lemma 4.4. For ν-almost every point Q ∈ ∂D we have

lim inf
x→Q

v(x) > 0

as x→ Q nontangentially.

Proof. Let |z −Q| < |x−Q|. Then |x− z| ≤ 2|x−Q|, so either |x− z| ≤
|x−Q| or (1/2)|x− z| ≤ |x−Q| ≤ |x− z|. In each case we can use Corollary
3.3 and we obtain M(x, z) ≥ cM(x,Q) . This implies that

v(x) ≥
∫
∂D∩B(Q,|x−Q|)

M(x, z)ν(dz) ≥ cM(x,Q)ν(B(Q, |x−Q|)).

If x→ Q nontangentially then for some C0 we have

κδx ≤ κ|x−Q| ≤ |AQ,|x−Q| −Q| ≤ |x−Q| ≤ C0δx.

Therefore, by the Harnack Principle (Theorem 2.1) we have

cGD(x, x0) ≤ GD(AQ,|x−Q|, x0) ≤ CGD(x, x0),

so (7) implies
c

|x−Q|d−αGD(AQ,|x−Q|, x0)
≤M(x,Q) ≤ C

|x−Q|d−αGD(AQ,|x−Q|, x0)
.

Hence we obtain

v(x) ≥ cν(B(Q, |x−Q|))
|x−Q|d−αGD(AQ,|x−Q|, x0)

.(20)

By [8, Lemma 11], there exist constants c = c(d, α, λ) and ρ = ρ(d, α, λ) ∈
(0, 1) such that for |x−Q| < R0,

P x0(XτD ∈ B(Q, |x−Q|)) ≥ cGD(AQ,ρ|x−Q|/2, x0)|x−Q|d−α.
By the Harnack Principle, for x sufficiently close to Q this implies that

P x0(XτD ∈ B(Q, |x−Q|)) ≥ cGD(AQ,|x−Q|, x0)|x−Q|d−α.
Combining this with (20) we obtain

v(x) ≥ c ν(B(Q, |x−Q|))
P x0(XτD ∈ B(Q, |x−Q|))

,
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or, in other words,
ωx0
D (B(Q, |x−Q|))
ν(B(Q, |x−Q|))

≥ c

v(x)
.

By [5, Theorem 5] the symmetric derivative

lim sup
x→Q

ωx0
D (B(Q, |x−Q|))
ν(B(Q, |x−Q|))

is finite for ν-almost every point Q ∈ ∂D. This completes the proof. �

Remark 2. Since limx→QGD(x, x0) = 0 (see [22, Theorem 2.24]), Lemma
4.4 implies that if x → Q nontangentially then limx→Q v(x)/GD(x, x0) = ∞
for almost every point Q with respect to ν, so Lemma 4.3 holds for such Q.
We will use this result below.

Lemma 4.5 (Nontangential Maximal Estimate). For any x ∈ D, Q ∈ ∂D
and t > 0 such that |x−Q| ≤ tδx there exist constants C = C(t,Q), c = c(t, Q)
such that

c inf
r>0

µ(B(Q, r))
ν(B(Q, r))

≤
∫
∂D

M(x, z)µ(dz)∫
∂D

M(x, z)ν(dz)
≤ C sup

r>0

µ(B(Q, r))
ν(B(Q, r))

.

Proof. For n ≥ 1 set Bn = B(Q, 2n|x − Q|) and An = Bn \ Bn−1, n ≥ 2.
Let n0 be the smallest index for which 2n0 |x−Q| ≥ diam(D). Then we have∫

∂D

M(x, z)µ(dz) =
n0∑
n=2

∫
∂D∩An

M(x, z)µ(dz) +
∫
∂D∩B1

M(x, z)µ(dz).(21)

If z ∈ B1 then |z −Q| < 2|x−Q|, which implies
1
t
|x−Q| ≤ δx ≤ |x− z| ≤ |z −Q|+ |x−Q| ≤ 3|x−Q|.

From Corollary 3.3 we get cM(x,Q) ≤M(x, z) ≤ CM(x,Q), so

inf
z∈B1

M(x, z) ≤ a1 = sup
z∈B1

M(x, z) ≤ Cc−1 inf
z∈B1

M(x, z).

Therefore we obtain

ca1µ(B1) ≤
∫
∂D∩B1

M(x, z)µ(dz) ≤ Ca1µ(B1).(22)

Now let z ∈ An. We have

(1/4) · 2n|x−Q| ≤ ((1/2) · 2n − 1)|x−Q| ≤ |z −Q| − |x−Q|
≤ |x− z| ≤ |x−Q|+ |z −Q| ≤ 2 · 2n|x−Q|.

