ILLINOIS JOURNAL OF MATHEMATICS
Volume 41, Number 4, Winter 1997

BOUNDEDNESS OF COMMUTATORS
OF FRACTIONAL AND SINGULAR INTEGRALS
FOR THE EXTREME VALUES OF p

ELEONOR HARBOURE, CARLOS SEGOVIA AND JOSE L. TORREA

1. Introduction

It is well known that commutators of singular integrals with multiplication by a
measurable function b(x) are bounded operators on L?, 1 < p < 00, as long as b is
a BMO function [C-R-W].

Moreover if the commutator of all Riesz transforms are bounded for some p,
1 < p < o0, the function b must necessarily belong to BMO. Similar results are also
known for the fractional integral operators I, in connection with the boundedness
from L? into LY,1 < p <n/a,1/q =1/p —a/n [Ch].

Later on, Segovia and Torrea [S-T] have considered this problem in the more
general context of vector valued operators including in this approach, commutators
associated for example to maximal functions.

It this paper we find sufficient conditions on the function b in order to obtain H' —
L' and L"* — BMO boundedness of such commutators. In most of the cases the
given conditions will be also necessary. See [P] for a discussion in the case b is a BMO
function. We have chosen to work in the general context of vector valued operators of
singular integral type as to include a larger class of commutators. Following this line,
we first prove two general theorems (Theorems A and B in Section 2) expressing the
conditions on b in terms of the kernel of the given operator. Afterwards, in Section 3,
we apply our theorems to some particular cases like the Hilbert transform, fractional
integrals and maximal operators of smooth approximations to the identity.

As an example, commutators with the Hilbert transform are bounded from H'!
into L! only in the trivial case that b equals a constant; this is also the case in the
other extreme, L* into BMO. Similar results are proven for the fractional integral,
therefore since a constant function corresponds to the zero function in BMO we
have that for non-zero BMO functions the commutator with the Hilbert transform or
fractional integral is not bounded in the extreme cases; see Theorems (3.1) and (3.10).
The picture improves in the periodic case. In fact we prove that commutators with
the conjugate function are bounded from L™ into BMO if and only if b belongs to
a class a little bit more restricted than BMO, the space BMO,, for ¢(t) = | logt|~!.
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BOUNDEDNESS OF THE FRACTIONAL INTEGRAL 677

These classes, which generalize the BMO and Lipschitz spaces, were first introduced
by Spanne [S].

From the examples presented here we may conclude that even though all the op-
erators involved can be seen as vector valued singular integrals, those arising from
approximations to the identity behave better on p = oo than classical singular inte-
grals, while the situation is reversed on the extreme p = 1. Also, our two last results
show how maximal operators acting on £"-valued functions become “more singular”
in this sense, when we approach r = 1.

2. Main results

We are going to consider vector valued operators of Calderon-Zygmund type; i.e.,
if E and F are two Banach spaces and if we denote by L(E, F) the space of all linear
bounded operators from E into F the operator T must satisfy:

(@) T: LP(R", E) —» L1(R", F) boundedly for some pair p,q,1 < p < g < oc.
(b) For every E-valued bounded and compactly supported function f, Tf can be
represented by

Tf(x)= / K(x,y) f(y)dy

for x ¢ supp f and where the kernel K is a locally integrable function from
R"xR"\{(x, x)}, taking values on L(E, F).

We will say that the kernel X satisfies also the (DZ,) condition if for some constant
Cand o suchthat1/g = 1/p — a/n,

1K) = K Dle.n < Crm S
aslongas |x —z| > 2|y — z|. -
Similarly, we will say that K satisfies the (D% )’ condition if the kernel K (x, y) =
K (y, x) satisfies (D%).
For this class of operators we shall consider the commutator 7;, with a locally
integrable function b: R" — R, formally defined by

Ty f (x) = bx)(Tf)(x) — T (bf)(x) 2.1

where the product of b(x) by elements in E or F must be understood as the multipli-
cation of vectors by scalars.

Before stating our main results we remind the definitions and some properties of
the vectorial versions of H'! and BMO spaces.
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Let E be a Banach space and f a locally integrable function f: R" — FE (in the
Bochner sense). We define the sharp function of f by

£ = s oo / 1£O) = Folledy

where Q denotes an arbitrary cube with sides parallel to the axes and fg the average
of f over Q;i.e., fo =107} fQ f(x) dx.

The space BMO(R", E) is defined as the space of functions f such that || f ||pyo =
f #"oo < Q.

More generally we may introduce the space BMO,(R", E) for ¢ a positive non-
decreasing function defined on R, as the space of locally integrable functions f such
that

1
= S - d 0. 2.2
Il f iBmo, SlQIP 1012000 /Q IfF) = folledy < 2.2)

Similarly the space BMO,(T", E) can be defined (T" being the n-dimensional
thorus) as the corresponding subspace of L!(7", E) but clearly this time it suffices
to know the values of ¢ near zero.

