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BOUNDEDNESS OF COMMUTATORS
OF FRACTIONAL AND SINGULAR INTEGRALS

FOR THE EXTREME VALUES OFp

ELEONOR HARBOURE, CARLOS SEGOVIA AND JOSl L. TORREA

I. Introduction

It is well known that commutators of singular integrals with multiplication by a
measurable function b(x) are bounded operators on Lp, < p < oo, as long as b is
a BMO function [C-R-W].

Moreover if the commutator of all Riesz transforms are bounded for some p,
1 < p < oo, the function b must necessarily belong to BMO. Similar results are also
known for the fractional integral operators I,, in connection with the boundedness
from Lp into Lq, < p < n/u, 1/q 1/p- /n [Ch].

Later on, Segovia and Torrea [S-T] have considered this problem in the more
general context of vector valued operators including in this approach, commutators
associated for example to maximal functions.

It this paper we find sufficient conditions on the function b in order to obtain H
L and Ln/ BMO boundedness of such commutators. In most of the cases the
given conditions will be also necessary. See [P] for a discussion in the case b is aBMO
function. We have chosen to work in the general context of vector valued operators of
singular integral type as to include a larger class of commutators. Following this line,
we first prove two general theorems (Theorems A and B in Section 2) expressing the
conditions on b in terms of the kernel of the given operator. Afterwards, in Section 3,
we apply our theorems to some particular cases like the Hilbert transform, fractional
integrals and maximal operators of smooth approximations to the identity.

As an example, commutators with the Hilbert transform are bounded from H
into L only in the trivial case that b equals a constant; this is also the case in the
other extreme, L into BMO. Similar results are proven for the fractional integral,
therefore since a constant function corresponds to the zero function in BMO we
have that for non-zero BMO functions the commutator with the Hilbert transform or
fractional integral is not bounded in the extreme cases; see Theorems (3.1) and (3.10).
The picture improves in the periodic case. In fact we prove that commutators with
the conjugate function are bounded from L into BMO if and only if b belongs to
a class a little bit more restricted than BMO, the space BMO for p(t) log t1-1
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BOUNDEDNESS OF THE FRACTIONAL INTEGRAL 677

These classes, which generalize the BMO and Lipschitz spaces, were first introduced
by Spanne [S].

From the examples presented here we may conclude that even though all the op-
erators involved can be seen as vector valued singular integrals, those arising from
approximations to the identity behave better on p c than classical singular inte-
grals, while the situation is reversed on the extreme p 1. Also, our two last results
show how maximal operators acting on er-valued functions become "more singular"
in this sense, when we approach r 1.

2. Main results

We are going to consider vector valued operators ofCalder6n-Zygmund type; i.e.,
if E and F are two Banach spaces and if we denote by I(E, F) the space of all linear
bounded operators from E into F the operator T must satisfy:
(a) T: LP(Rn, E) Lq(Rn, F) boundedly for some pair p,q, < p < q < o.
(b) For every E-valued bounded and compactly supported function f, Tf can be
represented by

Tf(x) f K(x, y)f(y)dy

for x supp f and where the kernel K is a locally integrable function from
Rn xRn\{(x, x)}, taking values on/2(E, F).
We will say that the kernel K satisfies also the (D) condition if for some constant

C and c such that 1/q 1/p t/n,

IlK(x, y)- K(x, Z)IIc<e,F) C. Ix zln+l-ot

as long as Ix zl > 21y zl.
Similarly, we will say that K satisfies the (D)’ condition if the kernel K (x, y)

K (y, x) satisfies (D).
For this class of operators we shall consider the commutator Tb with a locally

integrable function b: R" --R, formally defined by

Tbf(x) b(x)(Tf)(x) T (bf)(x) (2.1)

where the product of b(x) by elements in E or F must be understood as the multipli-
cation of vectors by scalars.

Before stating our main results we remind the definitions and some properties of
the vectorial versions of H and BMO spaces.
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Let E be a Banach space and f a locally integrable function f: Rn E (in the
Bochner sense). We define the sharp function of f by

f#(x)=sup fQ
II/(Y)- fQlledy

a
where Q denotes an arbitrary cube with sides parallel to the axes and fQ the average
of f over Q; i.e., fQ IQI- fo f(x) dx.

The space BMO(R, E) is defined as the space of functions f such that f IIMo
IIf#ll < .

More generally we may introduce the space BMOo(Rn, E) for o a positive non-
decreasing function defined on R+, as the space of locally integrable functions f such
that

f IIBMO sup fo10199(101)
IIf(Y)- falledy < c. (2.2)

Similarly the space BMO(Tn, E) can be defined (Tn being the n-dimensional
thorus) as the corresponding subspace of L(T, E) but clearly this time it suffices
to know the values of 99 near zero.
Now we give the definition of the space H (Rn E). Let a be a function belonging

to L (Rn E). We will say that a is an E-atom if its support is contained in a cube Q
in such a way that Ila(x)lle < 1/IQI and fQ a(x) dx 0. The space H(R, E) can
be defined then in the usual way in terms of these atoms. If the Banach space E is
U.M.D. the Riesz transforms Rj can be defined for integrable function and moreover
[B] we have

HI(Rn, E) {f E LI(Rn, E)/Rjf e LI(Rn, E) < j < n}
Finally we will denote by Lcn/a (Rn, E) the subspace of Ln/a (Rn, E) of compactly

supported functions.
Now we are in the position to state our main results.

