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ON BURKHOLDER’S SUPERMARTINGALES

BURGESS DAVIS AND JIYEON SUH

In memory of J.L. Doob

Abstract. For 0 < p <∞, put

Yt(c, p) = Y = B
∗(p−2)
t [B2

t − t] + cB∗pt , t > 0,

where Bt is a Brownian Motion and B∗t = max0≤s≤t |Bs|. Then for

0 < p ≤ 2, Y is a submartingale if and only if c ≥ 2−p
p

, while for

2 ≤ p < ∞, Y is a supermartingale if and only if c ≤ 2−p
p

. This

extends results of Burkholder. The first of these assertions implies a

strong version of some of the Burkholder-Gundy inequalities.

1. Introduction

Let Bt, t ≥ 0, be the standard Brownian motion started at 0. Let Ft =
σ(Bs, s ≤ t), t ≥ 0. For a function f on [0,∞) define f∗(t) = sup0≤s≤t |f(s)|,
0 ≤ t < ∞. For p > 0 and c ∈ (−∞,∞) define the process Yt = Yt(c, p),
t ≥ 0, by Y0 = 0 and

Yt = B
∗(p−2)
t [B2

t − t] + cB∗pt , t > 0.

We will prove:

Theorem 1.1.

(i) If 0 < p ≤ 2, then Y is a submartingale if and only if c ≥ 2−p
p .

(ii) If p ≥ 2, then Y is a supermartingale if and only if c ≤ 2−p
p .

Throughout this paper, stopping time, martingale, submartingale, and su-
permartingale will always mean with respect to Ft, t ≥ 0. For the values not
covered by Theorem 1.1, Y is neither a submartingale or a supermartingale.
Burkholder proved, in [3], that Y is a submartingale if 1 < p ≤ 2 and if c ≥ γp,
where the explicitly given constants γp exceed 2−p

p except for p = 2. He also
proved a version of this result for the class of all martingales, the focus of [3].
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A famous theorem of Burkholder and Gundy (see [2]) states that, for p > 0,
there are positive constants ap and Ap such that for all stopping times τ with
respect to the filtration of Bt, t > 0, we have both

E τp/2 ≤ Ap EB∗pτ , and(1)

EB∗pτ ≤ ap E τp/2.(2)

Theorem 1.1 and the fact that |Bt| ≤ B∗t immediately give strong versions
of (1) for 0 < p < 2. It suffices to consider bounded and strictly positive
stopping times τ . Then EYτ ≥ 0, since Y is a submartingale, and this yields

(3) E
τ

B
∗(2−p)
τ

≤ 2
p

EB∗pτ , 0 < p < 2.

Such ratio inequalities, including some for general discrete time martingales,
go back to Garsia [5]. See [1]. To see that (3) implies the 0 < p < 2 range of
(1), with Ap = ( 2

p )p/2, use Holder’s inequality:

E τp/2 = E
(

τp/2

B
∗(2/p)(2−p)
τ

·B∗(2/p)(2−p)τ

)

≤

[
E
(

τp/2

B
∗(p/2)(2−p)
τ

)2/p
]p/2 [

E
(
B∗(p/2)(2−p)
τ

)2/(2−p)
](2−p)/2

≤
(

2
p

EB∗pτ

)p/2
(EB∗pτ )(2−p)/2

=
(

2
p

)p/2
EB∗pτ .

The inequality (3) implies not only the p < 2 cases of (1), but also, roughly,
that τ cannot be too large where Bτ is small. The inequalities (1)–(3) gener-
alize to inequalities for continuous martingales. See [2], [4], and [6]. As has
been noted, in [3] Burkholder is mainly concerned with the analogs of (1) for
the exponents 1 ≤ p ≤ 2 for the class of all martingales. (These analogs are
not true for p < 1.) Burkholder’s method for extracting (1)-like inequalities
from his submartingales, which is very different from that just given, would
yield the 0 < p ≤ 2 cases of (1) from our Theorem 1.1 with the same con-
stants Ap = ( 2

p )p/2 which we obtained. Conversely, our method together with
Burkholder’s analogs of the submartingales Y will give analogs of (3) for the
class of all martingales, for 1 ≤ p < 2.

