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ON INNER FUNCTIONS WITH DERIVATIVE IN
BERGMAN SPACES

BY

ALAN GLUCHOFF

Introduction

Let U be the unit disk in the complex plane C and f a function holomor-
phic in U (abbreviated f H(U)). For any a,- 1 < a < oo, and p, 0 < p <
oo, we define

Mp(r, f)" f2"lf(rei ) r dO,
"0

where0<r< 1,

Ilfllm sup M(r, f), and Ilfll, /I(1 r)aM( r, f)r dr.
0<r<l

If IIfllm < oo then f is said to belong to the Hardy Space H’, and if
IIfll,. < oo, then f is said to belong to the weighted Bergrnan Space A’’a.
H’ can be viewed as A’’-1. H is the collection of bounded analytic
functions, and A1, for a (l/p) 2 is often referred to as B’, 0 < p < 1.
An inner function is an element of H such that I(ei)l 1 almost
everywhere on 0U with respect to one-dimensional Lebesgue measure; [7] has
the basic facts about inner functions.

Several authors have considered the problem of necessary and sufficient
conditions that ’ Ap, for various p, a; in particular, this problem was
treated extensively in [1] and [3]. In [1], the following theorem was proved:

THEOREM. Let , be an inner function, 1 < p < 2, a > -1.
(a) If a > p- 1, then rb’ A’’.
(b) Ifp 2 < a < p 1, then ep’ A’, iff ’ Al’a-’+l.
(c) If a < p 2, p > 1, then p’ A" iff ’b is a finite Blaschke product.

In [13] Verbitsky announced a significant generalization of this result,
including, in particular, an extension to I < p < oo, without, however, supply-
ing proofs. In this paper we extend the above result to 1 p < oo, by a
general method which is also used to provide alternative proofs to some other
results in [1] and [10].
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The basic approach is to make use of the notion of the "approximating
Blaschke product" B for an inner function developed by Cohn in [5] and
[6]; we get an equivalent condition for ’ A," in terms of the zeroes (zk }
of B, from which the results follow in a straightforward way. Along the way
we make use of a recent result of Luecking [11] which characterizes the
positive measures/ on U for which there is a C > 0 such that (fu[f[ q dtJ,)1/q
< C[[fi[,, for all f A,", 0 < q < p; his result is that this occurs iff

k(z) I(D(z))/m,(D(z)) La for 1Is + q/p 1,

where D(z) is the pseudo-hyperbolic disk around z U having radius e, and

m, (1 Iz[) din(z),

for dm two dimensional Lebesgue measure on U. (Actually, we use another
equivalent condition stated later in his paper.) We also use a result which
provides an equivalent condition for

EIf(Zk)l(1- Izkl) < CIIfll,,
to hold for all f A" , where (zg } is a Blaschke sequence; this condition is
different from Luecking’s and although apparently "well known", may not
previously have appeared with proof. This result together with some duality
notions used in its statement are presented first in the following.

In what follows we will refer to weighted Bergman Spaces as "Bergman
Spaces," and variously write A for A, and II I1 for II I1, . We also write

f -" g as meaning the existence of constants A, B > 0 such that Ag(x) < f(x)
< Bg(x) for all x in an appropriate domain.

I would like to express may thanks to Pat Ahem and Bill Cohn for many
useful and encouraging conversations on this subject.

Let A be a Bergman space with norm II I1 and X another space of
functions analytic in U. We define X A* as follows: for every continuous
linear functional A on A there is a unique

g(z) bgz k X
k-O

oo ksuch that if f(z) Ek.Oakz A, then

kA(f) lim E ak kP,
pl- k--O

and convrsdy, if g X is fixed, thn

As(f) lira E a,k#k
p---+ 1- k-0

exists for all f A and As defines a continuous linear functional on A.
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Let {Zk)._l C: U be a sequence satisfying Ek=x(1- IZkl)< oo. Then
{ Zk }--x is called a Blaschke sequence, and the function

converges uniformly on compact subsets of U; B is called the Blaschke
product corresponding to { zk }. The Blaschke product satisfies B(z)l < 1 for
z U with IB(eO)l-- 1 almost everywhere with respect to Lebesgue measure
on B U, and it has zero set { z ). If in addition there is a 8 > 0 such that for all
k,

j--1

then the sequence (Zk) is said to be uniformly separated. In all of this we can
assume Izxl-< Iz21-< [z31 "’’.