THEOREM A. Let T be an operator as above with a kernel satisfying (D,)’ and
let b be a BMO(Rn) function. Then thefollowing statements are equivalent.

(2.3) The commutator Tb is boundedfrom L’/ (R, E) into BMO(R, F).

(2.4) Thefunction b satisfies thefollowing condition:

For any cube Q and u Q,- Ib(x) -bQIdx K(u, y)f(y) dy <_ CIIfll,,/,,
Q (2Q)C F

for every f Lnc/ (Rn E).



BOUNDEDNESS OF THE FRACTIONAL INTEGRAL 679

THEOREM B. Let T be an operator as above with a kernel K satisfying (D)
and let b be a BMO(Rn) function. Then thefollowing statements are equivalent.

(2.5) The commutator Tb is boundedfrom Hl(Rn, E) into Ln/n-a)(Rn, E).

(2.6) Thefunction b satisfies thefollowing condition:
For any E-atom a supported in a cube Q and u Q,

(2Q) Q

n/(n-ot)

dx<C.

Before beginning the proofs of Theorems A and B, in the next lemma we give an
estimatefor the operator T which will be very useful.

(2.7) LEMMA. Let T be an operator as above with K satisfying (D)’ and let f
be afunction in Ln/a (Rn E) with compact support. For a cube Q we decompose f
into f f at- f2 with f fX2Q. Then ifx, u Q we have

IITf2(x) Tf2(u)llF <_ Cllflln/. (2.8)

Proof. We first observe that for x, u Q we have

IITf2(x) Tf2(u)IIF < f IlK(x, y) K(u, Y)IIz:<E,F) IIf2(Y)lle dy.

We decompose R" as the union of 2Q and the sets 2J Q \ 2j- Q, j 6 N, j >_ 2
and, by shortness, we omit the subscripts on the norms.

By using (Do)’ and H61der’s inequality, we obtain

IITfz(x) Tf2(u)ll <_ = JQ\2J-Q
K (x, y) K (u, y)II f2 (Y)II dy

/ IlK(x, y) K(u, Y)II IIf2(Y)II dy
J2Q

< C_2-j

j=l f2 IIf2(y)ll dy
12J Q -a/n a

< C2-J Ilflln/ C Ilflln/
j=l

ProofofTheorem A. Let f be a bounded function with compact support. We
observe that since b BMO and f Lp (Rn E) for any p > 1, then the commutator
Tb(f) makes sense and moreover is a Lp (Rn, F)-function and hence it is a locally
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integrable function. In order to estimate the BMO norm of Tbf we take a cube Q and
make a decomposition as in Lemma (2.7):

f f + f2 withf fx2t2.

Then for x Q,

Tbf(X (Tbf Q Tbf(X -l Tbf Z dz

rbf (x) "1 rbf (Z) dz + Tbf2(x)

IQI Tbf2(z) dz

Tbfl(X) (Tbf)o. + (b(x) bo)Tf2(x)
T((b bt2) f2)(x)

IQI
(b(z) be)Tf2(z) dz

fo T((b bt2)f2)(z) dz.

Let u Q. Then

Tbf(x) (Tbf)e Tbfl(x) (TbA)e + (b(x) be)(Tf2(x) TfE(u))
+ (b(x) bo)Tf2(u)

ft2(b(z) be)(TfE(z) TfE(u)) dz

+ Q [T((b bt2)f2)(z) T((b be)f2)(x)] dz.

Now, if we let

and

we have

O’I(X)--- Tbf (X)

O’2(X U) (b(x) bt2)(Tf2(x) Tf2(u)),
O’3(X U) T((b bQ)f2)(u) T((b be)f2)(x)

cr4(x, u) (b(x) bt2)Tf2(u),

Tbf(x) (Tbf)Q O’l(X) (o’I)Q - o’2(x, u) "F- 0"4(x, u)

(0"2( U))Q + (0"3( U))Q. (2.9)
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We claim that the following estimates hold:

I-- IIO’l(X)ll dx <_

and

IQ-- Ilcr2(x, u)ll dx <_ C IIblIBMO Ilflln/
a

if IIr3(x, z)ll dz < C IlbllaMo Ilfll/IQI
Q

for any x Q. (2.12)

To prove (2.10) we note that b BMO and the assumptions on T allow us
to apply the results of [S-T] concluding that Tb is bounded from Lp (Rn, E) into
Lq (Rn, F), 1/q 1/p ot/n. Therefore, using Hlder’s inequality and taking into
account that p < n/u, we get

ifa-- Ilcq (x)II dx <_ "1 Tb fl (x)II q dx

Q a
lip

< IIf(x)ll p dxiQl/q

C IIblIBMO< IQI lip Ilfll/iQil/q
c lib IIsMo f I1=/,

For (2.11) we use Lemma(2.7). In fact, since u Q we have

IfClfl/ Ib(x) bl dx

Finally, in proving (2.12), we again use the fact that the kernel of T satisfies (D)’.
First for x, z Q we have

Ilcr3(x, z)ll < ] IlK(x, y)- K(z, Y)II Ib(y)- bt2l Ilf(Y)ll dy.

