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0. Introduction

Let G be a locally compact abelian group and 1 < p < oo, p, 2. Then,
except in trivial cases, translation operators in L’(G) are not spectral oper-
ators in the sense of N. Dunford [3]; see [2; Chapter 20] and [6], for example.
However, it is natural to expect translations to be spectral in some sense
because they are isometrics of L’(G) onto itself and, hence, analogues of
unitary operators in Hilbert space. For 1 < p < oo, this point was taken up in
[1; 4] and [6], where it is shown that translations can indeed be expressed in
the form

(1)

where {Q(X); X R} is an associated spectral family of commuting projec-
tions satisfying certain properties, [1; 4], and the "integral" (1), which can be
interpreted as being over the unit circle T of the complex plane C, exists in a
certain well defined sense. On the other hand it should be stressed that in
general the spectral family does not generate a o-additive, projection-valued
spectral measure.

However, as shown in the recent note [5], once it is realized that translation
operators fail to be spectral for two very different reasons, then in many cases
an alternative interpretation of (1) is possible. It may happen that the operator
fails to be spectral simply because its domain space is "too small" to
accommodate the projections needed to form its resolution of the identity.
Accordingly, if interpreted as acting in a suitable space containing the domain
space, it often happens that the operator is spectral in Dunford’s sense. This
has the advantage that the operator then has associated with it a rich
functional calculus. For example, this is always the case if G is any locally
compact abelian group and 1 < p < 2, or if G is compact and 1 < p < oo or
if 2 < p < oo and the dement g G defining the translation operator gener-
ates a compact metrizable subgroup of G; see [5]. In contrast, it is also the
case, for fundamentally different reasons, that there exist non-trivial transla-
tions in L’(G), 2 < p < o0, for certain groups G, which are genuinely
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non-spectral operators; no change of domain space can remedy the situation,
[5; Theorem 4.2].

So, for the case of 1 < p < oo, the spectral properties of L’-translations are
well understood [2; Chapter 20], [5], [6] and [7]. However, this is not so for
translation operators in some other natural function spaces defined on locally
compact abelian groups, such as Lt(G), L(G) and Co(G), for example.
Indeed, not only are non-trivial translations in Lt(G) and L(G) non-spectral
operators [6; Theorem 2] but, in contrast to the situation when I < p < , an
"integral" representation of the form (1) may not even be available. This is
already the case for the circle group T [6; Remark 5] and the additive group of
integers Z [2; p. 394, Note 20.27]. Accordingly, the question of spectrality for
translation operators in these spaces, in the wider sense of [5] suggested above
(and made precise in {}1), is an important one. Its solution is the purpose of
this note. Our intention is not to strive for the utmost generality but, to
illustrate the phenomena of significance: the distinction between the case
Lt(G) and that of L(G) and Co(G). Of course, the results include at least the
classical groups of analysis such as R, Z and T. It turns out that whereas
translations in LX(G) are always spectral operators in some suitable space
containing it (cf. Theorem 2.1), the situation for the spaces L(G) and Co(G)
is markedly different and depends on the group G and the subgroup of G
generated by the dement g G determining the translation operator; see {}2.
We are grateful to Professor G. Geymonat for raising questions that led to

the present work.

1. Preliminaries and notation

Let X be a locally convex Hausdorff space, always assumed to be quasicom-
plete, X’ its continuous dual and L(X) the space of all continuous linear
operators on X equipped with the topology of pointwise convergence in X.
The identity operator is denoted by I. The adjoint of an operator T in X is
denoted by T’.
A spectral measure in X is an L(X)-valued, o-additive and multiplicative

map P: ’--, L(X), whose domain t’ is a o-algebra of subsets of a set fi,
such that P(fi) I. Of course, the multiplicativity of P means that P(E 3
F) P(E)P(F), for every E t’ and F ’. It follows from the Orlicz-
Pettis lemma that an L(X)-valued function P on a o-algebra Jr’ is o-additive
if and only if the C-valued set function

