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Introduction
In [8] it was shown by a complicated argument that for two (context free)

languages L1 and L2, it is recursively unsolvable whether there exists a com-
plete sequential machine mapping L1 into L2. Now an alternative (and quite
simple) proof of this fact would follow from verification of the following con-
jecture" It is recursively unsolvable whether a language contains an ultimately
periodic sequence. (For the language {a"/n >_ 1} can be mapped into an
arbitrary language L by a complete sequential machine if and only if L
contains an ultimately periodic sequence.) This conjecture and its analogue
for sequences in general are herein verified. They provide the motivation
for the study of sequences in languages.
The paper is divided into three sections. Section 1 reviews the terminology

of languages. In Section 2 it is shown that whether a language contains
a given sequence is in general unsolvable, but that whether a language con-
rains a given ultimately periodic sequence is solvable. The unsolvability of
whether a language contains a sequence and whether a language contains an
ultimately periodic sequence are also demonstrated here. Section 3 is con-
cerned with sequences D having the property that there is a language con-
raining D and no other sequence. (Such a sequence is called distinguished.)
It is first shown that every distinguished sequence is recursive. Then a
method of generating recursive sequences which are not distinguished is
exhibited. Finally, it is shown that there are languages which contain
sequences but no recursive sequence.

1. Preliminaries

Let 2; be a finite nonempty set and let 0(2;) be the free semigroup with
identity e generated by 2;. (Thus 0(2;) is the set of all words over 2;, and e
is the empty word.) We shall be considering certain subsets of 0(2;) which
are called "context free languages", or "languages" for short. These lan-
guages arose in the study of natural languages [2] and have been shown to be
identical with the components in the "ALGOL-like" artificial languages which
occur in data processing [6].
A grammar G is a 4-tuple (V, 2;, P, ), where V is a finite set, 2; is a subset

of V, is an element of V 2;, and P is a finite set of ordered pairs of the
form (, w) with in V 2; and w in 0(V). P is called the set of productions
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of G. An element (, w) in P is denoted by -- w. If x and y arein 0(V),
then we write x y if either x y or there exists a sequence

x xl,x2, ...,xn y

(n > 1) of elements in O(V) with the following property. For each i < n
there exist ai bi wi such that x a b x+l aiwi bi and i- w.
The language generated by G, denoted by L(G), is the set of words

A context free language (over 2) is a language L(G) generated by some grammar
G (V, 2, P, ). Unless otherwise stated, by a language we shall always
mean a context free language.

If A and B are subsets of 0(2), then the set of words {ab/a in A, b in B/ is
called the product of A and B and is written AB. If A (or B) consists of
just one word, say A {a} (B {b}), then aB (Ab) is written instead of AB.

If A and B are languages, then so are AB, A u B, and A* [1].
The family of regular sets is characterized as the smallest family of subsets

of 0(2;) containing the finite sets and closed under the operations of union,
product, and * [10]. Each regular set is a language [3].

Let xl, ..., x, (writtenx x ...) be an infinite sequence of
elements of 2. A set H of words is said to contain the sequence x x, if
H contains the word x x for each i. H is said to contain a sequence if H
contains some sequence xl x .... Clearly, containment of a sequence
corresponds to containment of a set of words closed under initial segmenta-
tion in which there is exactly one word of each positive length.
We are interested in establishing (a) the unsolvability of whether an

arbitrary language contains a sequence, and (b) the unsolvability of whether
an arbitrary language contains an ultimately periodic sequence. We shall
demonstrate (a) and (b) as well as a number of related results.

2. Solvability questions
We first consider the solvability of whether an arbitrary language contains

a specific sequence. We exhibit one set of sequences for which it is unsolvable
and another for which it is solvable. Then we show that it is unsolvable
whether an arbitrary language contains a sequence and whether an arbitrary
language contains an u.p. sequence.

LEMMA 2.1. There exists a sequence D such that it is recursively unsolvable
whether an arbitrary language over a three letter alphabet contains D.

Proof. Let F be the set of all sequences of the form cw cw. cw ..., where

If A is a set of words, then A* =Jff A, where A {} and Ai+ AA for >_ 0.
A sequence x x is said to be ultimately periodic (abbreviated u.p.) if there

exist positive integers no and p such that x+ x. for n >_ no.
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[Ji=l wi 0(a, b). Given a language M 0(a, b), consider

L(M) Init [(cM)*].4
If M O(a, b), then L(M) contains D for every D in F. If M O(a, b), then
L(M) contains D for no D in F. Since it is unsolvable whether M O(a, b)
for an arbitrary language M

_
O(a, b) [1], it is unsolvable whether L(M),thus

an arbitrary language, contains D for some specific (or even one) D in F.

THEOREM 2.1. There exists a sequence D such that it is recursively unsolv-
able whether an arbitrary language over a two letter alphabet contains D.

