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Introduction

In [8] it was shown by a complicated argument that for two (context free)
languages L; and L, , it is recursively unsolvable whether there exists a com-
plete sequential machine mapping L; into L, . Now an alternative (and quite
simple) proof of this fact would follow from verification of the following con-
jecture: It is recursively unsolvable whether alanguage contains an ultimately
periodic sequence. (For the language {a"/n > 1} can be mapped into an
arbitrary language L by a complete sequential machine if and only if L
contains an ultimately periodic sequence.) This conjecture and its analogue
for sequences in general are herein verified. They provide the motivation
for the study of sequences in languages.

The paper is divided into three sections. Section 1 reviews the terminology
of languages. In Section 2 it is shown that whether a language contains
a given sequence is in general unsolvable, but that whether a language con-
tains a given ultimately periodic sequence is solvable. The unsolvability of
whether a language contains a sequence and whether a language contains an
ultimately periodic sequence are also demonstrated here. Section 3 is con-
cerned with sequences D having the property that there is a language con-
taining D and no other sequence. (Such a sequence is called distinguished.)
It is first shown that every distinguished sequence is recursive. Then a
method of generating recursive sequences which are not distinguished is
exhibited. Finally, it is shown that there are languages which contain
sequences but no recursive sequence.

1. Preliminaries

Let Z be a finite nonempty set and let () be the free semigroup with
identity & generated by Z. (Thus 6(Z) is the set of all words over =, and ¢
is the empty word.) We shall be considering certain subsets of 6(2) which
are called “context free languages”, or ‘languages” for short. These lan-
guages arose in the study of natural languages [2] and have been shown to be
identical with the components in the “ALGOL-like” artificial languages which
occur in data processing [6].

A grammar G is a 4-tuple (V, 3, P, o), where V is a finite set, = is a subset
of V, o is an element of V — =, and P is a finite set of ordered pairs of the
form (¢, w) with £inV — Zand win 6(V). P is called the set of productions
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of G. An element (£ w) in P is denoted by £ — w. If x and y arein 6(V),
then we write x = y if either x = y or there exists a sequence

x_—_xl’xz’...’xn:y

(n > 1) of elements in 6(V) with the following property. For each ¢ < n
there exist a;, b;, &, w; such that z; = a;£:bs, xip1 = a;wib;, and & — w; .
The language generated by G, denoted by L(G), is the set of words

{w/c = w, win 6(2)}.

A context free language (over 2) is a language L(G) generated by some grammar
G = (V, Z, P, o). Unless otherwise stated, by a language we shall always
mean a context free language.

If A and B are subsets of 6(2), then the set of words {ab/a in A, b in B} is
called the product of A and B and is written AB. If A (or B) consists of
just one word, say A = {a} (B = {b}), then aB (Ab) is written instead of AB.

If A and B are languages, then so are AB, A u B, and® A* [1].

The family of regular sets is characterized as the smallest family of subsets
of 0(Z) containing the finite sets and closed under the operations of union,
product, and * [10]. Each regular set is a language [3].

Let 1, -+, @n, -+ (written x; --+ z, ---) be an infinite sequence of
elements of . A set H of words is said to contain the sequence xy - -+ x, - - - if
H contains the word z; - - - x,; for each 2. H is said to contain a sequence if H
contains some sequence x; - -+ Z, --- . Clearly, containment of a sequence
corresponds to containment of a set of words closed under initial segmenta-
tion in which there is exactly one word of each positive length.

We are interested in establishing (a) the unsolvability of whether an
arbitrary language contains a sequence, and (b) the unsolvability of whether
an arbitrary language contains an ultimately periodic sequence.’ We shall
demonstrate (a) and (b) as well as a number of related results.

2. Solvability questions

We first consider the solvability of whether an arbitrary language contains
a specific sequence. We exhibit one set of sequences for which it is unsolvable
and another for which it is solvable. Then we show that it is unsolvable
whether an arbitrary language contains a sequence and whether an arbitrary
language contains an u.p. sequence.

LEMMA 2.1.  There exists a sequence D such that it is recursively unsolvable
whether an arbitrary language over a three letter alphabet contains D.

Proof. LetF be the set of all sequences of the form cw; cw, cw; - - - , where

2 If A is a set of words, then A* =J& A", where A° = {¢} and A+ = A%A for ¢ > 0.
3 A sequence x; - -+ Z, --- is said to be ultimately periodic (abbreviated u.p.) if there
exist positive integers ny and p such that z,.p, = x, for n > no .
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Uisiw: = 6(a, b). Given a language M C 6(a, b), consider
L(M) = Init [(cM)*).*

If M = 6(a,b), then L(M) contains D for every Din F. If M  6(a,b), then
L(M) contains D for no D in F. Since it is unsolvable whether M = 4(a, b)
for an arbitrary language M C 6(a, b) [1], it is unsolvable whether L(M),thus
an arbitrary language, contains D for some specific (or even one) D in F.

TurEOREM 2.1. There exists a sequence D such that it is recursively unsoly-
able whether an arbitrary language over a two letter alphabet contains D.

Proof. Let a, b, ¢, d, and e be distinet letters. Let 7 be the function on
6(a, b, ¢) defined by 7(¢) = ¢, 7(a) = de, 7(b) = d’, (c) = d%, and

’T(xl e xk) = T(xl) e T(xk))

each z; in {a, b, ¢}. It is known [1] that = preserves languages. For each
letter x and each set A of words let

Init,(A) = {wx/wzy in A for some word y}.