is o-additive for each x X and x’ X’. It follows that the range (P(E);
E t’ ), of P, is always a bounded subset of L(X). If the range of P is an
equicontinuous subset of L(X), then we say that P is equicontinuous.
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Let P: t’ ---, L(X) be a spectral measure. An e/t-measurable function f on
f is said to be P-integrable if it is Px, x’)-integrable for every x X and
x’ X’, and for each E t’ there is an operator fefdP in L(X) such that

for every x X and x’ X’. This definition of integrability agrees with that
for more general vector measures [9].
An operator T L(X) is called a scalar-type spectral operator if there exists

a spectral measure P in X and a P-integrable function f such that T ffdP.
This is the classical definition due to N. Dunford [3]. Additional hypotheses
are needed to ensure that bounded measurable functions are P-integrable. For
example, if the locally convex space L(X) is known to be sequentially
complete or if P is an equicontinuous measure, then this is the case; for
example, see [9; Lemma II 3.1] and [11; Proposition 1.1], respectively. Another
result in this direction, needed in the sequel, is the following:

LEMMA 1.1. Let Y be a barrelled locally convex Hausdorff space and Q:
/# --, L(Y) be a spectral measure. Let X denote Y’ equipped with its weak-star
topology andfor each E /, let P(E) Q(E)’. Then X is quasicomplete and
the set function P: / L(X) so defined is a spectral measure for which
bounded measurable functions are P-integrable.

Proof. That X is quasicomplete is well known [12; Proposition IV 6.1].
Since X’ Y, it follows immediately from the identities

(Q(E)y, x) (y, P(E)x), E /,

valid for each y X’ and x X, and the Orlicz-Pettis lemma that P is
o-additive and hence, is a spectral measure. If f is a bounded ’-measurable
function, then the equicontinuity of Q [12; Theorem III 4.2] ensures that f is
Q-integrable. It follows easily from (2) that f is Px, x’)-integrable for each
x X and x’ X’ Y and the adjoint operators (fefdQ)’ L(X) satisfy

for each x X and x’ X’. Accordingly, f is P-integrable and fefdP
(fefdQ)’ for each E ’.

Remarks. (1) It is worth noting that the space L(X) in Lemma 1.1 need
not be sequentially complete nor need the measure P be equicontinuous. For
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example, this can be shown to be the case if Y c0(Z) and Q is the spectral
measure in Y of multiplication (co-ordinatewise) by characteristic functions of
subsets of Z.

(2) The proof of Lemma 1.1 actually shows more, namely that any
Q-integrable function is P-integrable. For non-normable spaces Y, this may
include functions which are unbounded on a set of non-zero measure.

(3) If Y is a Banach space, then operators in L(X) of the form ffdP,
where f is bounded and measurable, are called prespectral operators of class Y
[2; Chapter 5].

LEMMA 1.2. Let X be a quasicomplete space and P: L(X) be a
spectral measure for which all bounded [-measurable functions are P-integrable.
Let Z be a closed subspace ofXwhich is invariantfor each operator P(E), E
Then each bounded (-measurable function f is integrable with respect to the
measure Pz: L(Z), where Pz(E) is the restriction ofP(E) to Z, for each
E /[, and

Proof. Let E e ’. Then there exists a uniformly bounded sequence,
{ s}x, of t’-simple functions converging pointwise to fxe on ft. If x X,
then it follows from the Dominated Convergence Theorem applied to the
X-valued vector measure P(.)x [9; Theorem II 4.2] that

Accordingly, { fus, dP }-x converges to fefdP in the space L(X). Since Z is
invariant for each operator fus, dP, n 1,2,..., it is also invariant for
fefdP.

Let z e Z and z’ Z’. Then there exists a functional x’ X’ whose
restriction to Z coincides with z’. It follows that the complex measures
Pzz, z’) and (Pz, x’) agree on t’ and hence, that f is Pzz, z’)-integrable.

Furthermore, if E ’, then it follows (notation as above) that

Z n---oo Z
ZZ
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Remark. Although it will not be needed, a slight modification of the above
argument shows that the conclusion of Lemma 1.2 is actually valid for any
P-integrable function f.