(2Q)

for any u Q (2.11)
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Decomposing (2Q)c as the union of 2 Q 2j-I Q, j > 2 and using the (D)’
condition in each term and Holder’s inequality we get

0"3 (x, Z) <

__
b(y) bQ f(Y) dy

.= (12QI) l-/n
2JQ

<C 2-j(12j QI)’/n
12J QI

Ib(y) bQln/(n-)dY
’= 2J Q

ot/n

12J Q]
]lf(Y)lln/tdY

2JQ

<_ Cllflln/o, ._ 2-j
12J QI

Ib(y) bQl"/’-’)dy
2JQ

But it is well known that for a function in BMO the last factor in the above sum can
be estimated by a fixed constant times j lib I1o, which leads to the desired conclusion.
Now the equivalence between (2.3) and (2.4) follows easily. Assume first that Tb

is bounded from L’/ (Rn E) into BMO(Rn F). By (2.9), for x, u 6 Q we have

0"4(x, u) Tbf(x) (Tbf)a 0"l(x) + (0"l)a 0"2(X, u)

+ (r2(, u))e (r3(x,))e.

Integrating in x over Q and using the boundedness of Tb and the estimates (2.10),
(2.11) and (2.12) we get

IQ--- libra(x, u)ll dx <_ Cliflln/o,.
Q

That means that for any cube Q and u Q,

ifQ---[ Ib(x) bQI dx

Q

K(u, y)f(y) dy

(2Q)

CIIflln/,,

giving (2.4). Conversely, let us assume (2.4) holds. As we have just seen, this is
equivalent to (2.13). Therefore coming back to (2.9) and inserting the estimates
(2.10), (2.11), (2.12) and (2.13) we get

IQ--I IlZbf (x) (Zbf)all dx <_ CIIfll,/,.



BOUNDEDNESS OF THE FRACTIONAL INTEGRAL 683

Taking the supremum over all cubes Q we obtain the boundedness of Tb from L’/
into BMO. E!

ProofofTheorem B. Let a be an atom supported in some cube Q. Since a is
bounded and with compact support, a belongs to LP and hence Tb can be applied to
a and gives a function in Lq, according to [S-T]. Moreover, for any x, we may write

Tba(x) X2a(X)Tba(x) + X2ac(X)Tba(x)

X2Q(X)Tba(x) + X2Qc(x)(b(x) ba)Ta(x)

+ X2a(x)T((b bo.)a)(x

X2a(X)Tba(x) + X2ac(x)(b(x) bQ)Ta(x)

+ )2a(x) f[K(x, y) K(x, u)](b(y) ba)a(y)dy
Q

+ X2ac(x) f K (x, u)(b(y) bt2)a(y)dy
Q

/-1 (X) -}-" /Z2(X) "q" /Z3(X, tt) "1- ]Za(X, U)

where u is any point in the cube Q.
We claim that the following estimates hold:

IIAll < C for 1, 2, (2.14)

and

11#3(, u)ll < C for u e Q. (2.15)

In order to prove (2.14) for/z we observe that since q > n/(n or), applying
H/51der’s inequality we get

Illz (x) dx IlZba(X)lldx

<_ Clal "7"- IITballq

<_ Clal / Ilallp

<_ Clal;IalTIal- c,

where we have also used the fact that for b BMO, Tb is bounded from LP into Lq

and the function a is an E-atom.
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On the other hand, using the zero average ofa and the (D) property ofthe kernel,
we have

fIllz2(x)ll-dx < Ib(x) bQl- llTa(x)ll - dx

(2Q)

<_ f Ib(x) bo.l f (K(x, y) K(x,u))a(y)dy

(2Q) Q

<
2j’/<’-’) i2YQI Ib(x) bQle:Zdx

j--l
2J Q

x Ila(y)lldy

< Cllb j"BMO 2-Jn/(n-t) C,
j-’2

dx

where in the last inequality we used again the property ofBMO functions mentioned
in theproof of (2.12).