It is readily seen that Init,(A) is a language if A is. Let P C 6(a, b, ¢) be a
language. Then L(P) = 7(P) u Inite(7(P)) is a language. For each
sequence D = 21 -+« &n -+, z;in {a, b, ¢}, let 7(D) = 7(z1) -+ 7(xy) -~ .
Clearly P contains a sequence D if and only if L(P) contains Init(7(D)). By
Lemma, 2.1, the former is unsolvable. Thus the latter is unsolvable and the
theorem follows.

We next show that it is solvable whether a language contains a given u.p.
sequence.

Lemma 2.2. Given words wy, we, ws, it 1s recurswely solvable whether an
. . E3
arbitrary language L contains wy we ws .

Proof. If w, = ¢, then it is recursively solvable whether w; w; is in L.
Suppose that ws # e Since w;ws ws is regular and L is a language,
A = w,ws w; n L is a language and effectively calculable from L [1]. Since
wyws wy & L if and only if A = w, wa w; , it suffices to show that whether 4
and w, wy ws are equal is solvable. Let 7; (72) be the operation which mapsa
word z into z; if x = wiz; (x = 21 ws) and into ¢ otherwise. Then A and
w; wy w; are equal if and only if 7, 71(A) = ws . Now . 71(4) is a language
and effectively calculable from A [7]. Since ws ## &, we = y1 -+ Yr, y: in =.

4 For a sequence 21 -+ &, - -+ of symbols in =,
Init(zy o+ 2p +++) = {@1 - 2a/n > 1}

Thus a sequence D is contained in a set of words H if and only if Init(D) C H. For a
word w, Imit(w) = {u/u = ¢ w = w for some v}. For a set H of words,
Init(H) = Uwin g Init(w). It is known (7] that Init(L) is a language if L is.
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Consider the generalized sequential machine®
S = (K) z, {a}, o, A\, P1>,

where K = {p1, - -+, 9}, Mpi,y) = efori s r,\(p,,y) = a,8(pi, y) = Pina
forz < r,and 6(p,,y) = pr,yin =. Then

Sremi(A)] = {a*/wh in rami(4)).°

Since 72 71(A) is a language, S[r2 71(4)] is a language and effectively calculable
from 72 71(A) and S. From [6], a language on one letter is a regular set and is
effectively calculable as a regular set. But A = w;ws ws if and only if
S[rs 71(4)] = a*. Now it is solvable whether two regular sets are equal [10].
Thus it is solvable whether S[rs 1:(4)] = a*. Hence the result.

THEOREM 2.2 Given an u.p. sequence D, it is solvable whether an arbitrary
language contains D.

Proof. Let D be anu.p. sequence. Then D = w(ay -+« ap)(ay -+ ap) -+,
each a;in Z, for some word w and somep > 1. For any language L, L contains
D if and only if L contains each of the following p + 1 sets:

Init(w), w(ay -+ ap)*, way(az - -+ ap a1)™, way as(as - - - ap a1 02) ™,
*
ey, way - - ap—l(a/pal “en ap—l) .

It is solvable whether an arbitrary language contains Init(w) since Init(w) is
finite and it is solvable whether a language contains a given word. Each of
the other inclusions is solvable by Lemma 2.2. Thus whether L contains D
is solvable.

We now turn to the problem of determining whether an arbitrary language
contains a sequence (u.p. sequence).

Notation. Let ¢ = eand (2y - @)t = x4 - -+ 21, each z;in =.

LemMa 2.3.  Let Z be a (possibly infinite) alphabet. If it is decidable whether
an arbitrary language whose alphabet is included in = contains a sequence (u.p.

5 A generalized sequential machine S is a 6-tuple (K, Z, 4, §, N, p1) where (i) K is a
finite nonempty set (of ‘‘states’’); (ii) T is a finite nonempty set (of ‘“‘inputs’’); (iii)
Ais a finite nonempty set (of ‘“‘outputs’); (iv) & isa mappingof K X Zinto K (the “next
state’’ function); (v) \ is a mapping of K X Z into 8(A) (the ‘“‘output” function); and
(vi) p1 is an element of K (the “start’ state). A complete sequential machine is a gen-
eralized sequential machine in which A maps K X Z into A.

6 ixtend & and A to K X 6(Z) as follows. Let 8(g, €¢) = ¢ and A\(g, ¢) = &. For
each word w; « -+ %41, each z; in I, let

3(q, @1 v Tpgr) = 8[8(q, T -+ Tk), Ty
and

Mg, @1 v Teqn) = Ng, @1 o ze)NS(g, 1+ - T), Tl

For each word w, let S(w) = A(p1, w). For each set L, let S(L) = {S(w)/w in L}.
It is known that S (L) is a language if L is, and is effectively calculable from L [7].
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sequence), then it 1s solvable whether the intersection of a pair of languages whose
alphabets are included in T contains a sequence (u.p. sequence).

Proof. Let X and Y be given languages with alphabets included inZ, and
let Z; be the union of their alphabets. Let 7, and 7. be the mappings of
0(21) into 0(21) defined by 71(8) = Tg(é‘) = ¢, ‘7'1((1)1) = X1, Tg(xl) = it%,
(@ k) = a3 - a1 @n,and 7oy - @) = 3 -+ 25 ,n > 1and each
z; in Z;. By [1], 7o preserves languages. The function 7, also preserves
languages. For let 73 be the function defined by r3(e) = ¢, 73(21) = 21, and
73(T1 - Tn) = T3 -+ To,n > land each z;in Z;. Let S be the general-
ized sequential machine ({p:1, po}, Z1, =1, 8, N\, p1) with &(p1, z) =
8(p2,x) = pa,N(p1,2) = z,and N(p2,z) = 2°,zin ;. Since r3(w) = S(w)
for w in 6(Z;) and S preserves languages, 73 preserves languages. Now
n(M) = r5(M*)*, and the operation * preserves languages [1]. Thus
preserves languages.