Now we give the definition of the space H'(R", E). Let a be a function belonging
to L!(R", E). We will say that a is an E-atom if its support is contained in a cube Q
in such a way that |la(x) || < 1/|Q| and fQ a(x) dx = 0. The space H!(R", E) can
be defined then in the usual way in terms of these atoms. If the Banach space E is

U.M.D. the Riesz transforms R; can be defined for integrable function and moreover
[B] we have

H'R,E)={feL'R",E)/Rjf e L'R" E)1 < j <n}

Finally we will denote by L}/*(R", E) the subspace of L"/*(R", E) of compactly
supported functions.
Now we are in the position to state our main results.

THEOREM A. Let T be an operator as above with a kernel satisfying (D%)' and
let b be a BMO(R") function. Then the following statements are equivalent.
(2.3) The commutator T, is bounded from L"'* (R", E) into BMO(R", F).
(2.4) The function b satisfies the following condition:
For any cube Q and u € Q,

1
I—aflb(x)—bgldx) _/K(u»y)f(}’)dy = Cllfllnja
0

oy F

for every f € L'*(R", E).



BOUNDEDNESS OF THE FRACTIONAL INTEGRAL 679
THEOREM B. Let T be an operator as above with a kernel K satisfying (D)
and let b be a BMO(R") function. Then the following statements are equivalent.
(2.5) The commutator Ty, is bounded from H'(R", E) into L™ "~ (R", E).

(2.6) The function b satisfies the following condition:
For any E-atom a supported in a cube Q andu € Q,
n/(n—a)

/ K(x,u)fb(y)a(y)dy dx <C.
0

Q) F

Before beginning the proofs of Theorems A and B, in the next lemma we give an
estimate for the operator T which will be very useful.

(2.7) LEMMA. Let T be an operator as above with K satisfying (D%,)' and let f
be a function in L"*(R", E) with compact support. For a cube Q we decompose f
into f = fi+ fawith fi = fx29. Then if x,u € Q we have

ITf2(x) = THallF < Cllfllna- (2.8)

Proof. We first observe that for x, u € Q we have

ITfo(x) = THGIp < f 1K y) — K@ e 12Oz dy.

We decompose R” as the union of 2Q and the sets 2/Q \ 2/°1Q, j e N, j > 2
and, by shortness, we omit the subscripts on the norms.
By using (D%))" and Holder’s inequality, we obtain

o0

> f Ky = K@ LA dy
=2 Y2I0\27'Q

ITfa(x) = T ()l

IA

+ f2 IKG, ) = K@ )l 1RO dy

0 . 1
<c 2-1—.——f 1M dy
; 2701 Jug

IA

00
CY 27 1 flja = Clifllua m
j=1

Proof of Theorem A. Let f be a bounded function with compact support. We
observe that since b € BMO and f € LP(R", E) forany p > 1, then the commutator
T, (f) makes sense and moreover is a L?(R", F)-function and hence it is a locally
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integrable function. In order to estimate the BMO norm of T}, f we take a cube Q and
make a decomposition as in Lemma (2.7):

f=h+1 withf; = fx20.
Then for x € Q,

Tof(x)—Tpflg = T f(x) - @ Ty f (2) dz

= Tpfi(x) — I_QI T, f1(z) dz + Ty fo(x)

~ 101 bez(Z) dz

= Tp fi(x) — (bel)Q + (b(x) — bg)T fo(x)
—T((b - bg) f2)(x)
b bo)T d
|Q|f( (2) —=bo)Tf2(2) dz

1

—— | T((b-b dz.
01 /o (« 0)f2)(2) dz

Letu € Q. Then

T f(x) = (Tp g = Tpfi(x) — (Tp f1)o + (b(x) — bo)(T fo(x) — T fo(u))
+ (b(x) —bo)Tfo(u)

- z / @) — bo)TFa(2) — TH®)) dz

IQI /[T((b bg) 2)(2) — T((b — bo) ) (x)] dz.

Now, if we let

o1(x) = Ty fi(x),

o2(x,u) = (b(x) — bo)(T f2(x) — T f2(u)),

o3(x,u) = T((b—bg)fa)w) —T((b—bg)fr)x)
and

04(x, u) = (b(x) — bo)T fr(u),
we have
Ty f(x) = (Tpflo = o1(x) — (01)g + 02(x, u) + 04(x, u)
—(02(, u))g + (03(, u))g. (2.9)
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We claim that the following estimates hold:

1
= f lor G dx < C 1bllano 1 Thse - 2.10)
o
= f loaGe, )l dx < C Ibllgyo I fllje  foranyu € Q @.11)
and
= / los(x, )l dz < C Ibligaio I fl,ye  forany x € Q. 2.12)