Proof. Let a, b, c, d, and e be distinct letters. Let be the function on
O(a, b, c) defined by (e) e, (a) de, r(b) d2e, -(c) d3e, and

(... x) (x) (x),

each x in {a, b, c}. It is known [1] that preserves languages. For each
letter x and each set A of words let

Init(A) {wx/wxy in A for some word y}.

It is readily seen that Init,(A) is a language if A is. Let P
language. Then L(P) (P) o Initd(r(P) is a language. For each
sequence D xl..- x ..., xi in {a, b, c}, let r(D) r(Xl) r(x) -.-.
Clearly P contains a sequence D if and only if L(P) contains Init(r(D) ). By
Lemma 2.1, the former is unsolvable. Thus the latter is unsolvable and the
theorem follows.
We next show that it is solvable whether a language contains a given u.p.

sequence.

LEMMA 2.2. Given words wl, w2, w, it is recursively solvable whether an.
arbitrary language L contains wl w2

Proof. If w e, then it is recursively solvable whether wl w8 is in L..Suppose that w v. Since wlw w3 is regular and L is a language,,
A wl w w a L is a language and effectively calculable from L [1]. Since

* it suffices to show that whether Awl w2 w8 L if and only if A w w. w3,,
and wl w2 w8 are equal is solvable. Let r () be the operation which
word x into x if x w x (x xl ws) and into otherwise. Then A and

* 71(A) is a languagewl w w are equal if and only if r ,I(A) w2 Now
and effectively calculable from A [7]. Since w # e, w y y,, y in 2.

For sequence x x of symbols in

Init(x x...) {x Xn/n 1}.

Thus sequence D is contained in set of words H if nd only if Init(D)
word w, Init(w) {u/u , uv w for some v}. For set H of words,
Init(H) [JiH Init(w). It is known [7] that Init(L) is lnguge if L is.
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Consider the generalized sequential machine

S (K, 2, {a}, i, h, pl),

where K /Pl, pr}, ),(p, y) for i r, k(pr, y) a, i(p, y) p+
fori < r, andti(p,y) p,yin2. Then

S[r.r(A)]= {ak/w in r(A)}.

Since r. r(A is a language, S[r rl(A )] is a language and effectively calculable
from . v(A) and S. From [6], a language on one letter is a regular set and is.effectively calculable as a regular set. But A wl w w3 if and only if
S[. r(A)] a*. Now it is solvable whether two regular sets are equal [10].
Thus it is solvable whether S[r rl(A)] a*. Hence the result.

THEOREM 2.2 Given an u.p. sequence D, it is solvable whether an arbitrary
language contains D.

Proof. LetDbeanu.p. sequence. ThenD- w(a.., a)(a.., a,) ...,
each a in 2, for some word w and some p >_ 1. For any language L, L contains
D if and only if L contains each of the following p 1 sets"

Init(w), w(al a) *, wa(a a a) *, wa a:(aa a a as)*,
wa a_(a, a a,_)*.

It is solvable whether an arbitrary language contains Init(w) since Init(w) is
finite and it is solvable whether a language contains a given word. Each of
the other inclusions is solvable by Lemma 2.2. Thus whether L contains D
is solvable.
We now turn to the problem of determining whether an arbitrary language

contains a sequence (u.p. sequence).

Notation. Let+ and (x-..x)+ x...x,eachxin2;.

LEMMA 2.3. Let be a (possibly infinite) alphabet. If it is decidable whether
an arbitrary language whose alphabet is included in contains a sequence (u.p.

A generalized sequential machine S is a 6-tuple (K, 2:, A, , , p) where (i) K is a
finite nonempty set (of "states"); (ii) 2 is a finite nonempty set (of "inputs"); (iii)
A is a finite nonempty set (of "outputs"); (iv) isa mappingof K X 2 into K (the "next
state" function); (v) is a mapping of K X 2: into 0(A) (the "output" function); and
(vi) p is an element of K (the "start" state). A complete sequential machine is a gen-
eralized sequential machine in which maps K X 2: into A.
ExtendandktoK X 0(2) asfollows. Let (q, ) q and ,(q, ) . For

each word w x+, each x in 2:, let

(q, x x+) [(q, x x), x+]
and

X(q, x x+) (q, x x)X[(q, x x), x+].

For each word w, let S(w) X(p, w). For each set L, let S(L) {S(w)/w in L}.
It is known that S (L) is a language if L is, and is effectively calculable from L [7].
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sequence), then it is solvable whether the intersection of a pair of languages whose
alphabets are included in 2; contains a sequence u.p. sequence).