Since 7; and 7, preserve languages, 71(X) u 72(Y) is a language with alphabet
asubset of =. Clearly X n Y contains a sequence (u.p. sequence) if and only if
71(X) U 75(Y) contains a sequence (u.p. sequence). If it is decidable whether
an arbitrary language whose alphabet is included in T, hence 71(X) u 7o(Y),
contains a sequence (u.p. sequence), then it is solvable whether X n Ycon-
tains a sequence (u.p. sequence).

In the next three lemmas and Theorem 3.3 we shall use the terminology and
notation of Turing machines as formulated in [4, pp.5-7]. Thus we shallspeak
of the alphabet of a Turing machine Z, instantaneous descriptions u, v,
u —v(Z), ete.

Notation. Let Z be a Turing machine. Writev = Z(u) if u —v(Z). Let
Z%(uw) = wand Z™(u) = Z(Z'(u)), provided Z(Z*(u)) exists.

LEmMa 2.4. Let Z be a Turing machine and c a letter not occurring in any
instantaneous description of Z. Then the set {u'ew/v = Z(u)} is a language.

Proof. Let G = (V, Z, P, o) be the grammar defined as follows. 2 is the
alphabet of Z together with the internal configurations of Z together with c.

V — 2 = {0, #, &, El. P consists of those productions having the following
form:

(1) e—t,0—&.

(2) & — 8i& S, for each symbol S; in the alphabet of Z.

(8) & — 8;qi &g S;, whenever (g:, S;, Sk, gn) is in Z.

(4) & — Sk S;qi £ S;gn Sk for each S, in the alphabet of Z, whenever
(qi’ SJ' ’ Rr qm) isin Z.

(5) & — S;jqs & Sj gn So whenever (¢:, S;, R, g») isin Z.

(6) & — 8Sjqi Sk £2qm Sk S; for each S, in the alphabet of Z, whenever
(qi , Sj , L, qm) iS in Z.

(7) & — 8;q;cgm So S; whenever (q;, S;, L, gn) isin Z.
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(8) & — 8;£ 8, for each S; in the alphabet of Z.
(9) $2 —> C.

It is a straightforward matter to verify that L(G) = {u*ew/v = Z(u)}.

Lemma 2.5. Let Z be a Turing machine and ¢ a letter not occurring in any
instantaneous description of Z. Then for each instantaneous description w of Z,
there exist languages A and B such that

A n B = Init(vovi0z - - +),
where v; = Z'(w)e(Z (w)) e if Z(w) exists and v; = & if Z*(w) does not exist.

Proof. Let Ay = {u"ew/v = Z(u)}. By Lemma 2.4, A4, is a language.
Let I be the set of instantaneous descriptions of Z and As = {ucu*/uin I}.
Now an instantaneous description is an expression that contains exactly one
internal configuration ¢, , neither of the symbols R or L, and is such that ¢ is
not the right-most symbol. Thus

I= Ui{SO, 7Ss}*qi{SO) ) SS}{Sor ] Ss}*’

where So, - -+, S, is the alphabet of Z. Hence I is regular. It isknownthat
{ucu™/u in I} is a language if I is regular [1]. Hence A, is a language. Let

A = Init(we(4:¢)*) and B = Init((4s¢)™).

Since Init preserves languages, A and B are languages. To complete the proof
we shall show that M = A n B, where M = Init(vov; - - +).
Clearly M © A n B. Consider the reverse inclusion. First note that

(1) fwocusc -+ Usm Clhzmya ¢isin B (m > 0), where no u; contains an oc-
currence of ¢, then sy, = us; for each 7 > 0.

Next note that

(2) ifucurc - umcisin A (m > 0), where no u; contains an occur-

rence of ¢, then uy = w and ws; = Z(uss—1) for each ¢ > 1.

Now let u be an element of A n B. If u contains no occurrence of ¢, then
obviously u is in Init(w) and thus in M. Suppose that » contains an even
number 2m > 0 of occurrences of ¢. Let u = wuocui ¢ * -+ Usn—1 CUsm . Since
wisin B, 8018 U CU1 € * -+ Ugm—1 Clhom . Since u is in B, 80 18 up CUs € - * * Ugm_1 C.
By (1), usiy1 = uss foreach i (0 < 4 < m). Sincewis in A, there exists a word
y containing no occurrence of ¢ such that wyc is in A. By (2), uwo = w,
usi = Z(ugi—) for 1 < ¢ < m, and wem y = Z(udn_t). Thus

uye = wew cZ(w)e(Z(w)) e -+ Z™(w)e(Z™(w))Fe.

Hence uyc is in M, so that wisin M. A parallel argument arises when % con-
tains an odd number of occurrences of ¢. Thus A n B C M and the lemma, is
established.
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LEmMA 2.6. Let E be the family of languages with alphabet included in

2 =1{e, So, Si, -, @1, q2, ---t. It is recursively unsolvable whether an
arbitrary language in E

(1) contains a sequence;
(2) contains an u.p. sequence.