Therefore, if also z′ ∈ An, then |x−z′|/8 ≤ |x−z| ≤ 8|x−z′|, so, by Corollary
3.3, cM(x, z′) ≤M(x, z) ≤ CM(x, z′) and

inf
z∈An

M(x, z) ≤ an = sup
z∈An

M(x, z) ≤ Cc−1 inf
z∈An

M(x, z).
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Thus we obtain

canµ(An) ≤
∫
∂D∩An

M(x, z)µ(dz) ≤ Canµ(An).(23)

Combining (21), (22) and (23) we see that

c

(
n0∑
n=2

anµ(An) + a1µ(B1)

)
≤
∫
∂D

M(x, z)µ(dz)(24)

≤ C

(
n0∑
n=2

anµ(An) + a1µ(B1)

)
.

Now define bn = supk≥n ak, n ≥ 1. Obviously, bn ≥ an. Let z′ ∈ An and
z ∈ Ak, k > n. Then

|x− z′| ≤ |z′ −Q|+ |x−Q| ≤ 2 · 2n|x−Q|

and

|x− z| ≥ |z −Q| − |x−Q| ≥ (2n − 1)|x−Q| ≥ (1/2) · 2n|x−Q|,

so |x − z′| ≤ 4|x − z|. From Corollary 3.3 we obtain M(x, z) ≤ CM(x, z′).
This implies that ak ≤ Can for k > n, so bn ≤ Can, which means that
bn/C ≤ an ≤ bn, n ≥ 1. Combining this with (24) we obtain

c

(
n0∑
n=2

bnµ(An) + b1µ(B1)

)
≤
∫
∂D

M(x, z)µ(dz)

(25)

≤ C

(
n0∑
n=2

bnµ(An) + b1µ(B1)

)

= C

(
n0∑
n=2

bn(µ(Bn)− µ(Bn−1)) + b1µ(B1)

)

= C

(
n0∑
n=2

(bn−1 − bn)µ(Bn) + bn0µ(Bn0)

)
,
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and the same estimate holds with µ replaced with ν. By definition, (bn−1−bn)
is nonnegative. Thus we obtain

u(x) =
∫
∂D

M(x, z)µ(dz)

≤ C

(
n0∑
n=2

(bn−1 − bn)
µ(Bn)
ν(Bn)

ν(Bn) + bn0

µ(Bn0)
ν(Bn0)

ν(Bn0)

)

≤ C sup
r>0

µ(B(Q, r))
ν(B(Q, r))

(
n0∑
n=2

(bn−1 − bn)ν(Bn) + bn0ν(Bn0)

)

≤ C sup
r>0

µ(B(Q, r))
ν(B(Q, r))

∫
∂D

M(x, z)ν(dz) = C sup
r>0

µ(B(Q, r))
ν(B(Q, r))

v(x),

and similarly,

u(x) ≥ c inf
r>0

µ(B(Q, r))
ν(B(Q, r))

v(x),

which had to be shown. �

Proof of Theorem 4.2. Let ε > 0. Define dµ̃ = |f(·)−f(Q)|dν+dµs. Then
we have ∣∣∣∣u(x)

v(x)
− f(Q)

∣∣∣∣ ≤
∫
∂D

M(x, z)dµ̃(dz)
v(x)

(26)

=

∫
∂D∩{|z−Q|≥ε}M(x, z)dµ̃(dz)

v(x)

+

∫
∂D

M(x, z)dµ̃|B(Q,ε)(dz)∫
∂D

M(x, z)ν(dz)
,

where µ̃|B(Q,ε) denotes the truncation of µ̃ to B(Q, ε). Since |f(·)− f(Q)| ∈
L1(ν), applying Lemma 4.3 and Remark 2 to the measures µ̃ and ν, we obtain

lim
x→Q

∫
∂D∩{|z−Q|≥ε}M(x, z)µ̃(dz)

v(x)
= 0.

Hence, applying Lemma 4.5 to the measures µ̃|B(Q,ε) and ν, using (26) we get

lim sup
x→Q

∣∣∣∣u(x)
v(x)

− f(Q)
∣∣∣∣ ≤ lim sup

x→Q

∫
∂D

M(x, z)µ̃|B(Q,ε)(dz)∫
∂D

M(x, z)ν(dz)

≤ C sup
r>0

∫
∂D∩B(Q,r)

µ̃|B(Q,ε)(dz)

ν(B(Q, r))

= C sup
r≤ε

∫
∂D∩B(Q,r)

(|f(z)− f(Q)|ν(dz) + µs(dz))

ν(B(Q, r))
.