Proof. Let X and Y be given languages with alphabets included in2, and
let 2;1 be the union of their alphabets. Let r and r be the mappings of
0(2;1) into 0(2;1) defined by

and(xl ..x) =xl...x,n> landeachTI(Xl Xn) Xl Xn--1 Xn
xi in 2;1. By [1], r preserves languages. The function rl also preserves
languages. For let r3 be the function defined by r3() , ra(xl) xl, and
r(xl...x) xlx...x,n> l and each xi in 2;1. Let S be the general-
ized sequential machine ({pl, p2}, 2;1, 2;1, 8, k, pl) with (pl, x)
8(p., x) p, h(pl, x) x, and h(p, x) x’, x in 2;1. Since ra(w) S(w)
for w in 0(21) and S preserves languages, ra preserves languages. Now
rl(M) r3(M+)+, and the operation + preserves languages [1]. Thus
preserves languages.

Since rl and r preserve languages, rl(X) u r(Y) is a language with alphabet
a subset of 2;. Clearly X a Y contains a sequence (u.p. sequence) if and only if
rl(X) t (Y) contains a sequence (u.p. sequence). If it is decidable whether
an arbitrary language whose alphabet is included in X, hence rl(X) r(Y),
contains a sequence (u.p. sequence), then it is solvable whether X a Ycon-
rains a sequence (u.p. sequence).

In the next three lemmas and Theorem 3.3 we shall use the terminology and
notation of Turing machines as formulated in [4, pp. 5-7]. Thus we shall speak
of the alphabet of a Turing machine Z, instantaneous descriptions u, v,
u -- v(Z), etc.

Notation. Let Z be a Turing machine. Write v Z(u) if u -- v(Z). Let
Z(u) u and zi+i(u) Z(Z(u) ), provided Z(Z(u) exists.

LEMMA 2.4. Let Z be a Turing machine and c a letter not occurring in any
instantaneous description of Z. Then the set {u+cv/v Z(u)l is a language.

Proof. Let G (V, 2;, P, ) be the grammar defined as follows. 2; is the
alphabet of Z together with the internal configurations of Z together with c.
V 2; {, 1, , at. P consists of those productions having the following

(1) o- -- 1 o- -- 3(2) 1 -- S 1 S for each symbol S in the alphabet of Z.
(3) 1 -- S. q : q S whenever (qi, S., S, q) is in Z.
(4) 1 -* S S. q S. q S for each S in the alphabet of Z, whenever

(q, S., R, q) is in Z.
(5) a -. S. q S. q So whenever (qi, Sj, R, q,) is in Z.
(6) 1 - S q S q S S. for each S in the alphabet of Z, whenever

(qi S L, q,) is in Z.
(7) 1 -- S qi cq So S whenever (q, S., L, q) is in Z.
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(8) 2 - S, 2 Si for each S in the alphabet of Z.
(9) -- c.

It is a straightforward mtter to verify that L(G) {u+c/ Z(u)}.

LEMMA 2.5. Let Z be a Turing machine and c a letter not occurring in any
instantaneous description of Z. Then for each instantaneous description w of Z,
there exist languages A and B such that

AB Init(0v...),

where Z(w)c(Z(w) )+c if Z(w) exists and v if Z(w) does not exist.

Proof. Let A lu+cv/v Z(u)}. By Lemma 2.4, A is language.
Let I be the set of instantaneous descriptions of Z and A ucu+/u in I}.
Now an instantaneous description is an expression that contains exactly one
internal configuration q, neither of the symbols R or L, and is such that q is
not the right-most symbol. Thus

i u{s0, ..., s}*q{So, ..., }{s0, ..., s}*,
where So, S is the alphabet of Z. Hence I is regular. It is knownthat
{ucu+/u in I} is a language if I is regular [1]. Hence A is a language. Let

A Init(wc(A c)*) and B Init((A2 c)*).
Since Init preserves languages, A and B are languages. To complete the proof
we shall show that M A n B, where M Init(v0 v ).

Clearly M A n B. Consider the reverse inclusion. First note that

(1) if Uo cu c u cu+ c is in B (m >_ 0), where no u. contains an oc-
+currence of c, then u+ u for each i >_ 0.

Next note that

(2) if Uo cu c u. c is in A (m >_ 0), where no u. contains an occur-
rence of c, then u0 w and u2i Z +u._) for each i >_ 1.

Now let u be an element of A n B. If u contains no occurrence of c, then
obviously u is in Init(w) and thus in M. Suppose that u contains an even
number 2m > 0 of occurrences of c. Let u Uo CUlc u:_ cu. Since
u is in B, so is uo cu c u_ cu2. Since u is in B, so is Uo cu c u_ c.

+By (1), ui+l u. for each i (0 _< i < m). Since u is in A, there exists a word
y containing no occurrence of c such that uyc is in A. By (2), u0 w,

+ +u Z(u2i_l) for 1 <_ i < m, and u y Z(u,_l). Thus

uyc wcw+cZ(w)c(Z(w) )+c Z(w)c(Z(w) )+c.

Hence uyc is in M, so that u is in M. A parallel argument arises when u con-
tains an odd number of occurrences of c. Thus A n B c M and the lemma is
established.
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LEMMA 2.6. Let E be the family of languages with alphabet included in
Y_, {c, So, $1, ql, q2, ""l. It is recursively unsolvable whether an
arbitrary language in E

(1) contains a sequence;
(2) contains an u.p. sequence.