Proof. Let Z be a Turing machine, ¢ a letter not occurring in any in-
stantaneous description of Z, and w an instantaneous description of Z. Let
A, B be the languages of Lemma 2.5, and D = vyv; --- . Then A n B con-
tains a sequence if and only if D is infinite, that is, there is no m such that
v; = eforallj > m. D isinfinite if and only if Z*(w) # ¢ for all 4, that is, if
and only if Z, starting at w, does not halt.

Suppose that (1) is solvable. Then by Lemma 2.3, it is decidable whether
A n B contains a sequence, whence decidable whether Z halts starting at w.
Since the halting problem is not decidable, (1) is unsolvable.

Now A n B contains an u.p. sequence if and only if D is u.p. D is u.p. if
and only if there exist 7 and j, ¢ < j, such that Z*(w) # ¢ and Z*(w) = Z°(w),
that is, if and only if Z, starting at w, has a repeating instantaneous descrip-
tion. Suppose that (2) is solvable. Then it is solvable whether Z, starting at
w, has a repeating instantaneous description. Since the repeating problem is
unsolvable, (2) is unsolvable.

TaEOREM 2.3. It is recursiely unsolvable whether an arbitrary language over
two letters

(1) contains a sequence;
(2) contains an u.p. sequence.

Proof. Let d and e be distinct letters. Let F be the family of languages

with alphabet included in £ = {¢, So, S1, -+, q1, ¢, -+ -}. For each n let
Zo=1{¢,80, -+ ,8u,q, -, qa} and 7, be the function on 6(Z,) defined by
ma(€) = & 1a(c) = de, 7(8S:) = & e for 0 < ¢ < n, 7a(q;) = d**'e for
1 <i<mand 7,(x1 - -+ @) = 7a(@1) *+* (@), €achx;in Z, . The function

T preserves languages. For each language P C 6(Z,) let
L(P) = 7,(P) v Inita(.(P)),
where
Inite(A) = {wd/wdy in A for some word y}.

As in Theorem 2.1, L(P) is a language and P contains a sequence D if and
only if L(P) contains Init(r,(D)). Furthermore, L(P) contains a sequence
D’ if and only if D’ = 7,(21) - -+ 7o(x;) - -+ for some sequence x; -+ x; - - -
in P.

Suppose it is solvable whether an arbitrary language M over {d, ¢} contains a
sequence. Then it is solvable whether an arbitrary language in E contains a
sequence, contradicting Lemma 2.6. Hence it is unsolvable whether an
arbitrary language over {d, e} contains a sequence.

The recursive unsolvability of whether a language over {d, ¢} containsanu.p.
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sequence follows fom Lemma 2.6 and the fact that a sequence x; ++- z; -+« is
u.p. if and only if 7,(z1) - - - 7.(x;) -+ is w.p.

Remarks. (1) Properties of languages are usually shown to be undecidable
by reduction to the Post Correspondence Theorem, that is, the unsolvability of
determining for arbitrary n-tuples (wy, -+, w,) and (y., * -+, ¥a) of words
over {a, b}, whether there exist 7;, - - - , 4 such that w,, -+ wy, = Y4, -+ Yy
[9]. We now outline an alternative proof of Lemma 2.6 which depends on the
Post Correspondence Theorem. Here £ = {a, b, ¢} for the sequence case and
z=1{ab,c,d ar,a, - ,a, -} for the u.p. sequence case.

First consider the sequence problem. Let T be the “successor’” function de-
fined on 6(a, b) by T(b"*) = "™ and T(wab") = wba®, n > 0 and w in 6(a, b).
Thus T “enumerates’” 6(a, b) from ¢ as follows: ¢, a, b, aa, ab, ba, bd, aaa,
aab, --- . Let

Ay = {w eT(w)/win 6(a, b)}, Ay = {wew"/win 6(a, b)},
A = Initfcc(41¢)*], and B = Initlc(4sc)™].

Fori > Oletv; = T (e)e(T(e))*, where T°(e) = eand T""'(e) = T(T(¢)).
Then A n B = Init(D), where D = cvocvy -+ ¢v, --- . By the proof of
Lemma 2.1, it is unsolvable whether an arbitrary language over {a, b, ¢} con-
tains D. (The proof of Lemma 2.1 reduces to the unsolvability of determining,
for a language M C 6(a, b), whether M = 6(a, b). This in turn reduces to
the Post Correspondence Theorem [1].) For any language X, A n B n X con-
tains a sequence if and only if X contains D. By an argument similar to that
in Lemma 2.3, this implies the unsolvability of the sequence problem over a
three letter alphabet.

Now consider the u.p. sequence problem. For each j let T'; be the obvious
“suceessor”’ function over 6(az , - - - ,a;). Let (wy, --- ,w,)and (y1, -+, Yn)
be given n-tuples (n > 1) of non-¢ words in 6(a, b). Let

Y = {ai, - ai,ca5, -+ a5/ -0 Wi, = Yi e Y,
and

Z — {ai‘ v e aipcajq “ e ajl/wh “e /wip # yjl “es yjq}.
Y and Z are languages over {a;, - -+, @, , ¢}. Let

A, = {w+cT,,('w)/w in 0((11 y T an)})

Ay = {wew /winb(ar, -+ -, an)},

A = Init[ac(A1¢)*0(ay, - - - , an) dat),
B = Init [(4sc)*4, daf],

F = Init [(Zc)*Y daf].