Letting ε→ 0 and using (19) we obtain the desired result. �
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Example 1. Take D = B(0, 1) and x0 = 0. In this case

M(x, z) = C(1− |x|2)α/2/|x− z|d

(see [9, Example 1]). Take z1, z2 ∈ ∂D, z1 6= z2, and let µ, ν be probabilistic
measures concentrated at z1, z2 respectively. Then

u(x)/v(x) = |x− z2|d/|x− z1|d,

so we see that limx→Q u(x)/v(x) = |Q − z2|d/|Q − z1|d < ∞ if Q 6= z1, but
limx→z1 u(x)/v(x) = ∞. Hence, by Theorem 4.2, the convergence holds for
ν-almost every point Q ∈ ∂D but not everywhere.

5. The case of the surface measure

In this section we consider the case when ν = σ, the (d − 1)-dimensional
Hausdorff measure on ∂D. For this measure we denote the function v by N ,
i.e.,

N(x) =
∫
∂D

M(x, z)σ(dz).

We consider the most interesting case when µ is absolutely continuous
with respect to σ, i.e., dµ = fdσ, f ∈ L1(∂D, σ). This case was inves-
tigated for C1,1 domains in [12] and some sharp results were obtained in
this paper. In particular, from [12, Theorem 3.2 and 4.3] we deduce that
limx→Q δxN(x)/GD(x0, x) ∈ (0,∞), so Lemma 4.4 holds for all Q ∈ ∂D.
Hence the condition limx→Q v(x)/GD(x0, x) = ∞ in Theorem 4.1 holds for
all Q ∈ ∂D.

On ∂D, σ is a natural substitute of the (d − 1)-dimensional Lebesgue
measure. This is why we are able to describe how Theorem 4.2 depends on
the geometry of ∂D. We will also exhibit some phenomena that are different
from those in smooth domains.

We use the following property of σ, called Ahlfors regular condition: There
exist constants r0 = r0(D, d), c = c(D, d) and C = C(D, d) such that for
every z ∈ ∂D and r ≤ r0,

crd−1 ≤ cσ(∂D ∩ (B(z, r) \B(z, r/2))) ≤ σ(∂D ∩B(z, r))

≤ Cσ(∂D ∩ (B(z, r) \B(z, r/2))) ≤ Crd−1.

We begin with a technical lemma.

Lemma 5.1. For r, t > 0 define the function Ft(r) by

Ft(r) =


1

rt−d+1
, t− d+ 1 > 0,

1, t− d+ 1 < 0,
| ln r|+ 1, t− d+ 1 = 0.
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Then there exist constants c = c(D, d, t), C = C(D, d, t) such that for every
x ∈ D we have

cFt(δx) ≤
∫
∂D

σ(dz)
|x− z|t

≤ CFt(δx).(27)

Furthermore, if Q ∈ ∂D and diam(D)/2 ≥ ε ≥ 2|x−Q|, then

cFt(ε) ≤
∫
∂D∩{|z−Q|≥ε}

σ(dz)
|x− z|t

≤ CFt(ε).(28)

Proof. First we prove (28). We set Bn = B(Q, 2nε) and An = Bn \ Bn−1.
Let n0 be the largest index for which r = 2n0ε ≤ r0. Then we have∫

∂D∩{|z−Q|≥ε}

σ(dz)
|x− z|t

=
n0∑
n=0

∫
∂D∩An

σ(dz)
|x− z|t

+
∫
∂D\B(Q,r)

σ(dz)
|x− z|t

.(29)

We may assume that ε < r0/2. Then |x−Q| ≤ r0/4, so

diam(D)/2 ≥ |x− z| ≥ |z −Q| − |x−Q| ≥ r0/4.

Hence we get

c ≤
∫
∂D\B(Q,r)

σ(dz)
|x− z|t

≤ C,(30)

where c, C depend on D, d, t.
If z ∈ ∂D∩An then (1/2) ·2nε ≤ |z−Q| ≤ 2nε. Since |x−Q| ≤ ε/2, we get

(1/4) · 2nε ≤ |x − z| ≤ 2 · 2nε. Since c(2nε)d−1 ≤ σ(∂D ∩ An) ≤ C(2nε)d−1,
we obtain

c

n0∑
n=0

(2nε)d−1−t ≤
n0∑
n=0

∫
∂D∩An

σ(dz)
|x− z|t

≤ C
n0∑
n=0

(2nε)d−1−t.(31)