Given an arbitrary sequence { z } U, 0 < p < oo, and a space A, one can
define the linear operator T on A by T(f)= (1- Iz12)x/f(z). Since
Carleson’s interpolation theorem [7, p. 149] states that, for 0 < p <
oo, T(H’)= Ip if and only if (zk } is uniformly separated, the Blasehke
product B formed with a uniformly separated sequence is called an interpolat-
ing Blaschke product, abbreviated i.b.p.
With these introductory notions defined, we begin the following lemma:

1. LEMMA. If B(z)= ,k=obkzk is an interpolating Blaschke product with
zero set (Zk)_l, where zk 0 for all k, and ill(z)= Fk_oakZk H(U),
then for 0 < p< 1,

oo f(O)E akkDk

B(O)kffil kffil IZklbk(Zk)

where

bk(Z)
.= z l ,jz"
jk

Proof. This is the standard application of the residue theorem to the
integral representation

E akkPk (#e’)B(ei’’) dO.
kRO
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We now list some elementary properties of Bergman spaces which we will
need.

2. LEMMA. For A A’’ a a Bergman space with a > -1, 0 < p < o, and
for A H’, 0 < p < oo, we have:

n a(a) Polynomials 7".k__ o kzk are dense in A.
(b) Iffp(z) f(pz) for 0 < p < 1, then Ilfpll Ilfll as p ---> 1-
(c) n c A and if g n, f A, then Ilgfll Ilglloollfll.

Proof These are standard facts.

3. LEMMA. Let A be a Bergman space, (a > 1, 0 < p < oo), possibly Hp,
and let { Zk }o_ x be any sequence in U, and let f A. Then there is a constant
C > 0 such that

Z If(2,,)1(1- Iz:l 2) _< CIIflla
k--1

iff there is a constant C’ such that

]f(O)l + E If(zk)l(1 -Izl) < C’llflla.
k--1

Proof. The second statement trivially implies the first with C C’, so
assume the first statement. Since Mq(r, f) is increasing in r for any q, If(0)l
< Mq(r, f) for all r,0 < r < 1. From this follows the inequality If(0)l <
(1 + a)x/vllfllv,, and adding this inequality to the first statement gives the
result for Av’ with C’ C + (1 + a)/v; for Hv a similar argument gives the
result with C’ C + 1.

4. LEMMA. Let { Zk ) be a uniformly separated sequence, and B be the
Blaschke product formed with { Zk ), excluding 0 if 0 ( zk }. Let A be a
Bergman space. Then there is a constant C > 0 such that E_lf(z)l(1 IZkl 2)
-< CIIflIA for all f A iff B A*; in other words, T1" A is bounded iff
BA*.

Proofi First assume Tx" A is bounded, and suppose initially that
zk 0 for all k. Then by Lemma 2 there is a constant C’ such that

If(o)l + E If(zk)l(1 -IZkl 2) < C’llflla
k-1

for all f A.

Then if B is as above and f is a polynomial, we have by Lemma 1, and
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uniform separability of { zk } that

oml fo:zrf(pei,)B( i#) dOe :6

Thus

A.(f)-- pm_ fo2rf(laeiO)B(e
defines a continuous linear functional on the polynomials, which then extends
to a continuous linear functional on A, since the polynomials are dense in A.
Thus by the uniqueness of representation of continuous linear funetionals,
B A*. If one of z, is 0, then the proof is the same, with C’ C.
For the other direction, assume { z,) uniformly separated, z, 4. 0 initially,

and A is a mixed norm space with B A*. Then since H A, we have that
there is a C > 0 such that for all f H,

f(o) E f(z)(1 [z[ :)
__: Izlb(z) Cll/ll,.