To prove (2.10) we note that b € BMO and the assumptions on T allow us
to apply the results of [S-T] concluding that 7, is bounded from L?(R", E) into
LI(R", F), 1/q = 1/p — a/n. Therefore, using Holder’s inequality and taking into
account that p < n/a, we get

l/q
d T, 9d
|Q|fum(x)n x < (IQI/II LA x)
Clb I/p
< Shimue (fuf(xm”dx)
20

C|llgmo -
lQ'l/q IQ'I/p afn "f"n/a

ClIbllgpo 1 f Nl /e -

For (2.11) we use Lemma(2.7). In fact, since u € Q we have

A

I

A

ILQI Qf loaGe, )l dx < Té Qf 1b(x) = bl ITH®) — ThHWI dx

1
< Cllf f Ib(x) — bol dx
Q

IA

C 1bllamoll flln/e-

Finally, in proving (2.12), we again use the fact that the kernel of T satisfies (D)’
First for x, z € Q we have

lloa(x, )|l < f 1K (x,y) — K(z, Y|l |b(y) — bo| | fF Ml dy.
Q)
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Decomposing (2Q)¢ as the union of 2/ Q — 2/~ o, J = 2 and using the (D%)’
condition in each term and Holder’s inequality we get

o0

2-i
losx, 2l < 3 e [ 160) = bol 17N dy
= Yo

1-a/n
o i (1) 1
= sz—j(lszl)a/n Tflb(y)_bgln/(n—a)dy
= 270 .
2/iQ
a/n
n/ad
2iQ
1—a/n

IA

cufn,,/aZr / b(y) — bo|""~¥dy

2iQ

|2f 0|

But it is well known that for a function in BMO the last factor in the above sum can
be estimated by a fixed constant times j ||| ppo, Which leads to the desired conclusion.

Now the equlvalence between (2.3) and (2.4) follows easily. Assume first that 7,
is bounded from Lc “(R", E) into BMO(R", F). By (2.9), for x, u € Q we have

os(x,u) = Tpf(x) — (Tp f)g — 01(x) + (01)g — 02(x, u)
+ (02(, u))g — (03(x, ))g.

Integrating in x over Q and using the boundedness of 7, and the estimates (2.10),
(2.11) and (2.12) we get

1 )
= f loaGe, Wl dx < Cll f e 2.13)
Q

That means that for any cube Q and u € Q,

f 1b(x) — bol dx f K ) £3) dy|| < Clf e
20)¢

101

giving (2.4). Conversely, let us assume (2.4) holds. As we have just seen, this is
equivalent to (2.13). Therefore coming back to (2.9) and inserting the estimates
(2.10), (2.11), (2.12) and (2.13) we get

= f 1T f () = (T Poll dx < ClLF lnge.
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Taking the supremum over all cubes Q we obtain the boundedness of T;, from LZ'/ ¢
into BMO. O

Proof of Theorem B. Let a be an atom supported in some cube Q. Since a is
bounded and with compact support, a belongs to L? and hence T}, can be applied to
a and gives a function in L?, according to [S-T]. Moreover, for any x, we may write

Tra(x) = x20(x)Tpa(x) + xegy (¥)Tra(x)
= x20(*)Thra(x) + x@) (x)(b(x) — bg)Ta(x)
+ X2y X)T ((b — bg)a)(x)
= x20X)Tpa(x) + x@g)y (xX)(b(x) — bg)Ta(x)

+ xaor () f [K(x, y) — K(x, 0)](b() — b)a(y)dy
Q

+ X0y () f K (x, u)(b(y) — bo)a(y)dy
Q
= u1(x) + ua(x) + pua(x, u) + pa(x, u)

where u is any point in the cube Q.
We claim that the following estimates hold:

il < C for i =1,2, (2.14)
and

lusC w2 < C for ue Q. (2.15)

In order to prove (2.14) for u; we observe that since ¢ > n/(n — a), applying

Holder’s inequality we get
( [ Tba(x)u#dx)
20

n—a 1
ClQI7*7F I Tyall,
o
< €191 lall,
T R
clol”1Q171QI™" = C,

where we have also used the fact that for b € BMO, T}, is bounded from L? into L9
and the function 4 is an E-atom.

n—a

n—a n

( f ||u1<x)nn—fvdx) "
Rn

IA

IA
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On the other hand, using the zero average of a and the (DZ°) property of the kernel,
we have

/Iluz(x)lln-«dx < /]b(x)—bgwf—«uTa(x)”n”: dx
Q)

L.
n—a

- f bC6) — bol= /(K(x’y)"((x,u))a(y)dy dx
29)° )
<1
= Zm 2’Q| f Ib(x) — bo|*=dx
Jj=1 Vo
< ([ 1anay)”
n 00
= Cllbllﬁ—ﬁo Z_j"/(”—a)jn/(n~a) =cC,

=2

where in the last inequality we used again the property of BMO functions mentioned
in the proof of (2.12).
Finally, in order to prove (2.15), we make use again of the (DJ°) condition on the

kernel, splitting the integral over the complement of 2Q. In this way, foru € Q we
have

f e, w) | dx < f I / (K(x.y) — K(x, 0)(b(y) — bo)a(y)dy||7 dx
R 20)r Q@

n_
n—a

C.Zf (W f 1b(y) — bol ua(y)udy) dx

.
n—a

X —jn/(n—a) 1
C —_— — | |b(y) — bgld d
2 e f(IQIQ[I 0) = bel y) *

2iQ

IA

IA

o0
Cliblige Y 270 < ¢

IA

Now the proof of the equivalence between (2.5) and (2.6) follows easily. In fact
the inequalities (2.14) and (2.15) show that || Tpa|ln/n—o < C for any atom a if and
only if for any atom a supported in Q and any u € Q, [|ua(x, ¥)|ln/n—« < C. Using
the zero average of a, we get precisely condition (2.6). O
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(2.16) Remark. We conclude this section by observing that both Theorems A
and B remain valid if we work with operators acting on functions defined on the
n-dimensional torus T", with obvious modifications. For theorem A we ask T}, to be
bounded from L*°(T", E) into BMO(R", F) and in (2.4) we take cubes small enough
so 2Q is included in T".