Finally, in order to prove (2.15), we make use again of the (D) condition on the
kernel, splitting the integral over the complement of 2Q. In this way, for u Q we
have

II/z3(x, u)ll"-dx <
R"

f(K(x, y) K(x, u))(b(y) bQ)a(y)dyllnn-ddx
(2Q) Q

< C
2Jl2J 1-/"

Ib(y) bQI Ila(y)lld’
j=2

2

dx

2-jn/(n-t) f< C j2 Ib(y) bQIdy dx
.= I2YQI

2JQ Q

n/(n-a) 2-Jn/(n-ot) < C._< c b o

Now the proof of the equivalence between (2.5) and (2.6) follows easily. In fact
the inequalities (2.14) and (2.15) show that IlTba I1/- <_ C for any atom a if and
only if for any atom a supported in Q and any u e Q, II/za(x, U)lln/n-o, < C. Using
the zero average of a, we get precisely condition (2.6). El



BOUNDEDNESS OF THE FRACTIONAL INTEGRAL 685

(2.16) Remark. We conclude this section by observing that both Theorems A
and B remain valid if we work with operators acting on functions defined on the
n-dimensional torus T", with obvious modifications. For theorem A we ask Tb to be
bounded from L(Tn, E) into BMO(Rn, F) and in (2.4) we take cubes small enough
so 2Q is included in Tn.

Theorem B remains the same; the only care is to have in mind that functions which
are constantly equal to a unit vector e are also atoms.

3. Applications

In this section we shall apply our general theorems to some particular operators
such as the Hilbert transform, the conjugate function, the fractional integral and the
maximal operators associated to some approximations of the identity.

Application 1. The Hilbert transform and the conjugatefunction.
by H the Hilbert transform on R; i.e.,

Let us denote

Hf(x) p.v. f f(Y)
x-y

R

Then, for b e Locand f e L(R) the commutator Hb is given by

b(x) b(y)
Hbf(x) b(x)Hf(x) H(bf)(x) p.v. ]

x--y f(y) dy.

That this operator is well defined even if b is just locally integrable follows by
observing that the first term is a product of a Loc function times a function in Lp,
while the second is the Hilbert transform of an integrable function and hence the
principal value exists almost everywhere.

Similarly, H shall denote the conjugate function operator defined by

,f (x-Y)f(y)dy,Hf(x) p.v.- cot
2

x

and/b will be the corresponding commutator with b 6 L I(T).
An application of Theorems A and B lead to the following results.
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(3.1) THEOREM. Let b be a locally integrablefunction on R. Then thefollowing
statements are equivalent:

(a) The.operator Hb is boundedfrom L(R) into BMO(R).
(b) The operator Hb is boundedfrom HI(R) into LI(R).
(c) Thefunction b equals to a constant almost everywhere.

Proof We first observe that both conditions, (2.4) of Theorem A and (2.6) of
Theorem B, are equivalent to (c). In fact, if we write (2.4) in our particular case, then
for any interval I and u 6 I, the inequality

(lj )] [b(x) bl dx 1.
u-y

(21)

f(y) dy

must hold for any f 6 Lc. Now for I and u 6 1 fixed, we take fn (Y) Xt (u
y) sg(u y), n 6N, obtaining- Ib(x) btl dx lu yl- dy < C,

Ill<_lu-yl<n

Letting n go to infinity we have b(x) b a.e. in I, and hence b must be constant
almost everywhere.

Similarly, condition (2.6) of. Theorem B can be written as

b(y)a(y) dy _<C,

where a is any atom supported in I and u i. Clearly this is impossible unless

ft b(y)a(y)dy 0 for every interval I and any atom a supported in I; that is, b must
be equal to a constant almost everywhere.

Next observe that ifwe assume b BMOwe may apply TheoremsA and B proving
our theorem. Therefore we only need to show that if either (a) or (b) holds then b
must be a BMO function. To do this, we first show that (a) and (b) are equivalent and
then, by interpolation, we may conclude that Hb is bounded on LP (R), < p < o,
and therefore, by the results in [C-R-W], b must belong to BMO.
We shall prove that under appropiate conditions on f and g,

Hbf(x)g(x)dx f f(X)Hbg(x)dx (3.2)
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holds. First, assume that f and g are smooth functions with compact support and let
K be the union of the supports of f and g. For almost every x, we have

Hbf(x)g(x) g(x) f b,x, b(y)
(f(y) f(x))dy

x-y
K

-t- g(x)f(x)p.v. f b(x, b(y,
dy

x--y
K

Gl(X) + g(x)f(X)Hb(X.K)(x).

Since IGl(x)l IIf’llllgll(Ib(x)llKI + fr Ibl)(x), then G1 6 L. Interchang-
ing the roles of f and g and substracting we get

Hbf(x)g(x) f(x)Hbg(x) f b(x) b(y)
x-y

K

(f(y)g(x) f(x)g(y))dy, (3.3)

where the second member is integrable in x. Then, since the integral is an antisym-
metric function of x and y, we have

(Hbf(x)g(x) f(X)Hbg(x))dx 0 (3.4)

Let us now assume that statement (a) in the theorem holds. Then for f and g
smooth functions with compact support, both Hbf and Hbg are BMO functions.
Thus Hbfg and fHbg are integrable functions and by (3.4) we have (3.2).