If t− d+ 1 > 0 then

εd−1−t ≤
n0∑
n=0

(2nε)d−1−t ≤ εd−1−t
∞∑
n=0

(2n)d−1−t = Cεd−1−t,

which, combined with (29) and (30), gives (28).
By the definition of n0 we have r0/2 ≤ 2n0ε ≤ r0. Hence if t − d + 1 < 0

then

(r0/2)d−1−t ≤ (2n0ε)d−1−t ≤
n0∑
n=0

(2nε)d−1−t = εd−1−t 2
(n0+1)(d−1−t) − 1

2d−1−t − 1

≤ C(2n0ε)d−1−t ≤ Crd−1−t
0 ,

which again gives (28).
Finally, if t−d+1 = 0 then

∑n0
n=0(2nε)d−1−t = n0+1. Since r0/2 ≤ 2n0ε ≤

r0 we see that c(| ln(1/ε)| + 1) ≤ n0 ≤ C(| ln(1/ε)| + 1). This completes the
proof of (28).
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We now prove (27). For any x ∈ D we can find Q = Q(x) ∈ ∂D such that
δx = |x−Q|. We have∫

∂D

σ(dz)
|x− z|t

=
∫
∂D∩{|z−Q|≥2δx}

σ(dz)
|x− z|t

+
∫
∂D∩{|z−Q|<2δx}

σ(dz)
|x− z|t

.

Now, using (28) with ε = 2δx, we see that

cFt(δx) ≤
∫
∂D∩{|z−Q|≥2δx}

σ(dz)
|x− z|t

≤ CFt(δx).

We may assume that 2δx ≤ r0, which gives c(δx)d−1 ≤ σ(∂D ∩ B(Q, 2δx)) ≤
C(δx)d−1. If |z −Q| < 2δx then δx ≤ |x− z| ≤ 4δx and we obtain

c(δx)d−1−t ≤
∫
∂D∩{|z−Q|<2δx}

σ(dz)
|x− z|t

≤ C(δx)d−1−t.

If t− d+ 1 > 0 then (δx)d−1−t = Ft(δx); otherwise 0 ≤ δx ≤ (diam(D))d−1−t.
This completes the proof of the lemma. �

The next lemma describes the set of points Q for which the assumption of
Lemma 4.3 holds.

Lemma 5.2. Assume that for Q and some r > 0 there exists a covering
bounded cone Γ̃r with its vertex at Q and characteristics β̃ ≥ (α − 1)/2. Let
N(x) =

∫
∂D

M(x, z)σ(dz). Then limx→QN(x)/GD(x, x0) =∞.

Proof. Let |z − Q| ≥ 2|x − Q|. Then |z − Q| ≤ |x − z| + |x − Q| ≤
|x− z|+ |z−Q|/2, so |z−Q| ≤ 2|x− z|. Applying Lemma 3.4 and using (28)
with ε = 2|x−Q| we get

N(x) ≥
∫
∂D∩{|z−Q|≥2|x−Q|}

M(x, z)σ(dz)

≥ cGD(x, x0)
∫
∂D∩{|z−Q|≥2|x−Q|}

σ(dz)

|x− z|d−α+2β̃

≥ cGD(x, x0)Fd−α+2β̃(|x−Q|).

If β̃ ≥ (α − 1)/2 then limx→Q Fd−α+2β̃(|x − Q|) = ∞, which completes the
proof. �

As an immediate consequence of Lemma 5.2 and Theorem 4.1 we obtain
the following result:

Theorem 5.3. Let u(x) =
∫
∂D

M(x, z)µ(dz), N(x) =
∫
∂D

M(x, z)σ(dz).
Assume that dµ = fdσ and that f is continuous at Q ∈ ∂D. Suppose further
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that for some r > 0 there exists a covering cone Γ̃r with vertex at Q and
characteristics β̃ ≥ (α− 1)/2. Then

lim
x→Q

u(x)
N(x)

= f(Q).

Remark 3. If α ≤ 1 then, obviously, β̃ > (α − 1)/2. If α > 1 and d = 2
we have again β̃ > (α− 1)/2 (see [20]). In these cases Theorem 5.3 holds for
every Q ∈ ∂D.

Remark 4. Assume that there exists a hyperplane tangent to ∂D at
Q. Recall that a half-space has characteristics β = α/2. Furthermore, β is a
continuous function of γ (see [25, Theorem 3.2]). It follows that for sufficiently
small r > 0 a covering bounded cone Γ̃r exists for β̃ close to α/2 > (α− 1)/2.
Therefore, Theorem 5.3 holds for such points Q in the case when α > 1
and d ≥ 3. On the other hand, a Lipschitz function is differentiable almost
everywhere (by Rademacher’s theorem). Hence the set of such points Q is of
full measure σ.