LMMA 1.3. Let X be a quasicomplete space, denote the o-algebra ofBorel
subsets of the unit circle T and P: L(X) be a spectral measure for which
bounded -measurable functions are P-integrable. If T fx, dP(), then

(i) the operator T-x exists in L(X) and equals fT d/(,), and
(ii) a closed subspace Z of X is invariant for each operator P(E), E , if

and only if, Z is invariant for T and T-.

Proof. (i__) That the operator S fxh dP(,) exists is clear since the func-
tion h ,, , T, is bounded and measurable. If f and g are -simple
functions, then it is clear from the multiplicativity of P that fxfgdP---
(fxfdP)(fxg dP). Hence, if (s }__ is a uniformly bounded sequence of
-simple functions converging pointwise to the identity function on T, g is a
-simple function (in which case gs hg(h) on T) and x X, then it
follows from the Dominated Convergence Theorem applied to the vector
measure P(.)x in X, that

fTXg(X) dP(X)x n--,oolim f(,)g(,) dP(,)x

Since x X is arbitrary, it follows that

(3)

whenever g is a -simple function. In particular, (3) is true if g is replaced by
g,, for each n 1,2, Using this fact and applying (3) to an arbitrary
dement x of X it follows again from the Dominated Convergence Theorem
applied to P(.)x, observing s() pointwise on T that

and hence, S T-x.
(ii) If Z is invariant for each operator P(E), E , then in the notation

of (i), Z is invariant for the operator fxs, dP and fTg dP, n 1, 2, But,
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it was shown in (i) that ( fTSn dP }ffil and ( fTgn dP }ffil converge, in the
topology of L(X), to T and T-x, respectively. Hence, Z is invafiant for T and

Conversely, suppose that Z is invariant for T and T-x. Then Z is also
invariant for each operator T, n Z. If Z +/- denotes the annihilator of Z,
then it follows for each x Z and x’ Z +/- that

o nZ.

That is, for each x Z and x’ Z" the complex measure (Px, x’) has zero
Fourier-Stieltjes transform. Hence, if E and x Z are fixed, then
(P(E)x, x’)= 0 for each x’ Z -t This shows that P(E)x Z" "= Z
whenever x Z. Accordingly, Z is invariant for each operator P(E), E .

Remark. For equicontinuous measures P the proof of Lemma 1.3 can be
substantially simplified using the well known functional calculus for P and
continuity of the integration mapping; see [11; Proposition 1.1], for example.
The class of operators relevant to this note are those whose spectrum, in the

sense of [12; p. 202], is a part of the unit circle T. Of particular relevance will
be the pseudo-unitary operators, that is, those scalar-type spectral operators T
in L(X) such that there exists a spectral measure P: --, L(X) for which
bounded measurable functions are P-integrable and

The spectrum of a pseudo-unitary operator is necessarily a subset of T. Such
operators are a natural generalization of unitary operators in Hilbert space.

Let T L(X). A locally convex Hausdorff space Y is said to be admissible
for T [11; p. 275] if there exist a continuous linear injection t: X --, Y such
that Y is the completion or quasicompletion of t(X), and an operator Ty in
L(Y), necessarily unique, such that

Tr(tx) tTx, x X.

In this case the dual space Y’ can be identified with the subspace ( y’ o t; y’
Y’) of X’ which separates points of X. Sets bounded in X remain bounded in
Y but, more importantly, sets which are unbounded in X may well be
bounded in Y.
An operator T in L(X) is said to be extended pseudo-unitary if there exists

an admissible space Y for T such that Tr is pseudo-unitary in Y. We remark
that this is slightly more general than the definition of extended pseudo-unitary
operator adopted in [5], where it was assumed that the spectral measure
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P: .---, L(Y) satisfying Tr= fT)dP()) is equicontinuous. However, an
examination of the proofs in [5] shows that the equicontinuity of P was only
used to ensure that bounded measurable functions are P-integrable and that