Now, in order to prove (b) it is enough to show that for any smooth atom f,
< C. Since Hbf is BMO, and therefore locally integrable, then

IIHbfllz, sup Hbf(x)g(x)dx (3.5)

where the supremum is taken over all smooth functions g with compact support and
Ilgll _< 1. Using (3.2) and (a) we get

Iln0fllL, _< sup J f(X)Hbg(x)dx

< sup Ilflln, IIHbglIBMO < CIIgllllfllt-l, <_ C’,

which proves (b).
Next, we shall show that (b) implies (a).
Let f and g smooth functions with compact support and assume f g(x)dx O.

Then g is a multiple of an atom and therefore fHbg belongs to L , which implies
(3.2). Let f L (not necessarely smooth) with f f(x)dx O.
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If tp is a nonnegative smooth function, with compact support and f o(x)dx 1,
then for fn (x) (f no(n.))(x) we have

Hbfn(x)g(x)dx f fn(X)Hbg(x)dx.

Since the functions fn belong to H and satisfy

(3.6)

limn fn (x f(x a.e.,

and

then by (b) and the Lebesgue bounded convergence theorem, taking the limit in (3.6),
we get (3.2) under our assumptions on f and g.

Finally we observe that (3.2) also holds if we assume that f Lc and g is a
smooth atom. In fact, if tp is as before we can write

The function h belongs to Lc and f hdx 0 and, on the other hand, s is smooth
and with compact support, so that (3.2) holds substituting h and s for f. Thus, (3.2)
is also true for f h + s. In order to estimate the BMO norm of Hbf we write

nbf llano sup f Hbf(x g(x)dx

where the supremum is taken over all smooth atoms g. By (3.2) and (b) we get

Ilnbfllno sup lf f(x)nbg(x)dxl
< sup IlfllllnbgllL’ < CIIfll,

ending the proof of the theorem.

Similarly for the commutators ofthe conjugate function we can prove the following
result.

(3.7) THEOREM.
are equivalent:

Let b be an integrablefunction on T. Thefollowing statements

(a) The operator Hb maps L(T) into BMO(T).
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(b) b maps H(T) into LI(T).
(c) b E BMOlog tl- (T).

Proof. As in the preceding theorem, duality arguments prove that (a) and (b) are
equivalent and by interpolation and the results in [C-R-W], b belongs to BMO(T).
Therefore by Theorem A we only need to show that (2.4) is equivalent to (c). In fact
if b BMOlog tl- (T) there exists a constant A such that for any interval I C T,

Ioglll fIII
Ib(x)- btldx <_ A. (3.8)

Then for I small enough, u 6 1 and f 6 L(T),

f(y) dyret( 2
r\2t

dy
_< CIIfllo

lu- Yl
Ill<lu-yl<2rt

< C log 2rr log III f IIo
< CI log III Ilfllo.

This estimate together with (3.6) gives that for any small interval I and u I,

,fII---l Ib(x) btldx
u y) f(y)dyf ct( 2

T-21

_< Cllfllo (3.9)

Conversely, if (b) satisfies (3.9), choosing f(y) sg(cot(-)) L(T) for u0
the center of I, we get

cot
uo . y) f(y)dy2 -f

T\21

dy

dy
>_ C

lu0- yl
2rt luo-yl> ll

>_ C([ log 2rr log Ill I)
>_ C[ log III

and hence (3.9) implies b

by
Application 2. Fractional integral operators. For 0 < ct < n, let la be defined

f(y)
If(x)

Ix yln-
dy.

R
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Then l,b will denote its commutator which, even if b is a locally integrable
function, is defined for f L by the integral

Ia,bf (X) f b(x) b(y)

Ix yln-a f(y)dy.

R

This follows from the fact that bf is an integrable function and hence l(bf) is
finite almost everywhere. Similarly we shall denote by I and l,b the finite measure
versions of these operators.

By applying Theorems A and B we can get the following results

(3.10) THEOREM. Let b be a locally integrablefunction onRn Then thefollowing
statements are equivalent:

(a) la,b maps LI into BMO(Rn).
(b) lot,b maps H (Rn) into L (Rn).
(c) b is constant almost everywhere.