A n B n F contains an u.p. sequence if and only if Y contains a word ueu’, u
in (a1, ---, a,) — €. Y contains such a word if and only if there exist



SEQUENCES IN CONTEXT FREE LANGUAGES 329
i, *+,ipsuch that w;, --- wi, = yi, -+ ¥i, , which is recursively unsolvable.
(2) The following problems may be shown to be recursively unsolvable
either by extension of the methods of Lemma 2.6, 2.3, and Theorem 2.3 or by
reduction to the Post Correspondence Theorem: Does anarbitrary language
over a two letter alphabet

(a) contain a purely periodic sequence?’
(b) contain, for a given word z 7 ¢, an u.p. sequence with period z, that
is, a sequence of the form x; zx - -+ ?

Theorem 2.3 permits us to obtain a result about ‘“‘counting chains.”

TaeorEM 2.4. Call C(P) a counting chain, where P is-a subset of the positive
integers, if C(P) 1is the set of those words

. . . . . . k N
71, %1302 01 Hig i, Zim=1ij
b"a"'b"%a <o btgTimY

k> 1,suchthat for 1 <j < k,1; =271 Pandv; =11 jisnotin P.
Then the question of whether an arbitrary language over {a, b} contains a counting
chain is recursiwely unsolvable.

Proof. Let o be the operation which takes each occurrence of b into
{b, b’} and leaves a unchanged. That is, o(¢) = ¢ and o(21 -+ 2,) =
o(z1) - - - o(x,), where o(a) = a and o(b) = {b, b’}. Let 7 be the operation
which takes each occurrence of a into A, = {ba’/n > 1} and each occurrence
of binto A, = {ba™"/n > 0}. Let ¢’ and 7’ be the operations defined by
o/(H) = Upinngo(h) and 7/(H) = Uy inx 7(h) respectively. Since A; and A4,
are languages, o’ and 7' preserve languages, i.e., if M is a language so are o' (M)
and /(M) [1]. We shall show that for a language M C 6(a, b),s'v’'(M) con-
tains a counting chain if and only if M contains a sequence. Since it is un-
solvable whether M contains a sequence, the theorem will follow.

To this end let M be a subset of 6(a, b). Suppose that M contains a se-
quence D = z; --- z, - -+, each z;in {a, b}. Foreachnletd, = z;--- x,.
Let A; = {1} ifz; = aand A; = ¢if 2, = b. Let

P = Azu{n/n > 2, 2p1 = 2.}.
For each n, ba"ba’® - - - ba™ is in 7(d,) if and only if 4, > Ofor 1 <j < n and
{7/i £ n, d;even} = {j/j < n,2; = a}.

For each n let u, be the element in 7(d,) with 4y = 1 or 2 and ¢;4; = 7; + 1 or
ij+1= ’l,+2,1 _<_]<‘n. Then

o(un) = (B"a™0™ - ba™/k; = 1,251 < j < ).

In particular, o(u,) contains an element v, in which k; = 2,1 < j <n,ifand
onlyifjisin P. Thusk, = 2if and only if z; = a. Hencek; = 4,. Further-

7 An infinite sequence x; + - - Z, -- - is said to be purely periodic if there exists an inte-
ger m > 1 such that z; m = ; forall¢ > 1.
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more, for each j, k;.x = 2 if and only if x; = z;41, whence kjy1 = 40 — ;.
Thus {v;/7 > 1} is the counting chain C(P). Since

{?)1/’1, 2 1} g GI({u"/n Z 1})7
{un/n > 1} € 7/(Init(D)), and Init(D) C M,

it follows that C(P) C o'+ (M).
Now suppose that the counting chain C(P) C o'7'(M) for some set P of
positive integers. For each n let

i i in ZHeqi;
v, = b"a™ - b"a"ITY

be in C(P). Then there is a unique word d, in M such that v, is in o'7(d,).
In fact, d, is the word z; - - - z, of length n in 6(a, b) for which (i) z; = a if
and only if 2, = 2, and (ii) for 1 < j < n, z; = z;41 if and only if 7, = 2.
It readily follows that {d;/7 > 1} = Init(D) for some sequence D, and D is a
sequence in M.

3. Distinguished sequences

Consider the question of whether or not a language containing a sequence
must contain an u.p. sequence. By application of a systematic procedure, we
can effectively enumerate those languages which contain no sequences. Since
we can test a given language to see if it contains a specified u.p. sequence
(Theorem 2.2), and since we can effectively enumerate the u.p. sequences,
we also have a systematic procedure for effectively enumerating those languages
which contain u.p. sequences. Therefore, if each language containing a
sequence contained an u.p. sequence, we would have a decision procedure for
determining whether or not an arbitrary language contained a sequence.
By Theorem 2.3, there is no such decision procedure. Hence there exists a
language which contains a sequence but no u.p. sequence. This is established
constructively by the following example.

Example. Given a word w and an element b in Z, let % b(w) be the number
of occurrences of b in w.

Let G4 = (Vy, 2, P1, £), where £ = {a, b}, Vi = (uZ,and P, =
{¢ —b, £ — a, £ — bta}. Let Ly = L(G,). Clearly

Ly = {u/u = wba®™™ win 6(a,b)}.

If w = wba" is in Ly, then wba"ba™"" is in L, and is the proper extension of u
in L, of smallest length. Hence L, contains the set {b, bba, bbaba’, bbaba’ba’,
.