sup{l(P( E) y, Y’)I; E , y A) < oo

whenever y’ Y’ and A is a bounded subset of Y. However, since the range
of P is a bounded subset of L(Y) and Y is quasicomplete, the latter
requirement is always satisfied; see Proposition III 3.3 and Corollary III 3.4 of
[12], for example. Accordingly, if we relax the requirement of equicontinuity of
P and substitute for it the hypothesis that bounded measurable functions are
P-integrable, then the statements of results in [5] and their proofs are un-
affected. This slight extension of the definition in [5] is not an exercise in
generality but, as seen in Theorems 2.1 and 2.4, is one that suggests itself quite
naturally in practice. It is for this reason that Lemmas 1.1-1.3 above are
stated in a form which is perhaps more general than usual.

Let G be a locally compact abelian group. The space of continuous
functions on G vanishing at infinity and the space of bounded continuous
functions on G, both equipped with the uniform norm, are denoted by Co(G)
and Cb(G), respectively. The dual group of G is denoted by I" and the value of
3’ I’ at g G is written as (g, "t’). The Haar measures on G and F are
assumed to be normalized so that the Fourier transform f ,-, f is an isometry
of L2(G) onto L2(F). If 1 < p < 2, then the Fourier transform f--, f is an
injective, norm-decreasing mapping of L’(G) onto a dense subspace of Lq(l’),
where q > 0 is the number such that p-t + q- 1, which agrees with the
ordinary Fourier transform

f(r) r)/(g) ag, r,

on Lt(G) LP(G). For the case of p---1, the Fourier transform is an
injective, norm-decreasing mapping of Lt(G) onto a dense subspace of C0(I" ).

Let G be a locally compact abelian group and g G. Then sT denotes the
operator of translation by g in any of the spaces L’(G), 1 < p < oo, C0(G) or
Cb(G). That is,

sT: f,--* f(.+ g)

where f(. + g) denotes the dement h f(h + g) for a.e. h G if f L’(G)
for 1 < p < oo, locally a.e. h G if f L(G), and every h G if f is an
dement of Co(G) or Ct,(G). The notation for the operator sT does not indicate
in which of the spaces L’(G), 1 < p < oo, Co(G) or Cb(G) it is to be
considered; this will always be clear from the context or will be explicitly



460 G.I. GAUDRY AND W. RICKER

specified. In each of these spaces sT is an isometry of the space onto itself and
so its spectrum is a part of T.

In the following result U denotes the unit fight shift in P’(Z), 1 < p < 00.

LEMMA 1.4. Let G be a locally compact abelian group and g G have
infinite order. Let Sa(G) denote any one of the spaces Co(G), Cb(G) or L(G).
If there exist p (2, oo) and a continuous injection j: IP(Z) S’(G) such that

(4) sT( j} ) jUt

for each 1p(z), and

(5) sT-l(j}) =jU-I}

for each P’(Z), then sT is not an extended pseudo-unitary operator.

Proof Suppose there is an admissible space Y for sT and t: Sa(G) Y is
the continuous imbedding of 6a(G) onto a dense subspace of Y such that

(6) :,,(,/) ,(:/), /

and sTy, is pseudo-unitary. Then there is a spectral measure P: L(Y) for
which bounded measurable functions are P-integrable and sty, frh dP(A).

Let Z denote the closure of t(j(P’(Z)) in Y. Then Z is quasicomplete or
complete, depending on whether Y is quasicomplete or complete, respectively,
and the composition ;r j is acontinuous imbedding of P’(Z) onto a dense
subspace of Z. It follows from (4) and (6) that

(7) sT.(,}) ,(sTj,) ,(jU,.) ,U,, U’(Z).