Proof. By duality arguments, it is easy to see that (a) is equivalent to (b). Again
the main observation is that the equality

f l,b f(x) g(x) dx f f(x) l,b g(x) dx (3.11)
R R

holds if we assume either (a) or (b). In fact if f and g are bounded functions with
compact supports, Fubini’s theorem can be applied to the left hand side of (3.11)
giving the right one. For, on one side Ia(Ibfl) is an absolutely convergent integral
a.e., giving a function in weak L .--7 and hence locally integrable, while la(Ifl) is
locally bounded and therefore Ia (Ifl)Ibgl belongs to L (Rn). This is enough to prove
the equivalence between (a) and (b). Therefore, by interpolation, I,,b maps LP(Rn)
into Lq(Rn), 1/q 1/p ot/n for any < p < n/u, and hence b must belong to
BMO (see [Ch]). Now we are in the hypothesis of Theorem A and we may conclude
that if either (a) or (b) is assumed, b must satisfy the inequality (2.4). We pick the
functions

fN(Y) lU yl -’ X.,o,, (U Y)X,O, (Y)

By inserting them in (2.4) we obtain

for N e N.

l lu yl
Q IQl/"<lu-yl<N

ot/n

< C
lu yln

IQI t/" <lu-yl<N
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and therefore b must satisfy - Ib(x)- bo.ldx <_ C

for any cube Q and N large enough. Letting N - cx, it follows that b must be
constant almost evewhere.

As in the previous case the situation changes when we consider the finite measure
version I of this operator. In this case we obtain the following result.

(3.12) THEOREM. Let b be an integrable function on T. Then the following
statements are equivalent:

(a) Lot,b maps Ln/a (T) into BMO(T) boundedly.
(b) Iot,b maps Hi(T) into Ln/n-a)(T) boundedly.
(c) b BMOilogtW.-, (T).

The proof is omitted since it follows the same lines as Theorem (3.7), choosing
the functions fv as in the preceding theorem.

Application 3. Maximalfunctions. We shall consider now some maximal oper-
ators associated to smooth approximations to the identity. More precisely, let o(t),
> 0, be a non negative differentiable function such that for some 0 < ot < n,

(i)

(ii) Io’(t)l < ct-n-l+a;

o(t) is non-increasing, o : 0;

(iii) f qg(t)tn--a < o;

0

(iv) tp(t) <_ Ct-n+a.

(3.13)

Observe that condition (iv) is implied by the others three together.
We define the maximal function M, as

M,f(x) sup e-n+, If qg(Ix Yl/e)f(Y) dy
>0

Under the assumptions (3.10) it is easy to obtain the pointwise inequality

M,f(x)<Cn,(oqg(t)tn--adt)Mf(x) (3.14)
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where M is the fractional maximal function

Therefore, for f L"/‘, H61der’s inequality implies

Mo,, f(x) < CM,f(x) < C211flln/, (3.15)

showing that M0, maps Ln/(Rn) into L(Rn).
Now, given a function b BMO(Rn) we define the commutator type maximal

operator by

Mtp,a,bf(x) sup
,>o

-n+ot (b(x) b(y))tp(lx yl/)f(y)dy

In order to show that this operator is well defined for f Ln/ observe that from the
previous inequalities we get

IM,,bf(x)l <_ c2[b(x)[ Ilfll/ + M(bf)(x).

Since b BMO, b belongs locally to L for any r > 1. Choosing r > n/(n a)
and p such that 1/p 1/r + a/n it follows, by H61der’s inequality, that bf LP,
< p < n/a and consequently Ma(bf) Lq, 1/q lip -a/n and hince it is

finite almost everywhere.
Moreover for this commutator we have the following result.

THEOREM. Let b belong to BMO. Then:

(3.16) Ifb is a non-zero BMOfunction then M99,ot,b maps L/(Rn) into BMO(Rn).

(3.17) Mo,a,b maps HI(Rn) into Ln/(n-a)(Rn) if and only if b is a zero function in
BMO.

Proof. We shall apply the theory developed in Section 2, choosing E C,
F L(0, co) the operator defined by

q(Ix Yl/)f(Y) dY},>0
Clearly M,f(x) IIT,f(x)llF and from (3.14) we may conclude that T, is a
bounded operator from Lp into Lq(Rn, F), < p < n/a, 1/q 1/p- a/n, in
view of the LP Lq boundedness of the fractional maximal operator M,,. Moreover
it is given by K,(x, y) E(C, F), x # y,

K,a(x, y) {,-n+aqg(lx Yl/) ],>0’
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since by property (iv) of (3.13) we have

IIK,(x, Y)IlctC, F) sup e --n+ot tp(Ix yl/.) <_ CIx yl’-n.

Therefore Ko,a is locally integrable in Rn x Rn\{(x, x)}. Also this kernel satisfies
both D and (D)’. In fact, let Ix Yl > 2Ix x’l; then by the mean value theorem
and property (ii) in (3.13) we have

IIK,(x, y) Ko,o(x’, Y)IIZZ<C,F) sup -+lcp(Ix yl/.) -g0(Ix’- yl/)l
>0

< C sup-n+ Ix x’l/.
,>0 (Ix yl/2)+-

Ix -x’l< C
Ix yln+l-

Finally we observe that if b BMO, the commutator of To,,,b is given by

(To,a,bf)(x) b(x)To,of(x) To,a(bf)(x)

={.-n+’f(b(xl-b(Yllo(Ix-yl/.lf(y)dy},>o
and consequently

T,,bf(x)ll F Mtp,a,bf (x).

