ON THE SEMISIMPLICITY OF THE MODULAR REPRESENTATION
ALGEBRA OF A FINITE GROUP

BY
M. F. O’REILLY!

1. Introduction

1.1. Let G be a finite group with unit element ¢ and K a field of prime
characteristic p. By a G-module M we mean a (K, G)-module (elements of
@G act on the right). Denote by dim M the dimension of M as a K-module;
we shall assume dim M is finite.

{M} denotes the (K, G)-isomorphism class of M.

The modular representation algebra A (K, @) is the linear algebra over the
complex field C defined as follows:

The elements of A(K, G) are the finite linear combinations over C of the
G-module classes { M}, subject to the relations

{My + Mo} = {My} + {Ms}

for all G-modules M, , M,. Here M; + M, denotes the direct sum M; ® M, .
Multiplication in A (K, G) will be denoted by ® and is defined by

{My} ® (Mo} = {M, ® M}

where M; ® M, is the tensor product over K, considered as a G-module by
the rule (m; ® me)x = mx @ mox (Mg e My, mee Mo, x e @).

By the Krull-Schmidt theorem for G-modules, A (K, @) has as a basis (over
C) the classes of the indecomposable G-modules. By a theorem of D. G.
Higman [5], the number of indecomposable classes is finite if and only if the
Sylow p-subgroups of @ are cyclic.

Let H be a subgroup of G. For any G-module M let My be the H-module
formed by restriction of M to H; for any H-module L let L¢ be the G-module
induced from L. A G-module M is H-projective if there exists an H-module
L such that M is isomorphic to a direct summand of L°.

Denote by Ax(K, G) the subspace of A(K, G) spanned by the classes of
H-projective G-modules. From the identity

L°® M= (L ® My)®
which holds for any H-module L and G-module M it follows that 4x(K, @)
is an ideal of A(K, G).

Let F be a subgroup of H. We shall write # < H. Let N be an F-module.
Since (N¥)¢ =~ N¢ a G-module which is F-projective is H-projective, i.e.
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Ap(K,G) < Ax(K,G). Write
An(K, @) = Y. Ax(K, @)

where the sum is taken over all proper subgroups F of H; define
A{o(K, @) = 0. By the remark above, Az(K, G) is an ideal of A(K, @)
and so of 4x(K, @).

Let Dp(K, G) = An(K, @)/Au(K, G).

It is to be noted that if @ is a cyclic p-subgroup of G then since the num-
ber of @-modules and so the number of @-projective modules is finite, 4 (K, G')
and Dg¢(K, @) are both finite-dimensional algebras.

The aim of this paper is to prove the following result:

(1) If G is a finite group and Q a cyclic normal p-subgroup of G then the
algebra Do(K, @) is semistimple.

Now Green [2] has shown that
(i1) if Q is any p-subgroup of a finite group G then
Do(K, G) = Do(K, Na(Q))
where Ne¢(Q) 1is the normalizer of Q in G.
These two results combine to give immediately that

(i) If Q 1s any cyclic p-subgroup of a finite group G then Do(K, @) is
semisimple.

For any group G, if S is a Sylow p-subgroup of G, A(K, G) = 4s5(K, @)
since every indecomposable G-module is S-projective (see for example Green
[4, Theorem 2]). Then it is easily shown (Green [2]) that A(K, @) is semi-
simple if and only if Do(K, @) is semisimple for all p-subgroups @ of G. This
gives the following as an immediate corollary to (iii):

(iv) If G is a finite group with a cyclic Sylow p-subgroup then A(K, G) s
semistmple.

2. Representation algebra

2.1. By a character of a commutative algebra A with identity over C is
meant a non-zero algebra homomorphism ¢ : A — C. A finite-dimensional
algebra A will be semisimple if and only if the number of characters of 4
equals the dimension of 4.

From now on G is a finite group and @ a cyclic normal p-subgroup of G
with | Q| = h.

We shall prove Do(K, ) is semisimple by induection on | @ | (Theorem 1).
When @ = (e) this follows from Lemma 12. If | Q| > 1 let P be the cyclic
subgroup of Q of order p. Define G = G/P, @ = Q/P. Then by the induc-
tion hypothesis Dg(K, G) is semisimple.
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In §3, Do(K, G) is expressed as an extension of Dg(K, G) by the relations
(3.11a, b, ¢).