Since U2 IP(Z) for each IP(Z), this shows that ,(P’(Z)) and hence, also
Z, is invariant for sTy,. Lemma 1.3(i) implies that sTy, is invertible in L(Y)
and so it follows that Y is also an admissible space for sT-: with respect to
and (sT- t) s T- , that is,

(8)

see [5; Lemma 1.1]. Using the identifies (5) and (8), similar argument as for
sTy, shows that Z is also invariant for sT. So, Lemma 1.3 (ii) implies that Z
is invariant for each operator P(E), E , and if Pz(E) denotes the
restriction of P(E) to Z, for each E , and sTz denotes the restriction of
sTy, to Z, then it follows from Lemma 1.2 that sTz fTh dPz. Accordingly,

sTz is a pseudo-unitary operator. Furthermore, it is dear from (7) and the fact
that } Z whenever } /(Z), that Z is an admissible space for U with
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respect to and

U’(Z).

Hence, U is an extended pseudo-unitary operator which is a contradiction; see
the remark after Theorem 4.2 in [5]. Accordingly, sT is not an extended
pseudo-unitary operator.

Remark. It is not assumed in the statement of Lemma 1.4 that j(I(Z)) is
dense in 6a(G).

2. Spectrality of translation operators

Let G be a locally compact abelian group. If g G has finite order, then
the operator sT, in any of the spaces LP(G), 1 < p < o, Co(G) or Cb(G), is
always a pseudo-unitary operator in that given space; see [13; Lemma 1], for
example. However, if g has infinite order, which we will assume from now on,
then it is known that sT is not a pseudo-unitary operator in L’(G), 1 < p <
oo, p : 2 [6; Theorem 2]. For G the additive group of integers Z this result
goes back to U. Fixman [4; Theorem 5.7]. As remarked in the introduction, the
problem of whether or not the operator sT, considered in any of the spaces
L’(G), 1 < p < oo, p 2, is extended pseudo-unitary was considered in [5].
In this section we consider the same question for sT in the spaces Lt(G),
L’(G), Co(G) and Ct,(G).

THeOReM 2.1. Let G be a locally compact abelian group and g G have
infinite order. Then the translation operator sT: Lt(G)--, L(G) is extended
pseudo-unitary.

Proof Let j: LX(G) --, C0(I’) denote the Fourier transform map. Then j
is a continuous imbedding of Lt(G) onto a dense subspace of C0(I’). It follows
from properties of the Fourier transform that

(9) y(,r/)(r) (g, + r,

for each f Lt(G). If Y denotes/:(r) equipped with its weak-star topology,
then Y is a quasicomplete locally convex space [12; Proposition IV 6.1] and
the natural inclusion : C0(I’) --, Y is continuous, injective and its range is
dense in Y. Accordingly, the composition

ta* j" Lt(G) "--+ Y

is a continuous imbedding of Lt(G) onto a dense subspace of Y. Furthermore,
if sty L(Y) denotes the operator of multiplication by (g, .), then it follows



462 G.I. GAUDRY AND W. RICKER

from (9) that

sTr(,f ) --,(srf), f L(G).

This shows that Y is an admissible space for sT.
So, it remains only to show that sTr is pseudo-unitary. Let denote the

o-algebra of Borel subsets of F and define P: t’--. L(Y) by P(E)h xrh,
for each h Y and E vg. Since each operator P(E), E v/t’, is the adjoint
of the operator (E) in L(L(r)) iven by (E) Xs, for each e L(r),
it follows that is a spectral measure, necessarily equicontinuous, and hence
Lemma 1.1 implies that P: t’-o L(Y) is a spectral measure for which
bounded measurable functions are P-integrable. Furthermore, it is easily
established that

fr(g, v) dP(v).

Hence, if P: L(Y) denotes the spectral measure specified by

e({r r; (g, v) e}), e

then it follows that bounded -measurable functions on T are/3-integrable
and, in particular, that sty ]Th d/5(h); see [2; Proposition 5.8], for example.
Accordingly, sT is pseudo-unitary.

