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ABEL SUMMABILITY OF THE AUTOREGRESSIVE SERIES
FOR THE BEST LINEAR LEAST SQUARES PREDICTORS

M. L. HUANG, R. A. KERMAN AND Y. WElT

I. Introduction

Let (f2, .T, P) be a probability space. Denote by L2(f2, .T’, P) the Hilbert space
of complex-valued random variables X, with expectation E(X) f X dP 0
and variance E(IXI2) < cx, having inner product (X, Y) E(X). A sequence of
random variables {Xk}k=- in L2(f2, .T, P) is a weakly stationary stochastic process
(WSSP) if for all k, Z, the second moment E(XkXk+I) depends only on 1. The
covariance function K (l) E(XkX+I) thus defined is nonnegative definite and so

(1.1) K (1) fr e-ilO dF(ei), Z

for an essentially unique function F,which is bounded and nondecreasing in 0 on
T ----[-n’, rr).

Given n > 1, the best linear least squares predictor of Xn, based on past and
present observations, is defined to be the orthogonal projection of Xn on M
pp{X, k < 0}, the closed linear span of X-2, X_, Xo. The projection is denoted
by Xn. We assume the WSSP {Xk}%_ is purely nondeterministic, in the sense that
tqm=oS-{X, k < -m} {0}. This guarantees that Xn M for all n > and that
the function F in (1.1) is absolutely continuous with respect to Lebesgue measure on
T, dF(ei) w(ei)dO. Moreover, the function w(ei), the spectral density of the
WSSP, can be expressed in the form w(ei) I(ei)12, where the so-called optimal
factor (z) is an outer function in the Hardy space H2(D) on the unit disk
D {z C" Izl < and has no zero in D. See [5, pp. 53, 69].

The Spectral Theorem for unitary operators yields a Hilbert space isomorphism
between the time domain L2 (f2, .T, P) and the spectral domain

L2(w) f: Ilfll := If(ei)12w(ei) dO < t:x3

in which X... e-ik, k 0, +l, 4-2 see [2, p. 241]. Denote by ,, the
image of X, n > 1, under the isomorphism, so that tn is the projection of e-in
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on {eik, k > 0}. In this context, it is of interest to express Cn in a series of the
form 7-=0 at,ei’ which, if valid, leads to the (autoregressive) series representation
Y=0 akX_k of -n. (We emphasize that {ei’ },=0 is not an orthogonal sequence in
L2(w), unless w _---- 1.)

Akutowicz [1] was the first to consider the above question, proposing for the
coefficient a, ak (n) the formula

k

(1.2) a, y Cn+jdk_j k O, 1, 2
j=0

where the ck and dk are, respectively, the Taylor coefficients of the optimal factor
4 and its recipr_.ocal 1/4. Wiener and Masani [15] proved the autoregressive series
converges to Xn in L2(, .T’, P) for all n > if w, 1/w L(T). Masani [7] later
showed w L(T) and 1/w L’(T) are enough. More recently, Pourahmadi
[10] obtained the sufficiency of the Az condition, where w is said to satisfy the Ap
condition, < p < x, or to be in the class Ap, if

dO][11 fl w(ei)dO] [’( fl to(ei)
p-1

<C;

here the constant C > 0 is independent of the interval I C T with Lebesgue measure
II I. Finally, Pourahmadi used a result of Rosenblum 11 to prove the autoregressive
series Abel-summable to ’n in L2(f2, .T’, P) provided to satisfies a condition of
Helson-Sarason-Szeg6 [3], [4], which is equivalent to to(ei)/Ip(ei) 12 in A2for some
analytic polynomial p(z) with all its roots on T. See [9].
We here characterize, in terms of their optimal factor 4, those WSSP’s whose

autoregressive series are mean-summable in the sense of Abel. The criterion, given
in Theorem 2.2, requires, in a certain sense, the (pointwise) invertibiliW of 4 in
L2(T). A size condition for this invertibility is proved in Theorem 2.4. The latter
condition yields all past results and some significant improvements. Thus, it is shown
in Theorem 3.1 that the autoregressive series are mean Abel-summable for all w
in A t_Jp> Ap, which includes densities satisfying the Helson-Sarason-Szeg6
condition.