Proof. Let Z be a Turing machine, c a letter not occurring in any in-
stantaneous description of Z, and w an instantaneous description of Z. Let
A, BbethelanguagesofLemma2.5, andD v0vl.... ThenA nBcon-
tains a sequence if and only if D is infinite, that is, there is no m such that
v. e for all j >_ m. D is infinite if and only if Z(w) e for all i, that is, if
and only if Z, starting at w, does not halt.

Suppose that (1) is solvable. Then by Lemma 2.3, it is decidable whether
A n B contains a sequence, whence decidable whether Z halts starting at w.
Since the halting problem is not decidable, (1) is unsolvable.
Now A n B contains an u.p. sequence if and only if D is u.p. D is u.p. if

and only if there exist i and j, i < j, such that Z(w) and Z(w) ZJ(w),
that is, if and only if Z, starting at w, has a repeating instantaneous descrip-
tion. Suppose that (2) is solvable. Then it is solvable whether Z, starting at
w, has a repeating instantaneous description. Since the repeating problem is
unsolvable, (2) is unsolvable.

THEOREM 2.3. It is recursively unsolvable whether an arbitrary language over
two letters

(1) contains a sequence;
(2) contains an u.p. sequence.

Proof. Let d and e be distinct letters. Let E be the family of languages
with alphabet included in 2; {c, So, $1, ql, q2, ""I. For each n let
n {C, SO, Sn ql, q} and r be the function on 0(2) defined by
Tn(L’) 7, Tn(C) de, r(Si) d+2e for 0 <_ i <_ n, r(q) d+le for
1 _< i _< n, and *n(Xi X) rn(Xl) Tn(Xk), each xi in 22. The function
r preserves languages. For each language P

___
0(2) let

L(P) r(P) u Init(rn(P)),
where

Init(A) {wd/wdy in A for some word y}.

As in Theorem 2.1, L(P) is a language and P contains a sequence D if and
only if L(P) contains Init(r(D)). Furthermore, L(P) contains a sequence
D’ if and only if D’ T (Xl) 7"n(Xj) for some sequence x x.
in P.

Suppose it is solvable whether an arbitrary language M over d, e} contains a
sequence. Then it is solvable whether an arbitrary language in E contains a
sequence, contradicting Lemma 2.6. Hence it is unsolvable whether an
arbitrary language over {d, e} contains a sequence.
The reeursive unsolvability of whether a language over {d, e} eontainsanu.p.
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sequence follows fom Lemma 2.6 and the fact that a sequence xt x..., is
u.p. if and only if rn(xl) rn(Xj) is u.p.

Remarks. (1) Properties of languages are usually shown to be undecidable
by reduction to the Post Correspondence Theorem, that is, the unsolvability of
determining for arbitrary n-tuples (wl, wn) and (y, yn) of words
over {a, b}, whether there exist il, ik such that wil wi yl y
[9]. We now outline an alternative proof of Lemma 2.6 which depends on the
Post Correspondence Theorem. Here Z {a, b, c} for the sequence case and
Z {a, b, c, d, a, a., an, for the u.p. sequence case.

First consider the sequence problem. Let T be the "successor" function de-
fined on 0(a, b) by T(bn) an+ and T(wabn) wban, n

_
0 and w in (a, b).

Thus T "enumerates" O(a, b) from as follows" , a, b, aa, ab, ba, bb, aaa,
aab, .... Let

A1 {w+cT(w)/w in t(a, b)}, A {wcw+/w in O(a, b)},

A Init[cc(A c)*], and B Init[c(A c)*].
For/>_ 01etv Ti(r)c(T(r)) +, where T(r) rand TJ+(r) T(T(r)).
ThenA n B Init(D), where D CVoCVI’’’CVn’’’. By the proof of
Lemma 2.1, it is unsolvable whether an arbitrary language over {a, b, c} con-
tains D. (The proof of Lemma 2.1 reduces to the unsolvability of determining,
for a language M

_
0(a, b), whether M 0(a, b). This in turn reduces to

the Post Correspondence Theorem [1].) For any language X, A n B Xcon-
rains a sequence if and only if X contains D. By an argument similar to that
in Lemma 2.3, this implies the unsolvability of the sequence problem over a
three letter alphabet.
Now consider the u.p. sequence problem. For each j let T be the obvious

"successor" function over O(a, a). Let (w, wn) and (yl, yn)
be given n-tuples (n >_ 1) of non-r words in 0(a, b). Let

and

Y and Z are languages over {a, an, c}. Let

At {w+cTn(w)/w in 0(a,

A {wcw+/w in O(a a,)},

A Init [at c(A c) *O(al, an) da],
B Init [(A c)*A da],
F Init [(Zc)*Y da].