In §4 we show a sufficient number of characters of Do(K, G) can be obtained
by extending the characters of Dg(K, G) to ensure the semisimplicity of
Do(K, @) (Lemma 13).

The remainder of §2 will be given over to describing the algebra A o(K, G).

22. By the proof of Theorem 1 (Green [3]) we may assume K to be
algebraically closed.
Let T(K, @) be the group algebra of @ over K; write w = x — ¢ where x
generates . Then '
Vi= F(K7 Q)wh—-l (7' = 1; T h)

is an ideal of I'(K, @) and V,, ---, V, form a set of representatives of the
indecomposable classes of @-modules (see for example D. G. Higman [5]).

Since each V; (¢ = 1, ---, h) is an ideal of T'(K, ) we may interpret
Vi as V.D(K, G) (see for example Green [4, 2.6, p. 431]). From the same
identity it can be seen that (Vi)e = (G:Q)V:.

Lemma 1. Let | Q| > 1. A necessary and sufficient condition that V; is not
F-projective for any proper subgroup F of Q is that (p, 7) = 1.

Proof. Let @ be the maximal proper subgroup of @, viz., the subgroup
generated by 2”. Let A = h/p. Then since any proper subgroup F of @ is
contained in @', every F-projective @-module is @’-projective.

Let w = 2” — e. Then V; ~T(K, Q)0 (j =1, -, h) represent the
indecomposable classes of @’-modules. Further

(VH® = Vi T(K, Q) = T(K, Q)T T(K, Q)
= (K, Qu"™
since @ and hence T'(K, @) is abelian. That is
(Vi) =V,

Thus the @-module V; will be @Q’-projective if and only if p divides j, prov-
ing the lemma.

LemMa 2. (a) For any G-module M and any i > 0, Mw' is a G-sub-
module of M.
(b) If My, M, are G-modules then for any © > 0,

(M1 + Mg)w’ = M1 wi + M2 wi.

(¢) For any Q-module L and © > 0, (Lw")¢ = L%".
(d) Lel M be any G-module and S a G-module on which Q acts trivially.
Then
M ® Sw=Mw ® S.
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Proof. (a) It is trivial that Mw' is a K-subspace of M. Let g ¢ G; then
g xg = x' for some ¢ (1 < ¢t < h) and so

gwg =g leg— e=2"—e=bw = wh
where

b=(e+z+ - +27)eI(K,G).
Let m ¢ M ; then

mw'g = mgg"w'g = mgb*w’ e Mw'.
Hence Mw' is a G-submodule of M.
(b) The proof here is trivial.
(e¢) By (b) it suffices to prove (¢) for L indecomposable, i.e., for L = V;
(j=1,-+,h). Thenasin (a) if ge@, g" w9 = bw’ ie.

w'y = gb'w' e T(K, Q)w'.
Ifyel(K,GQ),y = 2 seadsg (a, e K) and so
w'y = ety gw’ e T(K, G,
Similarly yu® e w'T'(K, @) whence w'T(K, @) = T'(K, @)w’. Thus
(Viw)° =V, 0 T(K, @ =V, (K, v = Vi w'

(d) Let ue (M ® S)w; then u is a linear combination of terms of the
form m ® s (meM, seS). Since

(m®s)w=(m @ s)(x— e)
=mr®sct— m®®s

=mr®s— m®s

m(x—e) ®s
= mw ® s,
the mapping 6 : (M ® S)w — Mw ® S defined by
(m ® s)wd = mw ® s

is a (K, G)-isomorphism.

Let R, , - -+, R, be the irreducible G-modules and U, , -- -, U, the princi-
pal indecomposable G-modules such that R, is the unique minimal G-sub-
module of U, (Artin, Nesbitt and Thrall, [1, pp. 99, 111]. We choose R; to
be the unit G-module. Write M7 = U,w* ™ (4 = 1, -+, hyr = 1,---,
s). By Lemma 2(a), M; is a G-submodule of U, .

Lemma 3. The classes {M3} (¢ =1, --- ,h; r =1, ---, 8) form a basis
for Ag(K, @).