2. The basic theorems

Let

(z) E.=- cz(.1) ,)(,n Z n 1,2
znf])(Z)

where (z) Y=0 ck zk is the optimal factor of the spectral density to. One readily
sees that the kth Taylor coefficient of this analytic function on D is ak a, (n.) in
(1.2). We begin with the following representation of the spectral isomorph of X, in
terms of the boundary values of
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LEMMA 2.1. The spectral isomorph, qbn(ei), of the best linear least squares
predictor Xn is given by

n (eiO) Xn (ei), n 1, 2

Proof. Since e-inO is the spectral isomorph of the random variable Xn, we have
to show n(eiO) ": e-inO Xn(eiO) is orthogonal, in L2(w), to -p{eilO, k > 0} or,
equivalently, to every function eik, k > O. But

=0,

for every k >_ 0 and n > 1.

Ourmain result concerning the mean Abel-summability ofthe autoregressive series
for Xn is the following:

THEOREM 2.2. Suppose {Xk}k%_ is a purely nondeterministic WSSP, whose
spectral density w has optimal factor cP(z) _j=o CjZ Given fixed n > and
r, 0 < r < 1, define

r, y rkakX-k, ak ak(n) as in (1.2)
k=0

to be the rth Abel mean of the autoregressive seriesfor the best linear least squares
predictor, Xn, ofXn. Set

n-I

cj zj Pn (Z)qn (z),
j=0

where pn(z) I-Ill=l(1 -e-iz)n’ (with pn(z) 1, iflo O)and Iqn(z)] > O on T.
Then, in order that

(2.2) lim f Ir) .n 12 dP 0,
r----> Ja

it is necessary and sufficient that

2

lim fr (ei) Ipn(ei)12 dO O,
r l_ dp(reiO)
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or, equivalently, that

(2.3)
(eiO) 12 12 fr 12lim IPn(eiO) dO= IP,(ei) dO.

r-+ l_ q(reiO)

Proof. It follows from the isomorphism between the time and spectral domains
of the WSSP and Lemma 2.1 that (2.2) holds if and only if

(2.4) lim f IXn(rei) Xn(ei)12w(ei dO O,
r---> l_ Jr

with X,, (z) given by (2.1). From (2.1) again,

-inO -inO n-

Xn(reiO].
e e

rn rn(reiO) E rJcjeiJ"
j=0

Clearly, limrl_ (e-in/r") e-in in L2(w), which means (2.4) holds if only if

limfrlXn(reiO )
e-in

r-*, l_ rn

2

(Xn(eiO) e-inO)l w(ei) dO O.

Again, p 6 H2(D) implies 1/4 belongs to the Nevanlinna class, so [13, p. 346]

1
lim
r-+l_ (reiO) (ei)

aoSo

and hence

lim [Xn(reiO) e-in ] (eiO e-inO
r--+ 1_ rn )(.n

Therefore, by [12, p. 126, problem 16], (2.4) reduces to

as

e-inO
gn(reiO)

rn

2

w(ei)dO--" fT IXn(eiO)-e-in12w(ei)dO’
or

((eiO) 12((reiO)
Ipn(rei)qn(rei)12 dO fT }P"(ei)q"(ei)12 dO=L.

We first prove the necessity of (2.3) for (2.2). Observe that

(2.6) Ipn(rei)]2 ’I[(1--r):W4rsin2 (O,--,O(,)]n’
/--’1 2
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SO

rn +...+n
2 2

[pn(ei)qn(rei)[2 <_ (ei),
qb (reiO Pn (rei)qn (reiO) 12

This means (2.5), and hence (2.2), implies

(2.7) lim fr qb(eiO ]2 12qb(reiO) Ipn(ei)qn(reiO) dO L,

since, by Fatou’s Lemma,

(eiO) 12 124(reiO)
IPn(ei)qn(rei) dO

_< limfr 4(ei)lZr-l_ qb(reiO) Ipn(ei)qn(rei)12 dO

< limr-n’+’"+n’o) fT q(ei) 12r--+l_ (reiO)
Ipn(rei)qn(rei)12 dO=L.

Next, (2.7) is equivalent to

(2.8)
(eiO) 12 12qb(reiO) Ipn(eiO)qn(ei) dO L.