Theorem B remains the same; the only care is to have in mind that functions which
are constantly equal to a unit vector e are also atoms.

3. Applications

In this section we shall apply our general theorems to some particular operators
such as the Hilbert transform, the conjugate function, the fractional integral and the
maximal operators associated to some approximations of the identity.

Application 1. The Hilbert transform and the conjugate function. Let us denote
by H the Hilbert transform on R; i.e.,

Hf(x) = p.v.f Ly)—dy.
x=y
R

Then, for b € L} and f € L®(R) the commutator H, is given by

b(x)—-b
Hy f (x) = b(x)Hf (x) — H(bf)(x) = P.V-/R(xx)fy(y)f()') dy.

That this operator is well defined even if b is just locally integrable follows by
observing that the first term is a product of a L] . function times a function in L,
while the second is the Hilbert transform of an integrable function and hence the
principal value exists almost everywhere.

Similarly, H shall denote the conjugate function operator defined by

77 = pvrl [ eor (222 _
Hf(x)_p.v.znfcot( 5 )f(y)dy, x € [—m, ]

and ﬁb will be the corresponding commutator with b € LY(T).
An application of Theorems A and B lead to the following results.
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(3.1) THEOREM. Let b be a locally integrable function on R. Then the following
statements are equivalent:

(a) The-operator Hy, is bounded from L (R) into BMO(R).
(b) The operator H,, is bounded from H'(R) into L' (R).
(c) The function b equals to a constant almost everywhere.

Proof. We first observe that both conditions, (2.4) of Theorem A and (2.6) of
Theorem B, are equivalent to (c). In fact, if we write (2.4) in our particular case, then
for any interval I and u € I, the inequality

1 1
L f Ib(x) — by | dx f Lt dy| < Clif o
1] J u—y

Q@ne

must hold for any f € L°. Now for I and u € I fixed, we take f,(y) = x,_,, (4 —
y) sg(u — y), n €N, obtaining

1
(mf"’“) b dx) f -y~ dy <C.
[1|<Z|lu=yl<n

1
Letting n go to infinity we have b(x) = b; a.e. in I, and hence b must be constant

almost everywhere.
Similarly, condition (2.6) of Theorem B can be written as

f 4y f b(»a(y) dy
lu —y| J

20

<C,

where a is any atom supported in / and u € [. Clearly this is impossible unless
/, ; b(y)a(y)dy = 0 for every interval I and any atom a supported in 7; that is, b must
be equal to a constant almost everywhere.

Next observe that if we assume b € BMO we may apply Theorems A and B proving
our theorem. Therefore we only need to show that if either (a) or (b) holds then b
must be a BMO function. To do this, we first show that (a) and (b) are equivalent and
then, by interpolation, we may conclude that H, is bounded on L?(R), 1 < p < oo,
and therefore, by the results in [C-R-W], b must belong to BMO.

We shall prove that under appropiate conditions on f and g,

/ Hy f (1)g(x)dx = f FO) Hyg(x)dx 32)
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holds. First, assume that f and g are smooth functions with compact support and let
K be the union of the supports of f and g. For almost every x, we have

b(x) — b
Hyf ) = g0 [ “O=2(70) - fwnay
K

b(x) —b
+ g(x) f(x)p.v. f Mdy
x=y
K

= G1(x) + g(x) f (x)Hp(x,) (x)-

Since |G1(x)| < | f loollg oo (DG IK| + f¢ [B]) X, (x), then Gy € L'. Interchang-
ing the roles of f and g and substracting we get

b —-b
Hy f (0)g(x) — f(x)Hyg(x) = ] (ﬁc’fy(”umgm—f(x)g(y»dy, (33)

K

where the second member is integrable in x. Then, since the integral is an antisym-
metric function of x and y, we have

f(Hbf(X)g(x) — f(x)Hpg(x))dx =0 34

Let us now assume that statement (a) in the theorem holds. Then for f and g
smooth functions with compact support, both H, f and H,g are BMO functions.
Thus Hp, fg and f H,g are integrable functions and by (3.4) we have (3.2).

Now, in order to prove (b) it is enough to show that for any smooth atom f, ||H, f||;
< C. Since H, f is BMO, and therefore locally integrable, then

[|Hp fll1 = sup 3.5)

f Hy f (x)g(x)dx

where the supremum is taken over all smooth functions g with compact support and
llglleo < 1. Using (3.2) and (a) we get

A

|Hp fllr < sup /f(x)Hbg(x)dx

sup || f Il I Hog llamo < Cligllooll flla, < C',

IA

which proves (b).