One key to our proof of Theorem 1.1 is the following. Suppose τ ≤ η are
two stopping times with respect to the Brownian filtration Ft, t ≥ 0, where
Ft is the completion of σ(Bs, s ≤ t), such that B∗τ = B∗η . Let Y be as in
Theorem 1.1, and define Z by Zt = 0 if t ≤ τ ; Zt = Yt − Yτ if t ∈ [τ, η]; and



ON BURKHOLDER’S SUPERMARTINGALES 315

Zt = Zη if t > η. Then Z is a martingale, since

Zt =
∫ t

0

f(s)dMs,

where f(s) is the adapted integrand B∗(p−2)
τ I(τ ≤ s ≤ η) and Ms is the Lévy

martingale B2
s − s. Thus whether Y is a submartingale or supermartingale

depends only on what happens at those times t such that Bt = B∗t . We will
give the proof of Theorem 1.1(i) in detail. The proof of Theorem 1.1(ii) is
a little easier and very similar, using Lemmas 2.1 and 2.2 which hold for all
positive p, and is not given.

2. Proof of Theorem 1.1

Let Pa and Ea denote probability and expectation associated with a process
distributed as Bt + a, t ≥ 0.

Lemma 2.1. Let 0 < ε < 1, a > 0, and q > 0. Let τa = τa,ε = inf{t ≥ 0 :
|Xt − a| = εa}. Then

(i) EaX∗τa − a = aε log 2,
(ii) EaX∗qτa − a

q = εqaq log 2 + aqfq(ε), where fq(ε) = o(ε) as ε ↓ 0, and
(iii) EaX∗(q−2)

τa X2
τa − a

q = εaq(q − 2) log 2 + aqgq(ε), where gq(ε) = o(ε)
as ε ↓ 0.

Proof. (i) First we prove (i) for a = 1, temporarily dropping both subscripts
on τ1,ε and the subscripts on P1,E1. Now

EX∗τ − 1 = E(X∗τ − 1)I(Xτ = 1 + ε) + E(X∗τ − 1)I(Xτ = 1− ε)

=
1
2
ε+ E(X∗τ − 1)I(Xτ = 1− ε).

If 0 < x < ε,

P (X∗τ ≥ 1 + x,Xτ = 1− ε) = P (X hits 1 + x before it hits 1−ε and

then hits 1− ε before it hits 1 + ε)

=
ε

ε+ x
· ε− x

2ε
.

Thus

E(X∗τ − 1)I(Xτ = 1− ε) =
∫ ε

0

P (X∗τ ≥ 1 + x,Xτ = 1− ε)dx(4)

=
1
2

∫ ε

0

ε− x
ε+ x

dx = ε log 2− ε/2,

providing the a = 1 case. To prove (i) for other a an almost identical com-
putation suffices. However it is even easier to note that under P1 the process
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aXt/a2 , 0 ≤ t ≤ τ1, has the same distribution as Xt, 0 ≤ t ≤ τa, under Pa, so
that, under Pa, X∗τa − a has the same distribution as a(X∗τ1 − 1) under P1.

(ii) We have (y + 1)q − 1 = qy + rq(y), where rq(y) = o(y) as y → 0. So,
using the last sentence of the proof of (i) just above, we obtain

Ea(X∗qτa − a
q) = Ea[(X∗τa − a) + a]q − aq

= E1{a[(X∗τ1 − 1) + 1]}q − aq

= aq{qE1(X∗τ1 − 1) + E1 rq(X∗τ1 − 1)}.

Now |X∗τ1 − 1| ≤ ε, and this together with part (i) of this lemma proves (ii),
with fq(ε) = E1 rq(X∗τ1 − 1).

(iii) Using again the last line of the proof of (i), we note the joint dis-
tribution of (Xτa , X

∗
τa) under Pa is the same as the joint distribution of

(aXτ1 , aX
∗
τ1) under P1, so that

EaX∗(q−2)
τa X2

τa − a
q = aq(E1X

∗(q−2)
τ1 X2

τ1 − 1).