Proof. By the Krull-Schmidt theorem for G-modules, 4 o(K, G) will have
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as basis the set of indecomposable classes of @-projective G-modules, viz.,
the classes of indecomposable components of V{ (i = 1, ---, k).
Let f, = dim R,. Then

Vi 2K, QTI(K,G) = I'K, ).
Since T(K, G) = 2.i.if. U, (see [1])
Vi3 iaf U,
and so by Lemma 2(b), (¢)
(2.21) Vi (Viw"™% > D1 M.
Since
F(K7 G)O = (G:Q)I‘(K’ Q)y

(U,)q is isomorphic to the sum of say n. (n,  0) copies of I'(K, @) and so
(M?5), is isomorphic to the sum of n, copies of T'(K, @)w"™* = V,; and hence
is a non-zero G-module. By the same fact if 7 ¢ 7, M} is not isomorphic to
M forany rorp (r,p =1, ---,8).

As M’ has the unique minimal G-submodule R, it is indecomposable and
not isomorphic to M% for p ¢ 7. Hence (M3} (i =1, --- ,h;7r =1, ---,

s) are distinet indecomposable @-projective classes and by 2.21 are the com-
plete set of such classes, which proves the lemma.

CoROLLARY 1. The classes {M7} 4+ Ao(K, Q) (r =1, - ,85=1, ---
h; (2, p) = 1) form a basis for Do(K, @).

Proof. M’ is F-projective for some subgroup F of @ if and only if (M7)e
is F-projective. Since (M:)q = n, V;, by Lemma 1 M7 is not F-projective
for a proper subgroup F of @ unless p divides 7. Thus {M7} € Ag (K, @) if
and only if p divides ¢, proving the result.

CoroLLARY II. Elements of Q act trivially on M1 and hence on R, (7 = 1,
cee ) 8).

Tor, (M1)e =2 n, Vi = n, K¢ and R, C Mj.

From now on we shall simplify the notation by writing M for the isomor-
phism class {M} in A(K, @) and also for its quotient class {M} + Ao(K, @)
in Do(K, @).

2.3 Let g be the ideal of A(K, G) generated by all elements of A(K, G)
of the form M — M’ — M” where there exists an exact sequence of G-modules
and G-homomorphisms

0—>M —-M—M —0.

The Grothendieck algebra A*(K, @) is the quotient A(K, @)/9. By the
Jordan-Holder theorem for G-modules, writing ® = R, + geA*(K, @),
®1, -+, R form a basis of A¥K, Q).
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Let m, (M) be the multiplicity of R, as a composition factor of the G-module
M. We may extend this notation to an arbitrary element X = Y ;bs M;
(bs € C) of A(K, @) by putting m,(X) = D_sbsme(M;). Then again by
the Jordan-Holder theorem, M + g = Y .oy me(M)®R, .

Let M’ be the maximal proper G-submodule of the G-module M ; then M /M’
=~ R, for some ¢ (1 < ¢ < s) and there exists an exact sequence of G-modules
and G-homomorphisms

0—-M —>M-—>R,—0.

From this may be formed, by tensor multiplication with U, (1 < = < s),
the exact sequence

0-M®U,.-M®U,—- R, ®U,—0.
Since U,, and thus U, ® R,, is projective, this sequence splits and
soM @ U, =M ® U, + R, ® U,. By repeated application we find

Uy @ M=, U, ® m(M)R, .
Thus

(2.31) Uy®X = 2., U, ® m(X)®, .
Let B; be the subspace of A(K, @) spanned by the indecomposable classes
My, -, M.
LemMMA 4. For each i (1 < ¢ < h), B; is an A*(K, G)-module with elements
of A¥(K, @) acting on the right according to the rule
Mi®=M;®R, (r,0=1,---,5) (M;eB;, R, eA*(K,Q)).

Proof. Any element of J is a linear combination of elements of the form
Z = N — N’ — N” where there is an exact sequence of G-modules and G-
homomorphisms

0—-N —>N-—->N'—0.

Since me(Z) =0(c=1,---,8), My, ® Z = U. ® Z = 0by (2.31) and so
By is made an A*(K, G)-module by the rule defined above.
Further by Lemma 2(d),

M; ® R, = (M, ® R,)w" " ¢B;.