Next, we shall show that (b) implies (a).

Let f and g smooth functions with compact support and assume [ g(x)dx = 0.
Then g is a multiple of an atom and therefore f Hyg belongs to L', which implies
(3.2). Let f € LY (not necessarely smooth) with f f(x)dx =0.
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If ¢ is a nonnegative smooth function, with compact support and [ ¢(x)dx = 1,
then for f,(x) = (f * ne(n-))(x) we have

[ Hosirgidx = [ st ras. (3.6)
Since the functions f, belong to H' and satisfy

Il falloo < Il flloos

lim,— 00 fu(x) = f(x) ae.,

and

lim, ool fo — fllgr =0

then by (b) and the Lebesgue bounded convergence theorem, taking the limit in (3.6),
we get (3.2) under our assumptions on f and g.

Finally we observe that (3.2) also holds if we assume that f € L° and g is a
smooth atom. In fact, if ¢ is as before we can write

(=[] )raes

The function h belongs to L and [ hdx = 0 and, on the other hand, s is smooth
and with compact support, so that (3.2) holds substituting » and s for f. Thus, (3.2)
is also true for f = h + s. In order to estimate the BMO norm of H,, f we write

| Hy f lmo = sup [ Hy f (x)g(x)dx

where the supremum is taken over all smooth atoms g. By (3.2) and (b) we get

]

| Hp f 1| 8mo Suplff(x)Hbg(X)dxl
sup | flloll HpgllLt < Cll f llcos

ending the proof of the theorem. O

IA

Similarly for the commutators of the conjugate function we can prove the following
result.

(3.7) THEOREM. Let b be an integrable function on T . The following statements
are equivalent:

(a) The operator Hy maps L®(T) into BMO(T).
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(b) Hy maps H\(T) into L'(T).
(©) b € BMO, 10 -1 (T).

Proof. As in the preceding theorem, duality arguments prove that (a) and (b) are
equivalent and by interpolation and the results in [C-R-W], b belongs to BMO(T).
Therefore by Theorem A we only need to show that (2.4) is equivalent to (c). In fact
if b € BMO,)oq -1 (T) there exists a constant A such that for any interval / C T,

|log |11 |

T /|b( ) —brldx < A. (3.8)

Then for I small enough, u € I and f € L*(T),

u— d
f cot(——y—) FOdy| < Cliflioo f Y
2 [u— yl
T\21 [ <|u—y|<2m
< Cllog2x —log|I| | Il flleo
< Cllog|I| | | flloo-

This estimate together with (3.6) gives that for any small interval / and u € I,

1
o f Ib(x) — byldx / cot( . )f(y)dy
1

1221
Conversely, if (b) satisfies (3.9), choosing f(y) = sg(cot(*52)) € L*(T) for ug

the center of I, we get
Up —y
t d

/ cot(“"z" Y )f(y)dy

< Cliflloo (3.9

\21 T\2/
2c | 4y
lug — yl
27 >|uo—y|> |
> C(|log2m —log|I]| )
> Cllog|I||

and hence (3.9) implies b € BMOHOg (7). O

Application 2. Fractional integral operators. For 0 < a < n, let I, be defined

by
I f(x) = / f(y)n _d
lx — |
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Then 1, will denote its commutator which, even if b is a locally integrable
function, is defined for f € LY by the integral

b —-b
PO) = DO 11y,
o |x =yl

Iop f(x) =
This follows from the fact that bf is an integrable fugction 3nd hence 1, (bf) is
finite almost everywhere. Similarly we shall denote by I, and I, j the finite measure
versions of these operators.
By applying Theorems A and B we can get the following results

(3.10) THEOREM. Let b be alocally integrable function on R". Then the following
statements are equivalent:

(@) Iop maps LY into BMO(R").
(b) I, maps H'(R") into L= (R").
(¢) b is constant almost everywhere.

Proof. By duality arguments, it is easy to see that (a) is equivalent to (b). Again
the main observation is that the equality

fIa,b f(x) g(x)dx =— f Fx) Iop g(x) dx 3.11)
Rﬂ Rﬂ

holds if we assume either (a) or (b). In fact if f and g are bounded functions with
compact supports, Fubini’s theorem can be applied to the left hand side of (3.11)
giving the right one. For, on one side 1,(|bf]|) is an absolutely convergent integral
a.e., giving a function in weak L+= and hence locally integrable, while I, (| f|) is
locally bounded and therefore I, (| f|)|bg| belongs to L' (R"). This is enough to prove
the equivalence between (a) and (b). Therefore, by interpolation, I, ;, maps L?(R")
into L/(R"), 1/g = 1/p —«a/nforany 1 < p < n/a, and hence b must belong to
BMO (see [Ch]). Now we are in the hypothesis of Theorem A and we may conclude
that if either (a) or (b) is assumed, b must satisfy the inequality (2.4). We pick the
functions

ING) = 1= Y17 Koy (@ = Y) Xage (V) for N € N.
By inserting them in (2.4) we obtain

1 dy
— | 1b(x) —bold
('Qlfl () = boldx f lu — I

Q 1Q1"/" <lu—y|<N

a/n

<c f 4y
[u — y|

Q1" <|lu—y|<N
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and therefore b must satisfy

1

(log N — log |Q|"/™)t—e/n
g —log 0]

f |b(x) —bgldx | <C
Qo

for any cube Q and N large enough. Letting N — oo, it follows that b must be
constant almost everywhere. O

As in the previous case the situation changes when we consider the finite measure
version I, of this operator. In this case we obtain the following result.