A n B n F contains an u.p. sequence if and only if Y contains a word ucu+, u
in O(a,..., a,) . Y contains such a word if and only if there exist
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il, i such that wil wip yl yp, which is recursively unsolvable.
(2) The following problems may be shown to be recursively unsolvable

either by extension of the methods of Lemma 2.6, 2.3, and Theorem 2.3 or by
reduction to the Post Correspondence Theorem: Does an arbitrary language
over a two letter alphabet

(a) contain a purely periodic sequence?
(b) contain, for a given word x , an u.p. sequence with period x, that

is, a sequence of the form xl xx ?

Theorem 2.3 permits us to obtain a result about "counting chains."

THEOREM 2.4. Call C P a counting chain, where P isa subset of the positive
integers, if C P is the set of those words

baibia+i.

k >_ 1, suchthat.forl <_j <_ lc, i 2ifjisinPandi lifjisnotinP.
Then the question of whether an arbitrary language over a, b contains a counting
chain is recursively unsolvable.

Proof. Let a be the operation which takes each occurrence of b into
/b, b2} and leaves a unchanged. That is, a() e and a(xl.., x)
a(x) a(x,), where a(a) a and a(b) {b, b}. Let be the operation
which takes each occurrence of a into A {ban/n >_ 1 and each occurrence
of b into A. {ba+/n >_ 0}. Let and r’ be the operations defined by
a’(H) (J i., a(h) and r’(H) (J i,, r(h) respectively. Since A and A.
are languages, and r’ preserve languages, i.e., if M is a language so are a’(M)
and r’(M) [1]. We shall show that for a language M 0(a, b), z%’(M)con-
tains a counting chain if and only if M contains a sequence. Since it is un-
solvable whether M contains a sequence, the theorem will follow.
To this end let M be a subset of O(a, b). Suppose that M contains a se-

quenceD x.-.x..-,eachxin{a, bl. For eachnletd x... x.
LetA {1/ifxi aandAa ifx= b. Let

P A t {n/n >_ 2, Xn--i Xn}.

For each n, baIbab ba is in r(d) if and only if i. > 0 for I <_ j <_ n and

{j/j

_
n, i even} {j/j

_
n, x a}.

For each n let u be the element in r(d.) with i 1 or 2 and i+1 i. - 1 or

i.+ i+2,1 _<j < n. Then

a(u,) {b*aib b*a/k 1, 2; 1 <_ j _< nl.
In particular, z(u) contains an element v in which k 2, 1 <_ j

_
n, if and

only ifj is in P. Thus k 2 if and only if x a. Hence k i. Further-

An infinite sequence x x. is said to be purely periodic if there exists an inte-
ger m >_ such that x+ xi for all i >_ 1.
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more, for each j, ]c+1 2 if and only if x. x.+l, whence ]{j/l i’--I ij.
Thus vi/i >_ 1} is the counting chain C(P). Since

{v/i >_ 1}

_
o"(lu,/n >_ 11),

{u,/n >_ 1} r’(Init(D)), and Init(D) M,

it follows that C(P) a’r’ (M).
Now suppose that the counting chain C(P)

_
o-’r’(M) for some set P of

positive integers. For each n let

Yn biai b"az---

be in C(P). Then there is a unique word dn in M such that v is in z’r(d).
In fact, d is the word x x of length n in 0(a, b) for which (i) x a if
and only if il 2, and (ii) for 1

_
j < n, x. x.+ if and only if i+1 2.

It readily follows that {d/i >_ 1} Init(D) for some sequence D, and D is a
sequence in M.

3. Distinguished sequences
Consider the question of whether or not a language containing a sequence

must contain an u.p. sequence. By application of a systematic procedure, we
can effectively enumerate those languages which contain no sequences. Since
we can test a given language to see if it contains a specified u.p. sequence
(Theorem 2.2), and since we can effectively enumerate the u.p. sequences,
we also have a systematic procedure for effectively enumerating those languages
which contain u.p. sequences. Therefore, if each language containing a
sequence contained an u.p. sequence, we would have a decision procedure for
determining whether or not an arbitrary language contained a sequence.
By Theorem 2.3, there is no such decision procedure. Hence there exists a
language which contains a sequence but no u.p. sequence. This is established
constructively by the following example.

Example. Given a word w and an element b in 2, let b(w) be the number
of occurrences of b in w.

Let G (V1, 2;, P, ), where 2 {a, b}, VI U , and P
{ b, ---) a, ---> ba}. Let L L(G). Clearly

L u/u wbab(), w in 0(a, b) }.