Now let f H be fixed; then {0} t3 (zk ) is a uniformly separated sequence.
Thus by Theorem A in the introduction there is a gf H with the property
that

f(z,) If(z)l and gz(o) f(o) If(O)lg(z) Izlb(z) -Izllb(z)l IS(O)l’

i.e., gf has unit modulus at each zk and has the effect of rotating each term of
the sum into its negative modulus. Furthermore, by a remark in [12, p. 18],
there is a constant ,({Zk}) such that IIgll t’((Zk)) for all f A. Now
substituting g/f in for f in the previous inequality and using 2(c) we get

I/(O)l + I/(z)l(1-
IB(O)I __: Izllb(z)l -< CIIg//lla

<- CIIgzllllflla
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Thus for some C we have

lf(0)l + If(z)l(1 -Izl2) cII/lla for all f H;
k--1

hence Tt is bounded on H. But then for any f A, if f,(z)=f(pz),
0 < p < 1, then

E [f(Pzk)[(1 -[z[) < C[[f[[a.
k---1

Hence by Fatou’s Lemma along with 2(b) we get

E [f(zk)[(1 -[z[2) < lim E [f(pz/<)[(1 -[z[
k--1 p--*l k-1

< C lira II/011 CIIfll.

Finally if zk 0 for some k, the above argument gives the boundedness of T
corresponding to (Zk)-(0); the boundedness of T corresponding to
follows from Lemma 3. This completes the proof.
We point out that it is clear that the proof works in a more general context

than that of Bergman spaces, since only certain properties of these spaces were
used. Specifically, the proof holds for any Banach space of analytic functions
satisfying the conditions of Lemma 2 (including a weakening of 2(c)), with
some alteration in the statement allowing for the requirement in lemma 1 that
Zk 0 for all k.

Before stating the main theorem we state some facts about the "approximat-
ing Blaschke product" for an arbitrary inner function; this notion together
with proofs for the facts listed below are found in [5], [6]. Let be an
arbitrary inner function, 0 </I < 1, and R(/I) be the "Carleson region"
constructed in [9, p. 342, Theorem 5.1]. Then I’ U f3 OR is a countable
union of arcs or radial segments:

with

r--U,

an-b.
1

for some constants 0 < 01, o2 < 1. Let w, be the midpoint of ,. Then (w, }
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is a uniformly separated sequence; call B, the i.b.p, formed from (w, }. We
then have:

5. LEIfA. Let and B, be as above. Then 1 -IO(z)l "- 1 -IB(z)l.

Proof See [6, p. 12-13].

We now come to the main theorem.

6. THEOREM. Let be an innerfunction, with B, an approximating Blaschke
product with zero set { zk }. If -1 < a < p 1 where p > 1, then

’ Ap’" ifand only if
k

Proof First assume p---1. We note that by [2, Theorem 6] and our
Lemma 5, ’ Ax’ a iff

fofo2(1-IB(rel_r
Now since B is an i.b.p, we have

d$ (1 r)adr < oo.

1 IB,(re (1 -Izl))l-" (1 r 2) E l1 kreiOl 2
k

(see [14, pp. 30-31]). Hence a calculation gives

u (1 Izl)
dadrfol(a-r)"fo k [X_kreiOl2

(1- IZkl2)foXfo2 dO

k I1 5kre

il)fox (1 ) d

- E -Iz l)
k

,o1 (1 r) dr

Z (1 IZkl)+
k

For p > 1 we use a different approach. By applications of [2, Theorem 6] and
our Lemma 5, @’ A’, iff B A’a. Assume B,(0) :# 0. Now it is clear
that B A’, iff D1B, A, , where

Oaf(z) E (k + 1)#akz forf(z) E akzk H(U),
kO k=O

--00 <fl<



INNER FUNCTIONS 525

Now by [8, Theorem 6], D1B+ At’’ iff Dr+IB+ At’,r, where , a/(1
p) > 1. However, the identification (A/’ )* ( f H(U): D+tf A, )
(see [4, p. 54]) allows us to summarize the above by saying

,#’ At’’ iff B, (At’"a’) * 1+1where 1.