Now

E1Xτ1
∗(q−2)X2

τ1

= E1X
∗(q−2)
τ1 X2

τ1I(Xτ1 = 1 + ε) + E1X
∗(q−2)
τ1 X2

τ1I(Xτ1 = 1− ε)

=
1
2

(1 + ε)q + (1− ε)2 E1X
∗(q−2)
τ1 I(Xτ1 = 1− ε)

=
1
2

(1 + ε)q + (1− ε)2[E1X
∗(q−2)
τ1 − E1X

∗(q−2)
τ1 I(Xτ1 = 1 + ε)]

=
1
2

(1 + ε)q + (1− ε)2{[εq log 2 + fq(ε) + 1]− 1
2

(1 + ε)q−2},

where fq(ε) = o(ε), using part (ii) of this lemma. Now, again using

lim
y→0

((1 + y)α − 1)/y = α,

for any fixed α, it is easy to finish the proof of (iii). �

We put, for a > 0,

Sa = inf{t > 0 : |Bt| = a}

and

γa,ε = γa = inf{t > Sa : |Bt − a| = ε}.

It follows from the fact that B2
t − t is a martingale that

(5) E(γa − Sa|FSa) = E(B2
γa −B

2
Sa |FSa) = ε2.
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Lemma 2.2.

(i) E sup
0≤t≤a

|Yt(c, p)| <∞, a > 0,

(ii) E[Yγa(c, p)−YSa(c, p)|FSa ] = ε(cp+p−2)ap log 2+ap(gp(ε)+cfp(ε))+
ap−2Sa(ε(2 − p) log 2 − fp−2(ε)) − Θp(ε)ap, where f and g are as in
Lemma 2.1, and Θp(ε) = o(ε) as ε ↓ 0.

Proof. We prove (i) for a = 1 and 0 < p < 2 only. The proof of (i) is
immediate for p ≥ 2. For 0 < p < 2, (i) follows from

E sup
0≤t≤1

t

B
∗(2−p)
t

<∞.

Now

E sup
0≤t≤1

t

B
∗(2−p)
t

≤
∞∑
k=0

E sup
2−(k+1)≤t≤2−k

t

B
∗(2−p)
t

≤
∞∑
k=0

E
2−k

B
∗(2−p)
2−(k+1)

=
∞∑
k=0

E
2−k2(k+1)(2−p)/2

B
∗(2−p)
1

<∞.

To prove (ii), recall that |BSa | = B∗Sa = a, and write, using the notation of
Lemma 2.1,

E[Yγa(c, p)− YSa(c, p)|FSa ] = [EaX2
τaX

∗(p−2)
τa − ap]

+ [c(EaX∗pτa − a
p)]

+ [Saap−2 − Sa EaX∗(p−2)
τa − Ea τaX∗(p−2)

τa ]

=: [I] + [II] + [III].

Now
[I] + [II] = ε(cp+ (p− 2))ap log 2 + ap(gp(ε) + cfp(ε)),

where gp and fp are as in Lemma 2.1. To evaluate III, note that, by Lemma
2.1(ii),

−Saap−2 + Sa EaX∗(p−2)
τa = Saa

p−2((2− p)ε− f2−p(ε))− Ea τaX∗(p−2)
τa .

The Θp(ε) in the statement of this lemma is −Ea τaX
∗(p−2)
τa . Note that for

0 < p ≤ 2,

Ea τaX∗(p−2)
τa ≤ (a− aε)p−2 Ea τa = (a− aε)p−2a2ε2,

while for p ≥ 2,
0 ≤ Ea τaX∗(p−2) ≤ (a+ aε)p−2a2ε2. �
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We use the following well known characterizations of sub- and supermartin-
gales to prove Theorem 1.1.

Lemma 2.3. Suppose Z = Zt, t ≥ 0, has continuous paths, is adapted to
Ft, t ≥ 0, and that EZ∗t <∞, t ≥ 0.

(i) Then Z is a submartingale if and only if for every pair of stopping
times η1 ≤ η2 such that EZ∗η2

<∞, EZη1 ≤ EZη2 .
(ii) Also, Z is a submartingale if and only if for stopping times as in (i)

E(Zη2 |Fη1) ≥ Zη1 .