If u wba is in Li, then wbaban+i is in L and is the proper extension of u
in L of smallest length. Hence L1 contains the set {b, bba, bbaba, bbababa,

Let G. (V, 2, P, ), where V. 2 /,’, /} and P {-,,, --+ ha, , -- a,, --. b, ’ ---> b’),a, , ----> b, , -- a, , b,, , --+ ,a}. Let L
L(G). Then

L. lu/u wba, 1 <_ n <_ /b(w), winO(a, b)bO(a, b)}.
Let L {b/LbuL. Note that each word in {b}uLbendsinb, and



SEQUENCES IN CONTEXT FREE LANGUAGES 331

each word in L. ends in a. Let D be the sequence bbababa3b .... Obviously
D is not u.p. We shall show that L3 contains D but no other sequence.
Each word in Init(D) ending in b is in /b} u L1 b. Since each word in

Init(D) ending in a is in L2, L3 contains D. Now let E be any sequence
contained in L3. Neither a nor ba is in L2, thus neither is in L. Therefore E
begins with bb. Now suppose that E begins with buba’, n >_ O, for some
word u in O(a, b). Two cases arise.

(a) n b(bu). Then buba’+1 is not in L, and thus not in L3. Hence
E must begin with bubanb.
() n < /b(bu). Since n b(bu), buba is not in L1. Thus E

cannot begin with bubanb; that is, E begins with buban+.
By induction it therefore follows that E D.

quence contained in L.
Hence D is the only se-

We now consider sequences D with the property that there is a language
containing D and no other sequence.

DEFINITION. A sequence D with the property that there is a language
containing D and no other sequence is called a distinguished sequence.

Since Init(D) is a language for a sequence D if and only if D is u.p., each
u.p. sequence is distinguished. The sequence D in the above example shows
that the converse is not true, i.e., there are distinguished sequences which are
not u.p.
Given a distinguished sequence D we may obtain other distinguished se-

quences as follows. Let S be any complete sequential machine with the prop-
erty that at each state, maps 2 one to one into A. Let L be a language con-
taining a distinguished sequence D. Then S(L) is language containing the
sequence S(D). That S(L) contains no sequence but S(D) follows from the
fact that , maps 2; one to one into A. Furthermore, if D is not u.p., neither
is S(D). We omit the straightforward details.
The question nuturally arises: Are there any sequences which are not

distinguished? A simple cardinality argument shows that there are. For
there are 2s sequences when 2 contains at least two elements, and only 0
languages. Thus there exists a sequence D (in fact 2) such that any lan-
guage containing D contains at least one other sequence, i.e., a sequence D
which is not distinguished. In fact

THEOREM 3.1. Every distinguished sequence is recursive.

This follows from the well known folk theorem that if a recursive tree with
finite branching has a unique infinite path, then the path is recursive.
The next theorem shows the existence of recursive sequences which are

not distinguished.

THEOREM 3.2. Let a be a given element of Z. Then each recursive, non-u.p.
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sequence D with the property that for every n >_ 1 there is a word ua, u ,
in Init(D) such that k >_ 2’’ is not distinguished, ul denoting the length
ofu.

Proof. We first recall some terminology and facts about generation trees.
Let G (V, 2, P, S) be a grammar. Call the elements of V- variables.
Let wl be a variable. Let w2, w be words in 0(V), wl -- w2 a production,
with the following property. For 2

_
i < r there exist words u, v, y, z

such that w uyv, w+ uzv, and y -- z is a production. A genera-
tion tree (constructed below) is a rooted, directed tree with an element of
V u {s}, called the node name, associated at each node.
The nodes of the tree are certain tuples of the form (i, ..., i), where

k

_
r and i. is a positive integer. The directed lines of the tree are all the

ordered pairs ((i, i), (il, i, i+) of nodes. Let the 1-tuple (1)
be the root and w the node name of (1). If w let (1, 1 be a node in the
tree and the node name of (1, 1). If w x Xn(’, each x2) in V, let
(1, i), 1

_
i

_
n (2), be a node and x) its node name. Continuing by in-

duction, suppose that for all

_
k every occurrence in wt of an element of V

serves as node name of some node. Now

($) UkykVk Wk Wk+l UkZkYk.

Let (i, i,) be the node whose node name is the occurrence ofyindicated
in (.). Ifz slet (i, ..., i,, 1) be a node and sits node name. If
z (), eachx in V, let (i, ...,i,,i), 1 i n(k),bea
node and x) its node name. This procedure is repeated through k r 1.
The resulting entity is the generation tree.
A node (j, ..., jr) is said to be an extension of the node (i, ...,

ifs tandi =jforallk s.
A path in a generation tree is a sequence of nodes N, N such that

(N, N+ is a directed line for each i k 1.
Given the nodes N (i, i) and N (j, jr) write N g N:

if either N is an extension of N or if i j for the smallest integer k such
that i ft.
The relation is a simple order on the set of nodes.
A node is called maximal if there is no node distinct from it which is an exten-

sion of it.
We shull use (implicitly and explicitly) the following known facts about

generation tree T associated with w [1]"

(a) If N is a nonmaximM node, then the node nme x of N is a variable
and uxv for some u and v in 0(V).

(b) Let NI, ..., Nk be the maximal nodes, with N N+ for each i.