Let G2 = (Va, Z, Py, £), where Vo, — 2 = {§ », v} and Py = {§ — vy,
y—ba,y—ay,y > by,y >bya, v — b,v — av,v > bv,» > va}. Let L, =
L(Gy). Then

Ly = {u/u = wba",1 <n < ¥b(w), win 68(a, b)bo(a, b)}.
Let Ly = {b}uLibuL,. Note that each word in {b} u L, b ends in b, and
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each word in L, ends in a. Let D be the sequence bbaba’ba’b - - - .  Obviously
D is not u.p. We shall show that L; contains D but no other sequence.

Each word in Init(D) ending in b is in {b} u L b. Since each word in
Init(D) ending in @ is in L, L; contains D. Now let £ be any sequence
contained in Ly . Neither a nor ba is in L, , thus neitherisin Ly . Therefore £
begins with bb. Now suppose that E begins with buba”, n > 0, for some
word v in 6(a, b). Two cases arise.

(a) m = %b(bu). Then buba"" isnot in Ly, and thus notin L; . Hence
E must begin with buba"b.

(B) m < Xb(bu). Since n = #b(bu), buba” is not in L,. Thus E
cannot begin with buba"b; that is, E begins with buba""".

By induction it therefore follows that £ = D. Hence D is the only se-
quence contained in Lj .

We now consider sequences D with the property that there is a language
containing D and no other sequence.

DeriniTION. A sequence D with the property that there is a language
containing D and no other sequence is called a distinguished sequence.

Since Init(D) is a language for a sequence D if and only if D is u.p., each
u.p. sequence is distinguished. The sequence D in the above example shows
that the converse is not true, i.e., there are distinguished sequences which are
not u.p.

Given a distinguished sequence D we may obtain other distinguished se-
quences as follows. Let S be any complete sequential machine with the prop-
erty that at each state, A maps Z one to one into A. Let L be a language con-
taining a distinguished sequence D. Then S(L) is a language containing the
sequence S(D). That S(L) contains no sequence but S(D) follows from the
fact that A maps = one to one into A. Furthermore, if D is not u.p., neither
is S(D). We omit the straightforward details.

The question naturally arises: Are there any sequences which are not
distinguished? A simple cardinality argument shows that there are. For
there are 2™° sequences when = contains at least two elements, and only 8,
languages. Thus there exists a sequence D (in fact 2%°) such that any lan-
guage containing D contains at least one other sequence, i.e., a sequence D
which is not distinguished. In fact

TureOREM 3.1. Every distinguished sequence is recursive.

This follows from the well known folk theorem that if a recursive tree with
finite branching has a unique infinite path, then the path is recursive.

The next theorem shows the existence of recursive sequences which are
not, distinguished.

THEOREM 3.2. Let a be a given element of Z. Then each recursive, non-u.p.
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sequence D with the property that for every n > 1 there is a word wa®, u # &,
in Init(D) such that k > 2™ 4s not distinguished,® | w | denoting the length
of u.

Proof. We first recall some terminology and facts about generation trees.
Let @ = (V, 2, P, 8) be a grammar. Call the elements of V — Z variables.
Let w; be a variable. Letw., --- , w, be words in 8( V'), w; — ws, a production,
with the following property. For 2 < 7 < r there exist words w:, v:, ¥s, 2
such that w; = u@y®:, Wi = uz2:, and y; — 2; is a production. A genera-
tion tree (constructed below) is a rooted, directed tree with an element of
V u {¢&}, called the node name, associated at each node.

The nodes of the tree are certain tuples of the form (¢, -+, %), where
k < r and 7; is a positive integer. The directed lines of the tree are all the
ordered pairs ((%1, -+, %), (41, *** , %, t41) ) of nodes. Let the 1-tuple (1)
be the root and w; the node name of (1). If w; = elet (1, 1) be a node in the
tree and ¢ the node name of (1,1). Ifw, = 2> --- 2%, each 2{” in V, let
(1,7),1 <7 < n(2), be anode and z{” its node name. Continuing by in-
duction, suppose that for all ¢ < k every occurrence in w, of an element of V
serves as node name of some node. Now

(%) WYl = W = Wii1 = Un2iDk -

Let (41, -+ -, %.) be the node whose node name is the occurrence of i, indicated
in (%). Ifz, = elet (41, -+, %, 1) be a node and ¢ its node name. If
2z = 2 oo 2%, each 2 in V, let (4, -+, 4, 1), 1 <1 < n(k), be a

node and z{¥ its node name. This procedure is repeated through k = r — 1.

The resulting entity is the generation tree.

A node (51, +-, j:) is said to be an extension of the node (4, -+, )
ifs<tand# =gy foralk <s.
A path in a generation tree is a sequence of nodes Ny, -, N; such that

(N;, Ni1) is a directed line for each 7 < k — 1.

Given the nodes Ny = (%1, -+, %) and N; = (j1, - -, J:) write Ny < N»
if either N, is an extension of N; or if 4 < ji for the smallest integer k£ such
that ik # ]k .

The relation < is a simple order on the set of nodes.

A node is called maximal if there is no node distinct from it which is an exten-
sion of it.

We shall use (implicitly and explicitly) the following known facts about a
generation tree T' associated with £ = w [1]:

(a) If N is a nonmaximal node, then the node name z of N is a variable
and £ = wav for some »w and v in 6(V).
(b) Let Ni, ---, Ni be the maximal nodes, with N; < N for each i.

8 One such sequence D = &; -+« &, +-- is obtained by letting f(0)
f(n) 4 2D 4 1 forn > 0, x; = b if 7 is in the range of f, and x;

Lfn+1) =

a otherwise.
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Then w is the word obtained by replacing in Ny --- N each node with its
node name.