Proof of Theorem 1.1. We know that Y (c, p) is continuous (from Lemma
2.2(i)). Furthermore

(6) E sup
0≤t≤Sa

|Yt(c, p)| <∞,

for all c, p, a. For p ≥ 2 this is immediate. For 0 < p < 2 it follows from

E sup
0≤t≤Sa

t

B
∗(2−p)
t

<∞.

Now

E sup
0≤t≤Sa

t

B
∗(2−p)
t

≤ E sup
0≤t≤1

t

B
∗(2−p)
t

+ E sup
1≤t≤max(Sa,1)

t

B
∗(2−p)
t

.

The first summand is finite, by Lemma 2.2(i). And

E sup
1≤t≤max(Sa,1)

t

B
∗(2−p)
t

≤ E
1
B∗1

E(max(Sa, 1)|F1) ≤ E
1
B∗1

ES2a <∞.

Recall that we prove Theorem 1.1(i) only. The proof of the “only if” part of
Theorem 1.1(i) follows from Lemma 2.3(ii), with η1 = S1 and η2 = γ1(= γ1,ε)
for small enough ε. For we have, using Lemma 2.2(ii),

lim
ε↓0

ε−1[E(Yγ1(c, p)|FS1)− YS1(c, p)] = [cp+ (p− 2) + S1(2− p)] log 2,

and this limit is uniform on {S1 < y} for every y > 0. Now c < 2−p
p implies

cp + (p − 2) < 0, and so on {0 < S1 < [(p − 2) + cp]/(2 − p)}, this limit is
negative. Thus there is a fixed ε where

P [E(Yγ1(c, p)|FS1) < YS1(c, p)] > 0.

To prove the “if” part of Theorem 1.1(i), first note that it suffices to prove
that Yt( 2−p

p , p), t ≥ 0, is a submartingale, since if c < 2−p
p ,

Yt(c, p) = Yt

(
2− p
p

, p

)
+
[

2− p
p
− c
]
B∗t ,

and B∗t is nondecreasing and thus a submartingale. For the remainder of this
paper we put Wt = Yt( 2−p

p , p), where 0 < p ≤ 2.
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To show that W is a submartingale, it suffices to show that if θ1 ≤ θ2

are stopping times satisfying θ2 ≤ Sa for some a, then EWθ1 ≤ EWθ2 . This
follows from Lemma 2.3(i), and the fact that lima→∞ Sa = ∞, so that if θi
satisfies EW ∗θi <∞, i = 1, 2, then

lim
a→∞

EWmin(θi,Sa) = EWθi , i = 1, 2.

Without loss of generality, we may take a = 1, and will prove Theorem 1.1(i)
by showing that, for any stopping times α ≤ β ≤ S1,

(7) EWα ≤ EWβ .

To prove (7), let 0 < δ < 1 and let ε ∈ (0, 1) be so small that

(8) ε(2− p) log 2 + fp−2(ε) ≥ 0,

where fp−2 is the function in the statement of Lemma 2.1. Put

γ0(δ) = γ0 = inf{t : B∗t = δ},
η0(δ, ε) = η0 = inf{t ≥ γ0 : |Bt − δ| = εδ},

γ1 = inf{t ≥ η0 : Bt = B∗t } (note γ1 = η0 if Bη0 > Bγ0),

η1 = inf{t ≥ γ1 : |Bt −B∗γ1
| = εB∗γ1

},
...

γk = inf{t ≥ ηk−1 : Bt = B∗t },
ηk = inf{t ≥ γk : |Bt −B∗γk | = εB∗γk}.

Let M = min{k : B∗ηk ≥ 1}. Note B∗ηM ≤ 1 + ε < 2. We have

(9)
1
2
εB∗γk ≤ E(B∗ηk −B

∗
γk
|Fγk) ≤ εB∗γk ,

and

(10) E(ηk − γk|Fγk) = ε2(B∗γk)2,

since the conditional distribution of ηk − γk given Fγk is the distribution of
τB∗γk ,εB

∗
γk

, noting that B∗ηk −B
∗
γk

= εB∗γk on {|Bηk | > |Bγk |}. Thus

E
M∑
k=0

E(ηk − γk) ≤ 2εE
M∑
k=0

(B∗ηk −B
∗
γk

) = 2εE(B∗M −B∗γ0
) ≤ 4ε.
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Now by Lemma 2.2(ii) and (8), if a− = min(a, 0),