Remark. If F is o-compact, a mild restriction in practice, then it can be
shown that any of the Fr6chet spaces Y--L(F), 1 < p < o, of (equiv-
alence classes of) locally p-integrable functions is also an admissible space for

sT in which sT is extended pseudo-unitary. This has the advantage that the
space of operators L(Y) is then quasicomplete [12; Corollary III 4.4] and the
spectral measure P: L(Y) for which sTr fx, alP(h) is equicontinuous
[12; Theorem III 4.2].
The following result, dealing with the extended pseudo-unitariness of trans-

lations in compact abelian groups G, should be compared with Theorem 4.3 of
[5]. Of course, in this case Co(G)= Cb(G) is simply the space, C(G), of all
continuous functions on G equipped with the uniform norm. Since the proof is
obvious it will be omitted.

THEOmM 2.2. Let G be a compact abelian group and g G have infinite
order. If 5’(G) denotes either of the spaces L(G) or C(G), then the Hilbert
space L2(G) is an admissible space for the translation operator sT: 6a(G) --,

5a(G) in which gT is extended pseudo-unitary.

Remark. It is worth noting that under the hypotheses of Theorem 2.2 there
are many admissible spaces in which sT is extended pseudo-unitary. For
example, let 1 < p < oo. Then the natural inclusion, t,, of Sa(G) into L’(G)
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is a continuous imbedding of 5a(G) onto a dense subspace of LP(G) and the
extension, with respect to , of ,T L(S’(G)) to the admissible space L’(G)
is again the operator of translation by g. Accordingly, if 1 < p < 2, then it
follows from [5; Theorem 2.1] that ,T is an extended pseudo-unitary operator
in the admissible space Lq(F). Or, in the case of p 1, it follows (cf. proof of
Theorem 2.1 above) that L(F) equipped with its weak-star topology is also
an admissible space in which sT is extended pseudo-unitary. If, in addition, F
is o-compact, then it follows that ,T is an extended pseudo-unitary operator in
any of the admissible spaces Loc(F), 1 < r < oo (cf. remark after Theorem
2.1).

If the group G is not compact, then Theorems 4.2 and 4.6 in [5] suggest that
whether or not gT, considered as an operator in one of the spaces
Co(G) or C,(G), is extended pseudo-unitary ought to depend on the nature of
the closed subgroup r, of G, generated by the element g of G. This turns
out indeed to be the case: the operator gT is extended pseudo-unitary
whenever is compact and metrizable (cf. Theorem 2.4). However, ifz is
isomorphic to Z, then, as the following result shows, exactly the opposite is the
case.

THEOREM 2.3. Let G be a locally compact abelian group and g be an element
of G such that is isomorphic to Z. If (G) denotes any one of the spaces
Co(G), Cb(G) or L(G), then sT, considered as an element of L(Sa(G)), is not
an extended pseudo-unitary operator.

Proof Since r is isomorphic to Z there exists a continuous function on
G, say A, with compact support and values in [0,1] such that A(e) 1, where
e is the identity element of G, and the supports of {sTA; k Z} are disjoint.
Fix any p (2, oo) and define a linear mapping j: /’(Z) Sa(G) by

j" , ’ ;(n)sTnA, !i, l"(Z).

It follows from the disjointness of the supports of {sTA; k Z} that j is
injective and continuous. Actually, I[/lls, < I111 for each I’(Z). Fur-
thermore, the identities (4) and (5) follow immediately from the definition of j
and hence, the desired conclusion follows from Lemma 1.4.

Remark. It follows from Theorem 2.3, in particular, that the classical
bilateral unit shift operators in c0(Z) and C0(R) are not scalar-type spectral
operators.

THV.OIM 2.4. Let G be an abelian, o-compact group and g G be such that
is compact and metrizable. If 6e(G) denotes any one of the spaces L(G),

Co(G) or Cb(G), then the translation operator sT: (G) (G) is extended
pseudo-unitary.
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The proof will be via a series of lemmas.
Let GO be any dosed subgroup of a locally compact abelian group G. A

subset B of G is said to be a Borel section for the quotient group G/Go if B is
a Borel measurable subset of G and each coset of Go in G contains precisely
one point of B. The associated transversal mapping is the 1-1 mapping of
G/Go onto B such that

"r(b/Go)=b, beB.