One such sequence D x x. is obtained by letting f(O) 1, f(n + 1)
f(n) 2(+)’() for n >_ 0, x b if is in the range of f, and x a otherwise.
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Then w is the word obtained by replacing in N1 Nk each node with its
node name.

(c) Let N be a nomnaximal node in a generation tree, and x its nodename.
Then the "subtree" of T formed by using as nodes all extensions of N is a
generation tree.

(d) Let w u3,v and let T1 be a generation tree of - wl. If T, is placed
(in the obvious way) with its root on the node whose node name is in
u.),v, then a generation tree of uwl v is obtained.

We now turn to the proof of Theorem 3.2. Let D be a sequence satisfying
the hypothesis of the theorem. Let L be any language containing D. We
shall show that L contains an u.p. sequence. Consider the set

L’=L-- {} --;.

L’ is a language and there is a grammar G (V, , P, o-), L(G) L’, such
that every production in P is of the form } --+ g, g and in V [I]. Let N
denote the number of distinct variables. Let H be the set of those variables
}suchthat}a’}atfor somes + > 0. Let H1be the set of those } in H
such that } }a for some > 0. (We can effectively determine H and
but we do not need this fact.) We shall see below that H is nonempty.
Denote the distinct elements of H by }i, "’, }. For each } in HI let
e(i) > 0 be an integer such that } }a(. For each}i in H HI let
e(i) > 0, s(i), t(i) be integers such that

_s(i). t(i)e(i) s(i) +t(i) and a a
Let e e(1) e(r).

Consider any word ua in Init(D), where u e and /c >_ 2(+)lul. We
shall show that Init (ua*) L, thereby proving the theorem. Since

Init (ua) Init(D) L,

it suffices to show that uaq is in L(G) for each q > k. Accordingly, let q >
be given and let p u[. Then

k- 22Np>__. 2(2v+e)p 22Nv-- 2v(2v- 1) > 2(2v- 1) > 2v> ep > e.

Therefore there is a positive integer g such that 2v < q ge < k. Then
uaq- is in Init (ua) and [uaq-[ > 2. Thus uaq- is in L(G). Hence
there is a generation tree T of g which derives uaq-" (from

Since each production is of the form --* g,, g and , in V, it is readily seen
that any generation tree of G of a word of length > 2 contains a path with at
least n + 1 nodes, where each node name is a variable. Now

uaq-"el > q ge > 2Nv > 2N(v+l).

Thus T contains a path Z1, ZN(v+I)+, where the node name of each Z
is a variable. Since there are only N distinct variables, one of them, say
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is the node name of at least p 2 nodes. Denote by Y1, Y+the first
p W 2 nodes in the path whose node name is . For 1 <_ i_< p W 2, letT
be the subtree of T whose nodes are the extensions of Yi. Then T. is a
generation tree (from ) of a word vi in 0(2) . For 1 _< i

_
p + 1,since

the node Y+I occurs in T, there are words x, y in 0(2) such that xiy
and v xv+l y. Since each production is of the form , -- , and , in
V, x: yi . Since Y is in T, there exist Wl, w in 0(V) such that a w w.
Thus ta

q-ge w x xp+ Yp+2 Yp+l yw
Two cases arise.
(1) Suppose that one of the x is ’. Let j be the smallest integer such that

x. . Then x x-ll _>j- 1. Sincexyi foreachi,

Thus Xl Y+ --> P, so that u is an initial subword of w x... y.+I.
Therefore y. is in a*. As x. v, y ’. Thus y. is in aa*. Since x. y,
isinH,say . Noweisamultipleofe(d). Thus

ae(d)ge/e(d) age

and

(2)
an initial subword of wa x x. Thus x+ v+. y+ yl w. is in aa*.
Then x+ y+, with x+ yp+l in aa*. Therefore is in H, say .
Then there exist nonnegative integers s and so that a"a and e(d) s + t.
Thus

( w xl x,y.., y w

w x xy yw:

=::v w x x ay Yl W2

)lXl Xp--I Vp-2 y+ y+ aey yl vo2

taq-geage taq.

Suppose that none of thexis. Thenlx... x[ >_ p, sothatuis

tge/e(d,),
l)1 Xl Xp aSge/e(d)xp+l Yp+2 y+ a .yp y w2

’Wl Xl Xp+l Yp+2 y+ y w a(s+t)ge/e(d)

a(S+t) gele(d)(since x+i yw is in aa
uaq.

Finally we establish the existence of a language which contains a sequence
but no recursive sequence.

LEMMA 3.1. There exists a language which contains a sequence but no recur-
sire sequence.

Proof. By [5], [11] there exists a recursive subset M of 0(a, b) which con-

71)1 Xl Xp aSge/e(d)atge/e(d)yp y w2
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contains a sequence but no recursive sequence. Since M is recursive we can
construct a Turing machine Z with alphabet a, b, So, Sh (h

_
0) and

internal configurations ql, qm (m

_
3) which has the following property"

Suppose that Z starts from an instantaneous description S3 ql wS with n,
p

_
0andwin0(a, b). Then

(1) if w is not in M, Z halts in the internal configuration qs
(2) if w is in M, Z halts in the instantaneous description Sg q3 wS for

somer > 0andt > 0.