Now by our Lemma 4,

B, (A/’)* iff EIf(z)l(l -Izl) < cIIflla/,, for all f,

where C > 0 is a fixed constant. If B,(0) 0, then this equivalence follows by
noting that

B At" iff (B+/z)’ At"

and repeating the above argument with B, replaced by B+/z.
Our final step is to translate the boundedness of T: A’, --, into an

equivalent summability condition on (zk }; this can be done by an appeal to
the main theorem [11], mentioned in the introduction. The above equivalence
can be written as

B+ (At’’, ’)* iff

where/ E.(1 -Izl), a positive measure on U. Thus we can proceed as
follows: select an e,0 < t < 1, and let D,(w) denote the pseudo-hyperbolic
disk of radius e around w. Select a sequence { w n } such that D,/2(wn) are
disjoint but D,(w) covers U. Then, following the remarks at the beginning of
Section 3 and also in Section 4 of [11] we get the right hand side of the above
equivalence occurs iff

n
(1 Izl)</-:-r)//]

But since { zk } are uniformly separated, hence separated, if e is sufficiently
small this is equivalent to

E(1- Izkl)</-->/</-): E(1- Izl) :+-r <
k k

and we are done.

Remark. In [5], Cohn proves that, for 1/2 < p < 1, ’ Ht" iff E(1-
Izkl)x- < oo, where again (zk } are the zeroes of B,. This can be considered as
a companion to the above result by taking a -1, 1/2 < p < 1.
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As a consequence of Theorem 6, we have the following collection of results
on the derivative of an inner function.

7. THEOREM. Let be an inner function, 1 p < o, a > -1.
(a) If a > p-1, then O’ AV’a.
(b) Ifp 2 < a < p 1, then k’ Av’ a iff k’ Ax’ a-v+ x.
(c) If a < p 2, p > 1, then ’ AP’ a iff is a finite Blaschke product.

Proof. (a) For this we repeat the proof in [1], simply noting that in fact
only p > 0 is required:

Jo I’(re’)l’(1 r) drd# ( r) - drdO <

ifa-p > -1.

(b) By Theorem 6, ’ A" a iff the approximating Blaschke product B
has zeroes ( Zk ) satisfying

E(1 Izl)
k

But this can be written as ’.k(1 --IZkl)(a-p+1)-1+2, thus ’ A’’a iff q’
A1, a-,+ 1, here a > p 2 assures a -p + 1 > -1.

(c) By Theorem 6, if q’ A’, * for a < p 2 then B, must be a finite
Blaschke product. But then

1 -[q(re’)l 2 1 -IB(re’O)l 2

I’(re’e)l <
1 r 2

--" 0(1)
1 r 2

Thus <h’ Hx so is continuous up to OU [7, Theorem 3.11]; this implies is
a finite Blaschke product.

Remark. If p 1, and a =p- 2 -1 in (c) above, we still may have
Ax’ -t iff q is a finite Blaschke product if we interpret At, -x H. Part

(c) appeared with different proof in [10], as Theorem 1.1.

Next we observe that Theorem 6 also provides an alternative proof for part
of [1, Theorem 6.2].

8. THIOREM. If k(z) F-,=oa,Z", 1/2 < s < 1, then the following are equiv-
alent:

(a) ’ HS;
(b) k’ B/2-s);
(c) E,la,12n < .
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Proof. The equivalence of (a) and (b) is as follows: by the remark after
Theorem 6, 0’ n iff B has zeroes (zk ) satisfying Y’.(1 IZkl)1-s < oo. But
by 6(a) this occurs iff ’ A1, -’ B1/(2-). For the equivalence of (b) and
(c), 0’ B1/(2-’) iff 0’ A2’I-s by 7(b). But a straight forward calculation
shows that the fight hand side occurs iff Y’.,.ola,12nS <
We conclude by providing a proof of a theorem of Ahem stated in [10, p. 7].

9. THEOREM. If tk is an inner function with tk’ Ap’ -3/2 for some p > 1/2
then tk is a Blaschke product.

Proof. As before, let B, be the approximating Blaschke product for ;
then B A’’-/. Now if (z} is the zero set for B,, since { z) are
uniformly separated, there is #, 0 < # < 1, such that

are disjoint [15, p. 6]. Then since In$(Zk)l "- (1 -Izkl2) -1, we have

oo > (re’)l’(1 r) e-3/2 drdO

> E fo,]B(z)lr(1 -]zl)-/2 dm(z)
k

But then Xk(1 --IZkl)x/2 < oo implies B A1’-1/2 B 2/3. Thus ,’ B2/3

as before, but by [3, Theorem 3] this implies is a Blaschke product.
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