Since for any F-valued function g is true that g BMO(R", F) implies that IIg
belongs to BMO(Rn) with IIglIFIIMo <_ IlgllOl,F, in order to prove (3.16) it
will be enough to show that

By Theorem A of Section 2 this is equivalent to the following condition"
For any cube Q and u e Q the inequality

Ib(x) baldx
a

Ko,o (u, y)f(y)dy

(2Q)"

<_ CIIfll,,/,

holds with C independent of Q, u, and f. But this is equivalent to saying

Ib(x) baldx Mo,af(X(2Q),)(u) <_ CIIfll,,/.
Q

Since b BMO and, by (3.15) Mo, is bounded from L"/’ into L, the latter
inequality holds proving (3.16).
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In order to prove (3.17) we observe that M,,b maps H (Rn) into L"/<"-) (R") if
and only if T,,b maps H (R") into L"/"-) (R", F). By Theorem B this is equivalent
to the following condition:

For any atom a with support in a cube Q and u Q the inequality

n/(n-a)

f K,(x,u) f b(y) a(y) dy dx < C

(2Q)C Q F

holds for a constant C independent of a, Q and u. But that is to say
n (n-o

fb(y)a(y)dy yl/e)]n/("-dx C. (3.18)[sup a-no(lx
Q (2Q)

Now by (i) of (3.13) there is to > 0 such that O(to) ’ > 0. Then, by taking
Ix u[/toon one hand, and using (iv) again on the other hand we get

C[x ul-n < sup ea-no(lx ul/e) < C21x ul-n.

Therefore (3.18) is equivalent to

b(y) a(y)dy

n/(n-t)

Ix-ul-ndx C.

(2Q)

This implies that f b(y)a(y) dy must be zero for any atom and therefore b must
be constant almost everywhere. [21

As in the previous examples we may consider the periodic version of the operator
M0, acting on functions defined on the n-dimensional torus. In this case a wider
class of functions b gives rise to bounded commutators from H into Ln/(n-a). More
precisely:

THEOREM. Let b BMO(Tn). Then

(3.19) mo,ot,b maps Ln/a(Tn) into BMO(T") and

(3.20) Mo,,b maps HI(Tn) into Ln/(n-a)(Tn) ifonly ifb BMOllog tW,,-,(Tn).

The proof of (3.19) is the same as in the previous case. For (3.20) we just observe
that arguing as above, the inequality (3.18) is equivalent to asking that for any atom
a supported in a cube Q,

(fa b(y) a(y)dy)llog IQll-a/n<C. (3.21)
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Now, if we let p(t) 1/l log tl l-a/n, the function ’(y) a(y)/p(lQI) is a
p-atom in the sense that it has zero average, is supported in Q and

I1’11oo _< (IQIp(IQI))-.
Therefore (3.21) is equivalent to say that b belongs to the dual of the atomic space

generated by the p-atoms which can be identified with BMOp (see [V]).

Application 4. Maximal operators acting on vector valuedfunctions. From the
previous examples we may conclude that commutators for integral and maximal
operators behave similarly on H 1. However, the picture is completely different on
the other edge Ln/t.

In the sequel we will try to show how the gap narrows when we allow the operator
M0, to act on vector valued functions.

To this end we introduce the operators M0, and M0,,b acting on sequence valued
functions f(x) (j(X))jN"

Mo,af(x) (Mo,ofj(x))jN

M.,.,,f(x) (Mo,u,l, fj(x))jN

With this notation we have the following results.

(3.22) THEOREM. Let 0 < < n, o afunction satisfying (3.13) and b a locally
integrablefunction. For the operator M,a,b we have:

(3.23) M0,,,b maps Ln/(Rn, g.r) into BMO(Rn, r) provided b BMO(R) and
n/ot < r <_ c.

(3.24) Mo,o.t, maps Ln/a (Tn g.r) intoBMO(Tn g.r) providedb BMO log till,-’/r (Tn)
and < r < n/ot.

Proof. We consider the operator T0, introduced in the proof of the previous
theorem acting now on sequences of functions; that is, for f (3’))jN we set

To,af (x) (To,u3(x))jN.

It follows inmediately that the associated kernel Ko,a is given by

o,a(x,y)(otj)jN=(lu-ngo( Ix-yl) Ofj }>0)
jN

and that it satisfies both D and (D)’ conditions.
Moreover it follows from (3.14) and from the vector valued singular integrals

theory in [RdeF-R-T] that the operator T, is bounded from Lp (In er) into Lq (Rn
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.r(L(O, o)) for < p < n/ot, 1/q l/p -ot/n. Therefore given a function
b BMO we may apply the theorem of Section 2 for E e and F e (L (0, cx)),
< r < c, to the commutator

To,a,b f(x) b(x)(To,af)(x) To,a(b(.)f(.))(x)

(To,a,b(fj)(X))jN.