It is known that if GO is compact and metrizable, then there is a Borel section
B for G/Go whose associated transversal mapping is Borel measurable from
GIGo onto B [5; Lemma 4.4], and hence induces an identification of the
Haar measure on G/Go with a measure on B denoted by db. It follows from
the Borel measurability of that the mapping p of B Go onto G defined by
the formula

h) b + h, (b, h) e

is a Borel isomorphism.
Let denote the Banach space LX(db; L2(G0)) of Bochner integrable

functions from B into L2(Go), realized as (equivalence classes of) Borel
measurable functions F on B GO such that

IIIflllx IF(b, h)l 2 dh db IF(b, ")112 db <

where II II 2 denotes the norm in L2(Go). In the case when Go is compact and
metrizable, the Hilbert space L2(Go) is separable and hence, the weak mea-
surability of an dement of F is equivalent to its strong measurability. If G is
o-compact, then db is a o-finite measure. Accordingly, since L2(Go) has the
Radon-Nikodtm property, it follows that the dual space X--f’ can be
identified with L(db; L2(Go)), that is, the space of (equivalence classes of)
Borel measurable functions H on B GO such that

IIIHIIIoo ess sup H(b, h)l 2 dh ess supllH(b, ")112 < oo.
b.B b.B

The duality of and X is given by

F f’, HX.

For the remainder of this section we assume that G is o-compact, GO
is compact and metrizable, B is a Borel section for G/Go and and X are
the associated Banach spaces as described above.
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Let _" be the operator of translation by -g acting in L2(G0) and write
_sT for the operator in defined by

(10)
-s TF: (b, h) F(b, h g) [_s?F(b, .)](h), (b, h) B X Go,

for each F g/’. Then _gTr is an isometry of onto .
LEMA 2.5. The operator _sT is pseudo-unitary in W’.

Proof Since _s/" is unitary in L2(G0) there is a spectral measure

such that
formula

_s? fTh dQ(h). Define a set function Qr: L(#’) by the

Q(E)F: (b, h) [Q(E)F(b, ")](h), (b, h) B Go, F /’,

for each E . That this component-wise definition of Qr(E) makes sense
can be verified as in the proof of Theorem 4.6 in [5]. Furthermore, since
[IQ(E)I[ < 1 for each E , it follows that also [[Q(E)[I < 1, E .
Since Qr(T)= I and Qr is multiplicative, to show that Qr is a spectral
measure it suffices to show that it is o-additive. This can be established using
the uniform boundedness of the family { Qr(E); E }, the Orliez-Pettis
lemma and the identities

(11) (Q(E)F, H) fs(Q(E)F(b, .), H(b, .)) db, E ,
valid for each F " and H X, where (., ")2 denotes the duality in
L2(Go). Finally, that _sTr is the operator fTh dQr() can be verified by an
argument similar to that in the proof of Theorem 4.6 in [5]. This completes the
proof.

Let st (_st")’ denote the dual operator to _s?. Then the dual operator
(_sTy)’ L(X) is given by

(12)
(_gT.)’H" (b, h) H(b, h + g) [stH(b, ")](h), (b,h) B Go,

for each H X. If X, denotes X equipped with its weak-star topology as the
dual space to W’, then X, is quasi-complete and (_sTy)’ is an element of
L( X,).
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LEMMA 2.6.
pseudo-unitary.

Considered as an element of L(X,) the operator (_sTr)’ is

Proof. If P(E) L(L2(Go)) denotes the dual operator Q(E)’ and P,(E)
L(X,) denotes Qr(E)’, for each E , then it follows that

(13) P,(E)H" (b, h) ,--, [P(E)H(b, .)](h), (b, h) B Go,

for each h X,. Then the identities (10)-(13) and Lemma 1.1 (cf. also its
proof) imply that P,: L(X,) is a spectral measure for which bounded
measurable functions are integrable and (_sT,.)’ fxh dP,(h).