Remark 5. If D is a C1,1 domain, then a tangent hyperplane exists for
every Q ∈ ∂D, so Theorem 5.3 holds regardless of α, which confirms [12,
Theorem 4.2].

The condition β̃ ≥ (α− 1)/2 is essential and cannot be omitted in general,
as the following example shows.

Example 2. We construct an example of a domain D, a point Q ∈ ∂D,
and a function f continuous on ∂D such that u(x)/N(x) does not tend to
f(Q) as x → Q nontangentially. This shows a difference between Lipschitz
domains and C1,1 domains.

We take an unbounded cone V with its vertex at Q and characteristics β,
and let BV be a C1,1 domain such that

(B(0, 3/2) \B(0, 1/16)) ∩ V ⊂ BV ⊂ (B(0, 2) \B(0, 1/32)) ∩ V.
We notice that the choice of BV depends only on d and γ. Next we take
D = BV ∪ (V ∩B(0, 1/16)). From [25, Lemma 3.4] we have for all x ∈ D

cδα/2x |x−Q|β−α/2 ≤ φ(x) ≤ Cδα/2x |x−Q|β−α/2,(32)

where c = c(d, α, β), C = C(d, α, β).
If x→ Q nontangentially, then |x−Q| ≤ C0|x− z| for some C0. Hence, by

the definition of Az,|x−z|, we have

κ|x− z| ≤ δAz,|x−z| ≤ |Az,|x−z| −Q|(33)

≤ |Az,|x−z| − z|+ |z − x|+ |x−Q|
≤ 2|x− z|+ |x−Q| ≤ (2 + C0)|x− z|.
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Therefore, from (32) and (33) we obtain c|x− z|β ≤ φ(Az,|x−z|) ≤ C|x− z|β .
Combining this with (7), we see that

c

∫
∂D

φ(x)σ(dz)
|x− z|d−α+2β

≤ N(x) ≤ C
∫
∂D

φ(x)σ(dz)
|x− z|d−α+2β

.(34)

Let α > 1. Assume that D is ‘wide’; more precisely, let β < (α − 1)/2. It is
possible to find such β for d ≥ 3 as β → 0 if γ → π (see [25, Theorem 3.2]).
Then from Lemma 5.1 and (34) we obtain cφ(x) ≤ N(x) ≤ Cφ(x), so we see
that the assumption of Lemma 4.3 is not satisfied.

Now let f > 0 on ∂D \ {Q} and f(Q) = 0. Then we get

u(x) =
∫
∂D

M(x, z)f(z)σ(dz) ≥ c
∫
∂D

f(z)φ(x)σ(dz)
φ2(Az,|x−z|)|x− z|d−α

≥ Cφ(x)
∫
∂D

f(z)σ(dz) ≥ Cφ(x),

since φ(Az,|x−z|) and |x− z| are bounded for every x ∈ D and z ∈ ∂D. Hence
we obtain u(x)/N(x) ≥ C > 0, so u(x)/N(x) does not tend to f(Q).

We conclude this section with a theorem which deals with general measures
that are absolutely continuous with respect to σ and which generalizes the
results of [12, Theorem 4.2].

Theorem 5.4. Let u(x) =
∫
∂D

M(x, z)µ(dz), N(x) =
∫
∂D

M(x, z)σ(dz).
Assume that dµ = fdσ. Then

lim
x→Q

u(x)
N(x)

= f(Q)

for almost every Q ∈ ∂D with respect to σ as x → Q nontangentially. More
precisely, if Q is a Lebesgue point of f and for some r > 0 there exists a
covering cone Γ̃r with its vertex at Q and characteristics β̃ ≥ (α− 1)/2 then
the convergence holds.

Proof. Q is a Lebesgue point of f if

lim
ε→0

∫
∂D∩B(Q,ε)

|f(z)− f(Q)|σ(dz)

σ(B(Q, ε))
= 0,

so the theorem follows directly from Lemma 5.2 and Theorem 4.2. �

Acknowledgements. The authors are grateful to Prof. K. Bogdan for
introducing them into the subject and for many helpful discussions on the
paper. The authors are also grateful to the referee for helpful comments on
the paper.



RELATIVE FATOU THEOREM 997

References
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(2000), 383–390. MR 2002c:60126
[29] J. M. Wu, Comparisons of kernel functions, boundary Harnack principle and relative

Fatou theorem on Lipschitz domains, Ann. Inst. Fourier (Grenoble) 28 (1978), 147–
167, vi. MR 80g:31005

[30] , Harmonic measures for symmetric stable processes, Studia Math. 149 (2002),

281–293. MR 2003f:60139

Institute of Mathematics, Wroc law University of Technology, Wyb. Wyspiańs-
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