(e) Let N be a nonmaximal node in a generation tree, and z itsnode name.
Then the “subtree” of T formed by using as nodes all extensions of N is a
generation tree.

(d) Let w = uyv and let T, be a generation tree of v = w, . If T is placed
(in the obvious way) with its root on the node whose node name is v in
uyv, then a generation tree of § = ww, v is obtained.

We now turn to the proof of Theorem 3.2. Let D be a sequence satisfying
the hypothesis of the theorem. Let L be any language containing D. We
shall show that L contains an u.p. sequence. Consider the set

L' =L~ {& — =

L’ is a language and there is a grammar @ = (V, 2, P, ¢), L(G) = L/, such
that every production in P is of the form £ — uy, p and » in V [1]. Let N
denote the number of distinet variables. Let H be the set of those variables
£ such that £ = a’ta’ for some s + ¢ > 0. Let H; be the set of those & in H
such that £ = £a' for some ¢ > 0. (We can effectively determine H and H,,
but we do not need this fact.) We shall see below that H is nonempty.
Denote the distinet elements of H by &, ---, & . For each & in H; let
e(3) > 0 be an integer such that & = £ a*”. For each & in H — Hj let
e(7) > 0, s(2), t(4) be integers such that

e(i) = s() + t(z) and & = a" P& ',

Lete = e(1) --- e(r).
Consider any word ua® in Init(D), where u = ¢ and k > 2™ We
shall show that Init (ua™®) C L, thereby proving the theorem. Since

Init (ua*) C Init(D) C L,

it suffices to show that wa®is in L(G) for each ¢ > k. Accordingly, let ¢ > &
be given and let p = |u|. Then

]C _ 22Np 2 2(2N+e)p _ 22Np — 22Np(2ep _ 1) 2 2(2ep _ 1) 2 2ep > ep Z e.

Therefore there is a positive integer g such that 2?7 < ¢ — ge < k. Then
ua®* is in Init (ua®) and |ua®| > 2. Thus ua®* is in L(G). Hence
there is a generation tree T of g which derives ua®™** (from o).

Since each production is of the form & — u», p and v in V, it is readily seen
that any generation tree of G of a word of length > 2" contains a path with at
least n + 1 nodes, where each node name is a variable. Now

luaq—ue‘ >q—ge> g > 2N(p+1).

Thus T contains a path Z, ---, Zyp+n+1, where the node name of each Z;
is a variable. Since there are only N distinet variables, one of them, say £,
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is the node name of at least p + 2 nodes. Denote by Y1, ---, Y,othefirst
p + 2 nodes in the path whose node name is £&. For1 < ¢ < p + 2,let T,
be the subtree of T whose nodes are the extensions of Y;. Then T, is a
generation tree (from £) of a word v;in 6(Z) — e. Forl < 7 < p + 1,since
the node Y1 occurs in 7'; , there are words z; , y; in 8(Z) such that § =z, &y,
and v; = 2; 0.1 y:. Since each production is of the form v — wr, uw and v in
V, xz:y:5 . Since Y isin T, there exist w; , we in (V) such that ¢ = w; fw, .
Thus ua®™" = w, &1 +++ Tpp1Vpr2Yprr = Y1 Wz .

Two cases arise.

(1) Suppose that one of the z;ise. Let j be the smallest integer such that

x; = ¢ Then |z -+ 24| > j — 1. Since z;y; # ¢ for each 4,
| Tjp1 - TpriVpralYprr 0 Yin | 2 p + 1 —J.
Thus |21 -+ Yj+1| = p, so that « is an initial subword of wy 1 - - - yj41 .

Therefore y;isina®. Asz; = €,y; % ¢. Thusy,isinea®. Since t= z, fy;,
£isin Hy,say § = & . Now eis a multiple of e(d). Thus

£=> Sae(d)ae/e(d) - ane

and
C= Wik XY YW
= wix - x;E”Y; o Y1 We
= Wiy c Tppd Vpya Ypi1 *°* Yir @Y5 - Y1 We
— uaq—ﬂeaﬂe —_ uaq.

(2) Suppose that none of the x;is ¢. Then |z - -+ z, | > p, so that u is
an initial subword of wi @y -+ Zp. ThUS Zpp1 Vprs Ypsr -+ - Y1 We is in aa™.
Then & = Zp41 EYpr1 , With Zpps Yp in aa™.  Therefore £isin H, say £ = & .
Then there exist nonnegative integers s and ¢ so that £ = a’ta‘ and e(d) = s + t.
Thus

o= Wik LpkYp Y1 We
=W Tp asﬂe/e(d)gatye/e(d)yp ey
S ar e 2p @0 D1 Vrs Ypr1 @7 Py - Y1 we
= W11 Tprl Upte Yptl *°° Y1 We gletogele@
(since Zppy -+ Yrwe altoeere @ g in aa*)
= ua’.

Finally we establish the existence of a language which contains a sequence
but no recursive sequence.

Lemma 3.1.  There exists a language which contains a sequence but no recur-
stve sequence.

Proof. By [5], [11] there exists a recursive subset M of §(a, b) which con-
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contains a sequence but no recursive sequence. Since M is recursive we can
construct a Turing machine Z with alphabet a, b, Sy, ---, Sy (b > 0) and
internal configurations q1, - - - , g (m > 3) which has the following property :
Suppose that Z starts from an instantaneous description Sg¢ g wS¢ with =,
p > 0 and w in 6(a, b). Then

(1) if wisnot in M, Z halts in the internal configuration ¢. .
(2) if wis in M, Z halts in the instantaneous description S§ qs wSs for
somer > 0and ¢ > 0.