Consider now the case of Sa(G)--L*(G). Define a linear mapping t"

LC*(G) X, by

(14) tf:(b,h)f(b+h), (b,h) B Go,

for each f L(G). It is not immediately obvious that is well-defined or
assumes its values in X,. We indicate the details.

First, the o-compactness of G together with Weirs formula [10; Proposition
3.4.9] imply that if N is a null set in G, then

(15) fa?v ( t + h ) dh O,

for a.e. i G/Go (the dot indicates coset). Recalling that db is induced by
Haar measure from G/Go it follows that if f is an (individual) essentially
bounded function on G, then the function b f(b + ) makes sense and its
equivalence class in X L(db; L2(G0)) remains the same if f is altered on a
null set. This shows that (14) is at least well defined. If L2(G0), then the
function

(b,h),--,f(b+h)(h),

which is measurable on B Go, satisfies

fcfolf( b + h ) ( h ) dh db < o

whenever K _c B is a set of finite db-measure and so a Fubini Theorem type
argument (el. [8; p. 154], for example) shows that

b ---) fc/(b + h)l(h) dh <f(b + .), )2 <[tf](6, .), >, bB,

is measurable. Since this is so for every L2(G0) it follows that b
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[tf](b, .) is weakly measurable, hence also strongly measurable as L2(G0) is
separable. Finally, since dh is a probability measure in GO it follows that

II[tf](b, ")112-’- If(b + h)12dh IIf(b + ")lloo

where II IIo is the norm in L(Go). This observation, together with Weil’s
formula and the fact that db is induced by Haar measure on G/Go imply that

(16) IIItfllloo ess supll[tf](b, ")112 ess suplf(t)l <
bB tG

This shows that tf X,. It then follows from (15) that is injective.
Furthermore, (16) shows that t: Lo(G) X is continuous and hence, so is t:

L(G) X,. Summarizing, we have proved:

LEM 2.7. The linear mapping
continuous injection.

L(G) X, defined by (14) is a

We can now establish Theorem 2.4 (when S’(G)= L(G)). Indeed, let Y
denote the closure of t(L(G)) in X,. Then Y is quasi-complete and t(L(G))
is dense in Y. If f L(G), then (12) and (14) imply that

(17) (_:.:),./=. (:/).
from which it is dear that Y is invariant for (_sTr)’. Observing that the
inverse operator, in L(X), to (_sT,.)’ is given by

((_sT)’)-:H" (b, h) ,-) H(b, h g), (b, h) B Go,

for each H X, it can be similarly argued that Y is also invariant for
((_sTr)’)-. Accordingly, if P,: L(X,) is the measure (13), then it
follows from Lemmas 2.6 and 1.3 that Y is invariant for each operator P,(E),
E . Let sTy. denote the restriction of (_sTr)’ to Y and Py(E) denote the
restriction of P,(E) to Y, for each E . Then Lemma 1.2 implies that
sTy. fxh dP.(h), that is, sTy is pseudo-unitary. Since Y is an admissible
space for sT with respect to the continuous imbedding t: L(G) Y (of.
Lemma 2.7 and (17)) it follows that sT is an extended pseudo-unitary operator
in Y. This completes the proof of Theorem 2.4 for the case when Sa(G)
L(G).

Suppose now that S#(G) is either Co(G) or C,(G). The natural inclusion, ,
of Sa(G) into L(G) is an injective isometry. If j . where is given by
(14), and Z denotes the closure of j(,9"(G)) in X,, then Z is quasicomplete
and j is a continuous injection with range dense in Z. Since x(S/’(G)) is
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invariant for translation by g and -g in L(G) it follows that j(A"(G)),
hence also Z, is invariant for (_gTr)’ L(X,) and its inverse. A similar
argument as in the case of L(G) shows that Z is an admissible space for
gT L(A"(G)) with respect to j; the operator Tz is just the restriction of
(_Tr)’ to Z. Since Tz is pseudo-unitary in Z (by Lemma 1.2 its resolution
of the identity is P, restricted to Z) it follows that T is an extended
pseudo-unitary operator in Z.
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