Indeed,

(2.9) lim fr qb(eiO 2
2 (eiO 2

(reiO
Ipn(reiO) Iq.(rei) qn dO=O

is implied by either (2.7) or (2.8), as the left side of (2.9) is dominated by both

lim
qn(eiO)
qn(reiO)

2 dp(eiO [2(.reiO [pn(ei)qn(rei) dO 0

and

lim
q(rei) llE fr (ei) 2

r-l_ qn(eiO qb(reiO)
Ipn(eiO)qn(eiO)l 2

dO O.

Finally, we claim (2.8) is, in turn, equivalent to (2.3). Thus, [12, p. 89, problem 9]
ensures that, given (2.8),

qb(eiO) 12qb(reiO) Ipn(eiO)qn(eiO)[ 2
dO fe Ipn(ei)qn(ei)12 dO
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for all measurable E C T and so

(eiO)
(reiO)

Ipn(ei)qn(ei)S(ei)12 dO fE Ipn(ei)qn(ei)S(ei)12 dO

for every simple function S on T. But, 1/qn (ei) is the uniform limit on T of such
functions, whence (2.3) follows. The same argument yields (2.8) given (2.3).

To obtain the sufficiency of (2.3) for (2.2), we show (2.3) implies (2.5) and so
(2.2). To begin, we prove that for each N Z+,

lim (1 r)2nt I
r---> 1_ J[O-O! I<N(1-r)

(eiO)
q(reiO)

2

d0=0,

10. Fixing and e > 0, we notice, in view of (2.6), that

(1 r)2nt flo_otl<_N(l_r qb(eiO 2

(reiO)
dO < C fo (eiO) 2

12
-OII<N l-r) p(rei) [pn(ei) dO

< Clio (eiO) 2

12
-0,1<_ b(..ei.b) [pn(eiO) dO,

provided r is sufficiently close to 1. By 12, p. 89, problem 9], (2.3) guarantees

(2.11) lim (1 -r)2n’l
r-+ 1_ JlO-Otl<N(l-r)

(eiO)
(reiO)

dO < C Ipn(ei)l 2
dO.

As the right side of (2.11) goes to 0 with e, (2.10) follows.
Now, by Fatou’s Lemma,

qb(eiO) 12 2

(reio) [pn(rei)qn(rei)l dO>L.

Therefore, it only remains to prove that (2.3) forces

(2.12) r-l_lim fr (eiO)
(reiO)

Ipn(rei)qn(rei)12 dO < L.

Tothisend, fix N Z+ and let E (Ol) := {0 T: i0--011 < N(1--r)},l lo.
The left side of (2.5) can be written as

(0) (00) -UE(0)

Ii (r) +... d- Ito (r) h- J(r).

dp (eiO)
(reiO)

Ipn(rei)qn(rei)[2 dO
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But,

lim It(r) =O, l= lo,
r---> 1_

by (2.6) and (2.10). Again, we see, from (2.6), there exists C > 0, independent of r
and N, such that

J(r)< r+-- (eiO) 12ireio Ipn(ei)qn(rei)[2 dO.

Since (2.7) holds whenever (2.3) does,

qb(eiO [2(reiO)
Ipn(rei)qn(rei)12 C )nl-t-"’-I-nldO<_ 1+---

Since N Z+ was arbitrary, we have proved (2.12).

An argument similar to the one used above to show (2.8) implies (2.3) yields:

COROLLARY 2.3. Let X’n, "nr) and q be as in Theorem 2.2. Then

lim f I,(r)- LI2

r---> l_
dP O,n l,2

provided

(2.13) r--l_lim fr (ei)12 fT(reiO
dO dO 2:r.

A size condition sufficient for (2.2) can be given in terms of the geometric maximal
operator, which is defined at a function f, positive a.e. on T, by

(Gf)(ei):= sup exp[1 f ]ei.IcT ]- log If (eit)l dt eiO 6T.

THEOREM 2.4. Let X"n, ’nr), w and Pn be as in Theorem 2.2. Then,

lim ff [,(r)- LI2
dP =0, n 1,2

r---> I_

whenever

(2.14) w(ei)(Gw-l)(eiO) [pn(eiO)12 dO < cxz.
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Proof.