(3.12) THEOREM. Let b be an integrable function on T. Then the following
statements are equivalent:

(a) va maps L"*(T) into BMO(T) boundedly.
(b) I, maps H'(T) into L™ "= (T) boundedly.
(C) be BMOl log t|e/n-! (T)

The proof is omitted since it follows the same lines as Theorem (3.7), choosing
the functions fy as in the preceding theorem.

Application 3. Maximal functions. We shall consider now some maximal oper-
ators associated to smooth approximations to the identity. More precisely, let ¢(t),
t > 0, be a non negative differentiable function such that for some 0 < o < n,

@) @(t) is non-increasing, ¢ # 0;
i 'Ol < Crry
X (3.13)
(iii) f M"Y < o0;
0
(v) @) < Cr*e,

Observe that condition (iv) is implied by the others three together.
We define the maximal function M, , as

My f(6) = sup €7 ] o(lx = I/ fO) dy)|.

n

Under the assumptions (3.10) it is easy to obtain the pointwise inequality

o0

M, f(x) 2 Cha (/ ‘P(t)tn_l_adt M, f(x) 3.14)

0
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where M, is the fractional maximal function

M, f(x) =sup { e "+ f |f )| dy

€>0
Ix—yl<e

Therefore, for f € L"/*, Holder’s inequality implies

My f(x) < CiMo f(x) < Coll flinse (3.15)

showing that M, , maps L"/*(R") into L>(R").

Now, given a function b € BMO(R") we define the commutator type maximal
operator by

My opf(x) =sup € "t
>0

f B0 — bOe(lx — yl/e) f()dy| .

In order to show that this operator is well defined for f € LZ'/ “ observe that from the
previous inequalities we get

|Mya6f ()| < 2|6 || f llnje + Mo (bf)(x).

Since b € BMO, b belongs locally to L" for any r > 1. Choosing r > n/(n — «)
and p such that 1/p = 1/r + a/n it follows, by Holder’s inequality, that bf € L?,
1 < p < n/a and consequently M, (bf) € LY, 1/q = 1/p — a/n and hence it is
finite almost everywhere.

Moreover for this commutator we have the following result.

THEOREM. Let b belong to BMO. Then:
(3.16) If b is a non-zero BMO function then M, o, maps LZ/ *(R") into BMO(R").

(3.17) M, o, maps H'(R") into L™ ®=%)(R") if and only if b is a zero function in
BMO.

Proof. We shall apply the theory developed in Section 2, choosing E = C,
F = L*(0, 0o) the operator defined by

T(p.af(x) = |€-n+a / ¢(|x - )’|/€)f(J’) d}"I

e>0

Clearly M, ., f (x) = ||Ty,o f(x)|lF and from (3.14) we may conclude that T, , is a
bounded operator from L? into LI(R", F), 1l < p < nfa,1/q = 1/p —a/n, in
view of the L? — L9 boundedness of the fractional maximal operator M,,. Moreover
itis given by K, o(x,y) € L(C, F),x # y,

Kyo(x, )€ = {e " o(x — yl/e)E), ,, &€C,
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since by property (iv) of (3.13) we have

1 Kp.o(x, Wlicee,ry =sup € " o(lx — yl/e) < Clx — y|*™.
€

Therefore K, is locally integrable in R* x R"\{(x, x)}. Also this kernel satisfies
both D& and (DZ)’. In fact, let |x — y| > 2|x — x’|; then by the mean value theorem
and property (ii) in (3.13) we have

”Kw,a(xo y) — Kfp.a(x,’ )’)||c(c,r>

sup € " |p(lx — yl/€) — @(Ix" — yl/€)I

>0
_ |x —x'|/€
< Csupe "¢
" (= ylj2eyie
lx — x|

|x _ y|n+l—a'

Finally we observe that if b € BMO, the commutator of T, o, is given by
(Tw,a,bf)(x) = b(x)TqJ,af(x) - T(p.a(bf)(x)
= {e‘"“' [ @0 - b070x = /7 02a)

€>0

and consequently

Il Tq:,a.bf(x)"l’ = M(p,a,bf(x)~

Since for any F-valued function g is true that g € BMO(R", F) implies that ||g||

belongs to BMO(R") with || ||gllrllamo < llgllsMo®~,F), in order to prove (3.16) it
will be enough to show that

| Ty.as f lBmoe.Fy < Cll fllpoa,  f € LM,

By Theorem A of Section 2 this is equivalent to the following condition:
For any cube Q and u € Q the inequality