E
M∑
k=0

E(Wηk −Wγk |Fγk)−(11)

= E
∞∑
k=0

E(Wηk −Wγk |Fγk)−I(k ≤M)

≥ E
∞∑
k=0

[
B∗γk

p

(
gp(ε) +

(
2− p
p

)
fp(ε)−Θp(ε)

)−]
I(k ≤M)

≥
∞∑
k=0

Γp(ε)P (k ≤M),

where Γp(ε) → 0 as ε ↓ 0, since B∗γk ≤ 1 if k ≤ M . Using (9) and the facts
that

∞∑
k=0

(B∗ηk −B
∗
γk

)I(k ≤M) ≤ 2

and B∗γk ≥ δ for k ≥ 0, we have

2 ≥ E
∞∑
k=0

E(B∗ηk −B
∗
γk
|Fγk)I(k ≤M)

≥ E
∞∑
k=0

1
2
εB∗γkI(k ≤M)

≥ 1
2
εδ
∞∑
k=0

P (k ≤M).

Together with (11) this implies

(12) lim inf
ε↓0

E
M∑
k=0

E(Wηk −Wγk |Fγk)− ≥ 0.

Now define α(δ, ε) by

α(δ, ε) =


Sδ(= γ0) on {α ≤ Sδ},
ηk on {γk < α ≤ ηk}, k ≥ 0,
α on {ηk < α ≤ γk}, k ≥ 0.

Similarly define β(δ, ε). Then

α(δ, ε) ≤ β(δ, ε) ≤ S2.
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We have α(δ, ε) ≥ max(α, δ), and

(13) E(α(δ, ε)−max(α, δ)) ≤
M∑
k=0

E(γk − ηk)I(k ≤M)→ 0 as ε→ 0.

Also E(β(δ, ε) −max(β, δ)) → 0 as ε → 0. Since B2
t − t is a martingale, and

since B∗t does not change on [ηk, γk], we have that if T1 ≤ T2 are stopping
times,

(14) E(Wmin(T2,ηk)|FT1) = WT1 on {γk ≤ T1 ≤ ηk},
using the remarks at the end of Section 1.

On {α(δ, ε) = ηk}, recalling that β(δ, ε) cannot be in (γj , ηj) for any j,

Wβ(δ,ε) −Wα(δ,ε) =
M∑

j=k+1

(Wηj −Wγj )I(β(δ, ε) > γj)

+
M∑
j=k

(Wmin(γj+1,β(δ,ε)) −Wηj )I(β(δ, ε) > ηj).

Thus, if {α(δ, ε) = ηk} = Fk,

E(Wβ(δ,ε) −Wα(δ,ε))I(Fk)

=
M∑

j=k+1

E E(Wηj −Wγj |Fγj )I(β(δ, ε) > γj)I(Fk)

+
M∑
j=k

E E(Wmin(γj+1,β(δ,ε)) −Wηj |Fηj )I(β(δ, ε) > ηj)I(Fk).

All the conditional expectations in the second sum equal zero, while the first
sum exceeds

∑M
k=0 E(Wηk −Wγk |Fγk)−. Thus using (12) we have

(15) lim inf
ε↓0

E(Wβ(δ,ε) −Wα(δ,ε))I(Fk) ≥ 0.

Similarly if

Gk = {ηk < α(δ, ε) ≤ γk}, 1 ≤ k ≤M − 1,

G0 = {α(δ, ε) = γ0},
then

(16) lim inf
ε↓0

E(Wβ(δ,ε) −Wα(δ,ε))I(Gk) ≥ 0.

The path continuity of W and (6) and (11) give

EWβ(δ,ε) → EWmin(β,δ)

and
EWα(δ,ε) → EWmin(α,δ)
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as ε→ 0, so adding all the terms of (15) and (16) gives

EWmin(β,γ0(δ)) ≥ EWmin(α,γ0(δ)), 0 < δ < 1.

Now we let δ → 0 and again (6), (11), and path continuity give (7).
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[1] R. Bañuelos and C. N. Moore, Probabilistic behavior of harmonic functions, Progress
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