We have

To apply Theorem 2.2, we must show that, given (2.14),

fr lp.(e)l2
dO lim fTr--+ l_

(eiO)
c(reiO)

Ipn(ei)12 dO

,_lim fr w(ei)[4(rei)l- IP"e’)lz dO.

lim 14re,O)l- iOe0)l- w(eiO)-l,

since b 6 H2(D). Thus, it suffices to get

(2.15) 14(rei)[ -z < (Gw-/2)(ei)2 (Gw-)(ei),

for then (2.3), and so (2.2), would follow from (2.14) by the dominated convergence
theorem.

From [5, pp. 62-63], the outer function b- is given by

[lfTeit+z (eit)- ]tp(z)-l=.exp
ei z

lg l4 dt

with the constant ) 6 C, I.l 1. A short calculation yields

where

z reiO,

tp(z)- ,kc exp Pr(e log ]q at

Pr(eit)
1 r2

1 2r cos + r2’

and Il- 1, whence

14(z)-l exp - Pr(ei(-t)) log 14(eit)- dt

We need only prove (2.15) for 0 O, that is, z r. Setting

f(eit) log 14(eit)-1 I,

we have

1 fT (eit (eitlog [(r)-[ Pr f dt

1_ [Pr(e’)f (e") + Pr(e-t)f(e-i’)] dt
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f(eiS)ds Pr(eit)l0 +"2 i<_t i<_t
0

2zr <_t
0

f(eis) ds d(-Pr(eit)),

f (eis) ds d(-Pr(eit))

because

f(eis) as fr log I(eit)- dt log Iq(0)- -log I(0)1 0.

So

where

[fOr (l is f(eiS)ds)dv(t)]
dr(t) td(-Pr(eit))

is a positive measure on [0, zr for which

dr(t)-- Pr(eit) dt 1.

Jensen’s inequality with the convex function ex gives

fo
r

(1 fs f(eiS)ds) dr(t)I(r)-ll _< exp
I--<t

(’ )_< exp ,gl<e"-l d du(t)

_< (Gw-1/2)(0) du(t) (Gw-/)(O)

or

Iq(r)1-2 < (Gw-l)(O).

3. A weights

In this section we consider weights w(ei) satisfying the Am condition

w(eiO) dO < C
! q-i-f d

w(eiO) dO,
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in which e > 0 is fixed and C > 0 is independent of the interval I C T and its
measurable subsets E. It was shown in [8] that the class, A, of all such weights
satisfies

A U Ap.
p>l

Moreover, Hrustev [6] proved w is in A if and only if

(3.1) II--l w dO exp ] log lv(ei)-1 dO < C

for all intervals I C T.

THEOREM 3.1. Let Xn and "(nr) be as in Theorem 2.2. Then

lim fa I(nr)-- vnl2 dP 0, n 1,2

whenever w is in Ao.

Proof According to [14] and [15],

fr(Gf)(ei)w(ei)dO < C fr ]f (ei)l w(ei)dO

for all f if and only if (3.1) holds. Thus, for w in Ao,

fr IPn(eiO)lg (Gw-1)(ei)w(ei) dO < C fr(Gw-1)(ei)w(ei) dO
C _fr w(ei)-lw(ei)dO

< C<o.

That is, when w belongs to Ao, condition (2.14) of Theorem 2.4, which is sufficient
for (2.2), holds.

It is not difficult to show that a weight satisfying the Helson-Sarason-Szegt condi-
tion is in Ao, so Theorem 3.1 yields the result ofPourahmadi stated in the introduction.

Example 3.1. The outer function

(z) (1 z)

is in H2(D) if and only if/ > -1/2. For such/, the corresponding density

w(eiO) I1 eil2 4sin

is in A; indeed, wE is in Ap wherever p > 21 + 1.
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Example 3.2. The density determined by the outer function

1 ]-1(z) z(1 z) -1/2 log ’- z

in H2(D) is

w(ei) =4-1 sin log
2 sin (-)

-2

This weight satisfies (2.2) for n 1, 2 but is not in A. The first assertion is a
consequence of (2.13), which holds in view of the fact that a.e. on T

lim
dP(eiO) 12qb(reiO)

=1

and

(ei) 12 [. 0 ]
-I

< C sln() log
dp(reiO)

We show w is not in Ap for any p > and hence not in A. To this end, fix
p, < p < cx. Then, for0 < 0 < zr/2,

0 -1 ll)(eit) dt > CO-1 log

while

[o-l fo W(eit)-p- dt]
p-I

so their product is unbounded on T.
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