We extend the relation — defined by the Turing machine Z. Let 4, b, and
gmy1 e distinct elements not in {a, b, So, -+, Sk, ¢1, -+, gu}. For all
r>0,t>0,and win 6(a, b) let

(3) S5 gs wSs — 8§ Gryz waSs
(4) S5 gz wSo — St gmsr wbSo,
(5) 8t @mys waSe — St ¢ waSe ,
(6) St gmsr wbSs — S§ g1 whSs .

Let = = {a,b,a,b,80, -~ ,8h, ¢, *, Qmu1}. Suppose that u;, us, - - -
is an infinite sequence of words in #(Z) such that u; = ¢; and u; — wuyy for
alls. Ifz; =a(z; =b)letZ = a (F = b),allj > 1. Thenus = Quys &1,
with z; in {a, b} and 3 = ¢g121. Moreover,

(7) wzisin M.

For suppose the contrary. By (1), us (uniquely) leads to an instantaneous
description containing ¢ which cannot be in the domain of the extended —
relation, so that u;, us, - - - terminates, a contradiction. Continuing by induc-
tion, suppose that z; - - - z, is a word in M, each z; in {a, b}, such that u;, =
Sequar -+ 2,85 forsome k > 1, n > 0, p > 0. By (2)-(6), there is a
smallest integer s > k such that u, = S;qsa; -+ . S¢ for some r, t > 0.
Note that neither @ nor b occurs in any word wx, -, 4;. Then wu,y; =
St Qi1 Ty -+ Ty Frpr S6 With 2,41 in {a, b}, and wuee = Soqiar -+ Tp1 S6 .
Again, lest u;, uz, --- terminate, &1 - -+ x,1 is a word in M. Let 7 be the
function on 6(Z) defined by (&) = ¢, 7(@) = a, 7(b) = b, 7(z) = & for z in
= — {a,b},and 7(y1 --- ) = 7(41) -+ 7(yx), each y; in =. Then

Init(z; 2o ) = {T(u1 s 114)/1 > 1}

and z;z, --- is a sequence contained in M. Clearly for every sequence
2122 - - - contained in M there is a sequence of words v; v, - - - in §(Z) such that
vy = qs, Vi — vy for all 4, and Init(z12s -~ +) = {7(v1 -+ 0:) /2 > 1},

Let ¢ be an element not in =.  As is easily seen, the set 4, = {u"ev/u — v}
is generated by the grammar G = (Zu {&, -+, &, ¢}, Zu {c}, P, o), where
P contains all the productions (1)—(9) of Lemma 2.4 together with

(10) 0"—)54,0'—>E5. _
(11) & — Se&So, &4 — & a, &4 — £ .
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(12) & — aksa, & — b b, & — s &1 gmar -
(13) & — 8o &S, & —c. )

(14) & — So& So, & — dks a, & — bés b.
(15) & —aksa, & — bish, & — gmin b @
(16) & — So & So, & —c.

Let Ay = {wew'/w in 6(2)}, A = Init(gsc(A:1¢)™), and B = Init(Asc)™
A and B are languages whose intersection contains exactly those sequences

of the form vyevy ¢ --- with vy = gscgs and, for all 4 > 1, v; = wuscui and
wi — U1 . Since M contains a sequence, so does A n B. Suppose A n B
contains a recursive sequence 4 ys - -- . Then 7(y)7(ye) -+ = i a3 -,
each z; in {a, b}, is also a recursive sequence. Then z; 2, - -+ is a recursive

sequence in M, a contradiction. Thus A n B contains no recursive sequence.

Finally, let 7, and 7. be the language-preserving functions of Lemma 2.3.
Then the language 71(A) u 75(B) contains exactly those sequences y3 3 - - -
where y; ys - - - is a sequence contained in A n B. Hence 7,(A4) u 7o(B) con-
tains a sequence but no recursive sequence.

THEOREM 3.2. There exists a language over a two letter alphabet which con-
tains a sequence but mo recursive sequence.

Proof. The theorem follows from Lemma 3.1 in the same manner in which
Theorem 2.3 follows from Lemma 2.6.

Remarks. (1) Any language which contains no recursive sequence either
contains no sequence or else contains uncountably many sequences. For let
L be a language which contains a sequence but no recursive sequence. Sup-
pose there is a word w such that w begins exactly one sequence in L, say the

sequence wy; ys -+ . Then the language’ {x/wx in L} contains the se-
quence ¥ Yo - - - and no other. By Theorem 3.1, y1 92 - - - is then recursive,
so that wy;ys --- is a recursive sequence contained in L, a contradiction.

Therefore for every word w which begins a sequence in L there are words
w; and w. such that (i) ww; and ww, both begin sequences in L; (ii) wuw, is not
an initial subword of ww. and wws is not an initial subword of ww; . But this
implies the existence of uncountably many sequences in L.

(2) The method of Lemma 3.1 may be applied to transmit further prop-
erties of recursive sets to languages. For example, it can be shown that there
exists a recursive set M of words with the property that the set of recursive
sequences contained in M is not itself even recursively enumerable. Then
the method of Lemma 3.1 allows proof that there exists a language M with
the same property.

In passing, we mention two open problems.
(1) Characterize the set of distinguished sequences.

9 It is known that if L is a language and w a word, then {z/wz in L} is a language

(61.
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(2) Characterize the set of those sequences D having the property that
there exists a language containing D but no u.p. sequence.
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