Thus B; is also an A*(K, @)-module by this rule.
We now define the mapping x : 4¢(K, @) — A*(K, G) by

Mix = 2 em(M)®  (r=1,-,80=1,--,h).
x is obviously an algebra homomorphism. Further,
UT x = Zd cl.r‘r G{a

where ¢,, = m.(U,) and (c,,) is the Cartan matrix, which is non-singular.
Also forany p (p =1, ---,s8)and 7 (+ = 1, ---,8)

(U, ®IX = 200Cr R ® R, = U, x ® R, .
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Thus we have
LeEMMa 5. x is an A¥(K, G)-isomorphism when restricted to By, .

For any element X = D i tis My (uj e C) of Ao(K, G) write Xuw' =
> i-upx Mijw'. Also given an element X; = ZLI u. M; (u, ¢ C) of B;
define X; = > i u.Mj; then X; = X,w"". Define

. V=R x"' = 2 b M, (say)
and Y, = Y,w" "

LEMMA 6. Let Xl' (.Bi; then X1 = Yi : (Xh)x.

Proof. Sinee x restricted to B, is an isomorphism Y} is the identity of B,
and thus

X=X ®Y,=8SX») ® ¥
where S(X) = D>, m.(X)R,, by (2.31). Then for 1 < ¢ < h,
Xi=Xow'™ = (8(X)) ® Vouw'™
= 8(X)) ® YVyw'™

by Lemma 2(d).
By Lemma 4, S(X,) ® Y, = Y, - (X»)x.

From Lemma 6 we can deduce immediately that Yy, .-, Y, form an
A*(K, @)-basis for Ao(K, @), since M; = Y, - (Mp)x. Similarly the set
{Y,,’L= 1’ Tt 7h’) (’L)p) = 1}

forms a free A*(K, @)-basis for Dy(K, G). In each case the basis is a free
basis since, from the non-singularity of the Cartan matrix, M3 x is distinet
for distinet 7.
Given X5 = 2., u, My e B, we define for j < ¢
Xi/X;= 2 u Mi/M;.
LemMa 7. Let R be any element of A*(K, G); then for X, ¢ By, and j < 1,
Xi - ®)/(X;-®) = (X/X;) - ®
Proof. From the definition of X;/X; it is sufficient to prove the result in
the case where X; = M; (r =1, ---,s)and R = ® (¢ = 1, ---,s). In
this case it is easily verified that the mapping
6: (M;:® S)/(M; ® 8) — (Mi/Mj;) ® 8
defined by
mO®n+M; ®80=(m+M;) ®n, (meM;,neS)
is a G-isomorphism where S is Q-trivial. Since M; ® R, = M: - ®,, the
result is proved.
LemMA 8. There exists an element & of A*(K, @) such that, for any X e
Bh bl .
X,,'/Xj = Xi_.j . &]
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foralljand i (j =1, -+, h;j < i< h) where ® denotes the product of j
copies of R.
Proof. Givenj < 1,
Vi = (V/V) = ViV,
Le., Do fe Mis; =2 200 f: MY/ M (see (2.21)).

Since there are the same number of distinct summands on the right as there
are distinet indecomposable G-modules on the left, by the Krull-Schmidt
theorem for G-modules, there exists a permutation £(z, j): 7 — 7’ such that

Mi/Mj = Mi_;.
Thus
Miy/Mi = MY = Y, (Mi)x.
Hence
Yo/Yi = 2o b M3/Mi = 2 it b, Y1 - (M)

Write ® = o= b,(M7 )x where ' = r£(2, 1).

Then
Xo/Xy = Y,y - (Xa)x/Y1 - (X1)x
= (Yy/Y1) - (Xn)x, by Lemma 7,
= (Y1 ®)-(Xn)x, by above
=X; - @&

Further since for 1 < ¢ < h, M;/Mj is indecomposable, contains M5/M1 and
is isomorphic to a summand of Vi, Mi/Mi = M;_, where again 7 =
76(2, 1). Hence

M:/M; =~ M- ®.
Thus the lemma is true for j = 1. Assume that 7 > 1 and that it is true for
j— 1. Then for< > j

Xi/Xj = (X'l/Xl)/(XJ/X\)

=Xiy ®/ X1 ®, by the casej = 1
= (Xia/Xja)  ®, by Lemma 7
=X, ®7 - @, by the hypothesis
=X ®.