1
(@ / |b(x) — ledx) f Ko o(u, Nyl < C"f"n/a
Q

20 F

holds with C independent of Q, u, and f. But this is equivalent to saying

1
(I_QI / |b(x) — bQIdx) My f (Xx20y)®) < Cll fllnje-
o

Since b € BMO and, by (3.15) M, , is bounded from L"/* into L, the latter
inequality holds proving (3.16).
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In order to prove (3.17) we observe that M, 4, maps H'(R") into L") (R") if
and only if T,, o , maps H'! (R") into L"/®~*)(R", F). By Theorem B this is equivalent
to the following condition:

For any atom a with support in a cube Q and u € Q the inequality
n/(n—a)

f Koo, 1) f b(y) a(y) dy dx < C
Q

Q) F

holds for a constant C independent of a, Q and u. But that is to say
n/(n—a)
[owamas| [ sweot - yyareix sc. Gy
Qo 29)° )

Now by (i) of (3.13) there is o > O such that ¢(fy) = y > 0. Then, by taking
€ = |x — u|/tpon one hand, and using (iv) again on the other hand we get

Cilx —u|*™" < sup €*"@(|x —ul/e) < Calx —u|*™".
€

Therefore (3.18) is equivalent to
n/(n—a)
fb(y) a(y)dy f |x —u|™dx < C.
o 29)¢
This implies that [ b(y)a(y) dy must be zero for any atom and therefore b must
be constant almost everywhere. O

As in the previous examples we may consider the periodic version of the operator
M, acting on functions defined on the n-dimensional torus. In this case a wider
class of functions b gives rise to bounded commutators from H! into L™/~ More
precisely:

THEOREM. Letb € BMO(T"). Then
(3.19) M, o , maps L"/*(T") into BMO(T") and
(3.20) My o, maps H'(T™) into L™= (T") if only if b € BMO, o -1 (T").

The proof of (3.19) is the same as in the previous case. For (3.20) we just observe

that arguing as above, the inequality (3.18) is equivalent to asking that for any atom
a supported in a cube Q,

( f b(y) a(y) dy | llog 101" < C. @3.21)
Q
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Now, if we let p(t) = 1/|log t|'=%/", the function @(y) = a(y)/p(|Q|) is a
p-atom in the sense that it has zero average, is supported in Q and

I7llo < (1QIPUCN) ™"

Therefore (3.21) is equivalent to say that b belongs to the dual of the atomic space
generated by the p-atoms which can be identified with BMO, (see [V]).

Application 4. Maximal operators acting on vector valued functions. From the
previous examples we may conclude that commutators for integral and maximal
operators behave similarly on H!. However, the picture is completely different on
the other edge L"/®.

In the sequel we will try to show how the gap narrows when we allow the operator
M, , to act on vector valued functions.

To this end we introduce the operators M, , and M, 5 acting on sequence valued
functions f(x) = (fj(x))jen:

M(p,af(x) = (M:p,af}'(x))jeN

My.opf(x) = (Mg o fi(x))jeN

With this notation we have the following results.
(3.22) THEOREM. Let 0 < & < n, ¢ a function satisfying (3.13) and b a locally
integrable function. For the operator M, o5 we have:

(3.23) My, o,» maps L"*@R", £") into BMORR", £") provided b € BMO(R") and
nfa <r <oo.

(3.24) M, o maps L"/*(T", £") into BMO(T", £") providedb € BMO)og sjosn-11+ (T")
andl1 <r <nja.

Proof. We consider the operator T, , introduced in the proof of the previous
theorem acting now on sequences of functions; that is, for f = (fj)jen We set

Ty f () = (Tpa f;(x))jen-

It follows inmediately that the associated kernel IZ,,,O, is given by

Kpa(x,y) @))jen = ({6“”% (Ix — y')%-] )
€ €>0/ jeN

and that it satisfies both DS and (D%,)’ conditions.
Moreover it follows from (3.14) and from the vector valued singular integrals
theory in [RdeF-R-T] that the operator T, , is bounded from L? (R", £") into L4 (R",
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£"(L°°(0,00)) for 1 < p < nj/a,1/q = 1/p — a/n. Therefore given a function
b € BMO we may apply the theorem of Section 2 for E = £" and F = £"(L*°(0, 00)),
1 < r < o0, to the commutator

Tpan F(X) = @) Tpa f)X) = Ty u(b() F())()
(Tp . (f})(%))jeN-

As in the proof of the prev1ous theorem we observe that (3.23) will be true as
soon as we can show that TW,, » maps L"/*(R", £") into BMO(R", £"(L*(0, 00)),
n/a <r < oo. According to Theorem A it will be enough to check that for any cube
Qandanyu € Q,

1
(@f Ib(x) - bQI dX) / ng,a(u’ }’) f,(y) dy
1]

@ iller g0y
< CINCUD N g e, ery (3.25)

Now itis easy to see from (3.14) and the boundedness L"/* — L for the fractional
maximal function that the operator M,, , maps L™/#(R", £"/*) into L>(R", £"/*), also
L"*(R", £%°) into L>(R", £*°). Therefore, by interpolation, M, , is bounded from
L"*@R", £") into L*(R", £")ifn/a < r < oo and hence T¢, » maps L"/%(R", £") into
L>®(R", £"(L*°(0, 00)) . This implies that (3.25) holds in this case for any b € BMO.