We extend the relation -- defined by the Turing machine Z.
qm+l be distinct elements not in {a, b, So, ..., Sh, ql,

r

_
0,

_
0, andwin0(a,b) let

Let a, , and
,q}. For all

(3)
(4)
(5)
(6)

Let 2; {a, b, a, , So, Sh, q, q+}. Suppose that Ul, U2,

is an infinite sequence of words in 0(Z) such that Ul q3 and ui -- ui+ for
alli. Ifx. a(x. b) let. a(. ),allj

_
1. Thenus qm+l,

with xl in {a, b} and ua qlxi. Moreover,

(7) xlisinM.

For suppose the contrary. By (1), ua (uniquely) leads to an instantaneous
description containing q. which cannot be in the domain of the extended--
relation, so that ul, us, terminates, a contradiction. Continuing by induc-
tion, suppose that xl xr is a word in M, each x. in a, b}, such that uk

Sqlxl xrS$ for some/

_
1, n

_
0, p

_
0. By (2)-(6), there is a

smallest integer s > k such that u Sf)q3x xr S for some r,

_
0.

Note that neither d nor b occurs in any word uk, ..., u. Then u,+
Sg qm+l Xl X,.r+ S with x+ in /a, b}, and u+s Sg q x x+i S.
Again, lest ui, us, terminate, Xl Xr+I is a word in M. Let be the
function on 0(2;) defined by () , r(a) a, (/) b, r(x) for x in

ld, }, and r(yl y) r(yl) r(y), each y in Z. Then

Init(xixs ...) I’r(ul u)/i

_
1}

and xl xs is a sequence contained in M. Clearly for every sequence
z zs contained in M there is a sequence of words v vs in 0() such that
vl q, v--. v+l for all i, and Init(zlzs ..’) {r(v v)/i

_
11.

Let c be an element not in Z. As is easily seen, the set A {u+cv/u -- v}
is generated by the grammar G (2; u {1, , c}, 2; {c}, P, ), where
P contains all the productions (1)-(9) of Lemma 2.4 together with

(10)
(11)
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(12) 6 --’> a6 a, 6 "--> b6 b,/ qa 7 q,+
(13) 7 -- So 7 So, 7 -- c.
(14) -- So So, - d8 a, 5 --* s b.
(15) s -- as a, 8 --* bs b, s -- qm+l 9 ql

(16) 9 - So So, -- c.

Let A {wcw+/w in (2:)}, A Init(q3 c(Ac)*), and B Init(A c) *.
A and B are languages whose intersection contains exactly those sequences
of the form Vo cvl c with Vo q3 cq. and, for all i >_ 1, vi ui cu+ and
u: -- ui+. Since M contains a sequence, so does A n B. Suppose A n B
contains a recursive sequence y y: .... Then r(y)r(y) x x
each x in {a, b}, is also a recursive sequence. Then x x is a recursive
sequence in M, a contradiction. Thus A B contains no recursive sequence.

Finally, let r and r be the language-preserving functions of Lemma 2.3.
Then the language rl(A) r(B) contains exactly those sequences y y
where y y is a sequence contained in A B. Hence r(A) u r(B) con-
tains a sequence but no recursive sequence.

THEOREM 3.2. There exists a language over a two letter alphabet which con-
tains a sequence but no recursive sequence.

Proof. The theorem follows from Lemma 3.1 in the same manner in which
Theorem 2.3 follows from Lemma 2.6.

Remarks. (1) Any language which contains no recursive sequence either
contains no sequence or else contains uncountably many sequences. For let
L be a language which contains a sequence but no recursive sequence. Sup-
pose there is a word w such that w begins exactly one sequence in L, say the
sequence wy y .... Then the language {x/wx in L} contains the se-
quence y y and no other. By Theorem 3.1, y y is then recursive,
so that wy y is a recursive sequence contained in L, a contradiction.
Therefore for every word w which begins a sequence in L there are words
wl and w such that (i) ww and ww both begin sequences in L; (ii) ww is not
an initial subword of ww and ww is not an initial subword of ww. But this
implies the existence of uncountably many sequences in L.

(2) The method of Lemma 3.1 may be applied to transmit further prop-
erties of recursive sets to languages. For example, it can be shown that there
exists a recursive set M of words with the property that the set of recursive
sequences contained in M is not itself even recursively enumerable. Then
the method of Lemma 3.1 allows proof that there exists a language M with
the same property.

In passing, we mention two open problems.

(1) Characterize the set of distinguished sequences.

It is known that if L is a language and w a word, then {x/wx in L} is a language
[6].
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(2) Characterize the set of those sequences D having the property that
there exists a language containing D but no u.p. sequence.
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