As in the proof of the previous theorem we observe that (3.23) will be true as
soon as we can show that T,,,b maps Ln/(R", er) into BMO(R", e’(L(O, o)),
n/a < r < o. According to Theorem A it will be enough to check that for any cube
Q and any u e Q,

-1 Ibfx) bol dx

Q I( f Ko,. (u, y) fj (y) dyt2Q)c j er(L)

(3.25)

Now it is easy to see from (3.14) and the boundedness L"/’ ---> L for the fractional
maximal function that the operator M0, maps L"/’ (Rn, P/") into L (R, e"/), also
Ln/t (Rn e) into L(R, o). Therefore, by interpolation, M0, is bounded from
L"/’(Rn er) into L(Rn e.r) ifn/ot < r < cx and hence T0, maps L"/’(R" er) into
L(Rn e (L(0, cx)). This implies that (3.25) holds in this case for any b BMO.

For the periodic case let us take r such that < r < n/a. Now, with the previous
notation, statement (3.24) would hold if we are able to prove the inequality

sup
ueQ I--Q- Ib(x) bQI dx Ko,,(u, y) f(y) dy)

Q T.

CIIfllL"/,(er).
er(L)

(3.26)

But for u e Q we have

f K,,(u, y)f(y)dyll
T" \2Q er(Lo

>0 Tn\2Qf -n e )(y)dy

<C

j

t (l,u-y, t ,,r

(sup e-no If(y)l dy
>0

T"\2Q j
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<C f lu- ylar-n IJlr(y)dyIT"\2Q

l/r

where we have used the size condition on qg.
> we may use H61der’s inequality in the last expresion toNow since s 7

bound it by

T"\2Q

C lu YI-" dy

"\2Q

< C(log IQt) /r-/n II(f)jllL,,/(er).

Therefore (3.26) will be true as long as

(log IQI) l/r-a/n fQ--- Ib(x) bl dx < C

Q

but this is exactly our assumption on b.

Comment. It should be observed that for the "vectorial" commutator T,a,b, used
in the proof of the above theorem, we could get a complete characterization of the
functions b; that means we could get "if and only if" results in the whole range of
r’s. The main obstacle to transfer the "only if" part to the maximal operator lies in
the fact that for g a measurable F-valued function it is no longer true that

IIg(x)IIFIIMotR") IIglIaotR",F)

as in the LP case. Indeed only the less than or equal part is valid and that is the
clue in proving the BMO-boundedness of the commutators appearing in the last two
theorems.

It might be of some interest to explicit the full class of functions b that can be
obtained for the "vectorial commutator T,,b".
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THEOREM. Let b BMO and T,,b the commutator defined obove. Then:

(3.27) For < r < n/ot, ,,, maps Ln/u(Rn, gr(0, o)) into BMO(Rn, g(O, o))
ifand only ifb equals to a constant.

(3.28) For < r < n/ot, To,,, maps Ln/a(Tn, gr(L(0, cx))) into BMO(Tn,
o)) ifand only ifb BMOlog tlu/,,-,/r(Tn).

(3.29) For nlot < r < o, To,a,, is bounded as aboveforany b BMO in the periodic
and non periodic case.

Proof We only need to prove the "only if" parts of (3.27) and (3.28) since the
others are either trivial or they are already contained in the previous theorems.

Let us start by (3.28). For a given k we consider the cube Q Q(0, 2-k) and we
define a sequence of functions by

fj(x) 2JUXQ(O,2-j)\Q(O,2-j-,)(x) if0 < j < k-

3’) (x) ----0 if j > k.

Easy calculations show that

(J)IIL"/(T",er) k/n.

Furthermore for u Q, Mj (u) > C > 0, 0 < j < k 1, and hence

IMfj(u)[ > Ckl/r.

Therefore noticing that log ]QI -kCn, we have

f --flb(x)-boldxIQI ]log IQ]I=/-/ Ib(x)-bal dx Cnk-u/n+l/r
Ial

Q Q

< Ck-a/nllbllBM0( [Ma3(u)ir) l/r

for any u 6 Q. Now, by Theorem A, our assumption on Tb implies that the last
expresion must be bounded by

Cllbllao k-=/ll(f)ll,,/tr,,,e,) <_ C Ilbllto.
Since this argument may be repeated for any cube Q c Tn, b must belong to

BMOlog tl/,,-/r(Zn).
Finally for (3.27) we consider a cube Q Q(0, r) and a positive integer N. Let

us denote by Or the cube Q(0, 2kr) and choose the sequence fk defined by

fk(x) r-a2-ka(Q,.\,Q,._, (X) if < k < N

fk(x) ----0 if k > N.
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The same computations as above show that

NUln(A L,,/, (I,.e,

while for any u Q,

}
l/r

(Mafk(U))
k

> CNI/r

Therefore Theorem A applied to our situation implies that for any cube Q c Q,

1_ Ib(x) bo.I dx < CNa/n-l/r.

a

Letting N go to infinity and using < r < n/a we get

I-_ Ib(x)-bo.I dx

Since this conclusion holds for any cube it follows that b must be constant almost
everywhere.
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