For the periodic case let us take r such that 1 < r < n/a. Now, with the previous
notation, statement (3.24) would hold if we are able to prove the inequality

1
sup (I—a / |b(x) - le d.XT) / Kw,a(us )’) f(y) d}’)
ueQ 0 T\20

)
< Cll fllLrmery. (3.26)
But for u € Q we have
f Ky, ) FO) dy
™20 £r(poo)
u —
= “ sup f "y (I yl) fi(y) dy
€>0 €
™20 il
1/r

< C |(supe” / €y (Ii:—yl) LI dy

€>0
™20
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1/r

<c / =y S () dy
Tn\ZQ j o

( 1/r
—c f = yfer (Z Ifjl’(y)) dy
J

T"\2Q

where we have used the size condition on ¢.

Now since s = } 2 > 1 we may use Holder’s inequality in the last expresion to
bound it by

1/rs'

C f lu — y|@r—ms f (2 Ifjl,)% 2
J

T \2Q

a/n

I/r—a/n

—c f = y|™" dy 1D ecer
T"\ZQ
< C(log 1@D" " (fi)j | Laery.-

Therefore (3.26) will be true as long as

1

1 I/r—a/n_"
(log QD) 0]

f |b(x) —bgldx <C
Q0

but this is exactly our assumption on b.

Comment. It should be observed that for the “vectorial” commutator Tq,,,,,b, used
in the proof of the above theorem, we could get a complete characterization of the
functions b; that means we could get “if and only if” results in the whole range of
r’s. The main obstacle to transfer the “only if” part to the maximal operator lies in
the fact that for g a measurable F-valued function it is no longer true that

I lg )l F llBMowy = ligllBMor, Fy

as in the L” case. Indeed only the less than or equal part is valid and that is the
clue in proving the BMO-boundedness of the commutators appearing in the last two
theorems.

It might be of some interest to explicit the full class of functions b that can be
obtained for the “vectorial commutator T, o5”.
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THEOREM. Letb € BMO and i,‘a,b the commutator defined obove. Then:

(B.27) Forl <r <n/a, ﬁ,,a'b maps L"*(R", £ (0, 00)) into BMOR", £*(0, 00))
if and only if b equals to a constant.

(3.28) For1l <r <nja, i,,,a,b maps L"*(T", £ (L* (0, 00))) into BMO(T", £*°(0,
00)) if and only if b € BMO)1og 1jein-1r(T").

(3.29) Forn/a <r < oo, TW,,, » is bounded as above for any b € BMO in the periodic

and non periodic case.

Proof. 'We only need to prove the “only if” parts of (3.27) and (3.28) since the
others are either trivial or they are already contained in the previous theorems.

Let us start by (3.28). For a given k we consider the cube Q = Q(0, 27%) and we
define a sequence of functions by

fix) =2%xg0.2-mo02--H(x)  if0<j<k-—1
fix)y=0 if j > k.
Easy calculations show that
N N vecrn ery = k%77

Furthermore foru € Q, M, fj(u) > C > 0,0 < j <k — 1, and hence

1/r
(Z |Maf,~<u)|') > Ck'/".

J

Therefore noticing that log | Q| = —kC,,, we have

1 / 1
b(x) —bgp|ldx = C, k‘“/"+'/’—-/ b(x) — byl dx
10 log IQII"‘/"”'/’Q | ol " o1/ | ol

< Ck™*™|bligmo (Z IMaﬁ(u)I') v

for any u € Q. Now, by Theorem A, our assumption on 7} implies that the last
expresion must be bounded by

Cllbllamo k™" I(fllwecrnery < C Ibllamo-

Since this argument may be repeated for any cube Q C T”", b must belong to
BMOI]Og tje/n=\ir (Tn)
Finally for (3.27) we consider a cube Q = Q(0, r) and a positive integer N. Let
us denote by Q, the cube Q(0, 2") and choose the sequence f; defined by
fite) =r=@27 % x5 10, ,(x) ifl <k <N

fitkx) =0 ifk > N.



BOUNDEDNESS OF THE FRACTIONAL INTEGRAL 699

The same computations as above show that

Il Lrereery = N/
while for any u € Q,

1/r

> (M fiw) § = CN'"
k

Therefore Theorem A applied to our situation implies that for any cube Q C Q,

1/ .
— | |b(x) —bg|dx | < CN*/"Vr,
1ol J

Q

Letting N go to infinity and using 1 <r < n/a we get

1
|Q|_Q[|(x) ol dx

Since this conclusion holds for any cube it follows that b must be constant almost
everywhere.
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