Thus the lemma is proved by induction.

We note that ® operating on elements of 4¢(K, @) induces the permutation
£(2, 1) of the superscripts . Further, since Vi - ® = Vi, dim & = dim
R =1.

LemmA 9. Let M and N be direct sums of Q-projective G-modules. Then
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M = N if and only if .
Mw'™ ~ Nw™*
Mw? — Nw
Proof. If M = N it is trivial to show that
Mw'™ _ Nw'™
Mw’ — Nw

forall j=1,2,---

for all j.
Assume
Mw™ _ Nw™™
Mwi =~ Nuw’

for all 7.

Then, in particular

M _N

Mw = Nw
whence M and N have the same number ¢ of indecomposable components.
Further if M is an indecomposable component of M such that & is maximum
as a suffix of indecomposable components of M, then since Mw’ = 0 for
j >k No = 0 for j > k and so k is maximum as a suffix of indecompos-
able components of N.

If M is indecomposable, i.e., has only one indecompesable component,
M = M;j for some 7 (1 < < s) and k. Thus N = Nj, for some o
(1 <o <s). Further

M= 3 = Fwr =N
whence ¢ = 7. Thus the result is true for ¢ = 1.

Assume the result true for all G modules M and N with less than ¢ inde-
composable components. Let M have ¢ indecomposable components.
Choose one such component M’ of M such that M’ = M}, where k is maxi-
mum as a suffix of indecomposable components of M. Let M” be the com-
plement of M’ in M, i.e., the G-module such that M’ + M” = M. Then
M7 contributes a component

MITc wk—l ~ .
————*M; wk = M 1
ka—-'l
to e and so there exists an indecomposable component N’ of N such that
N/wk*—l - ,
T =M

Now N'w* = 0; thus N'w*™ = M7 whence N’ = Mj. Let N” be the com-
plement of N’ in N. Then M” and N” satisfy the conditions of the hypothe-
sis and so N” = M”.

Thus M =< M’ + M” = N + N” == N.

The result thus follows by induction on ¢.
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3. Extension Relations

3.1. Define P, G, Qasin §2andlet ¢ = |Q|. Then h = pq. The epi-
morphism from G onto G which takes an element g of G to § = gP induces a
monomorphism 6 : A(K, G) — A(K, @) by identifying a G-module M with
the G-module having the same underlying space as M and on which each
element g of G acts by g = M (M e M). Since R, (¢ = 1, -+-, s) is P-
trivial it will be the image under 6 of an irreducible G-module R, whence
A*(K, @) is isomorphic to A*(K, G). 6 also identifies the indecomposable
G-module M7 with the corresponding G-module M; (i = 1, ---, q; 7 = 1,

-, 8) and so embeds 45(K, G) in A¢(K, @) as an algebra over C and, by
the isomorphism of A*(K, ) to A*(K, @), as an algebra over A*(K, G).

Since M} e A(K, @) and M7 e A)(K, @) if and only if p divides ¢, D5 (K, G)
is embedded as an algebra over A*(K, G) in Do(K, @).

Write M7 = M7. For any integer r such that 0 < r < h write r = g
+ r (0 £ < q). We shall prove

LemMa 10. For any r, 0 < r < h, such that (p, r) = 1 one of the following
relation holds in Do(K, G):

Y, (You— Y- ®) = Y1® (Yopr = Yor - ®)

(3.11a)
ifl <r <g;
(3.11b) YT ® (Yq+1 - Yq"l ’ (B’) = Yl ® (Yr+q - .I/’f—q . (Rq)
Fg<r<(p—1g
(3-110) YT ® (Yq+1 - Yq_l ’ (R) = Yl ® (Yr~q * Rq - Yh_” . (er)

f(p—1)g <r <h;
where ® s as defined in Lemma 8.

Before embarking on the proof of Lemma 9 it is necessary to discuss some
of the properties of tensor multiplication of G-modules.
Consider the exact sequence of G-modules

00— M S M- My - ®—0

where ¢ is the inclusion map. By taking the tensor product with M; one
obtains the exact sequence

0-M @M, S M:QM,—>Mi, - ®® M,—0.

Writing L = M7 ® M7, M = M; ® M;,N = M, - ® ® M; we can form
the exact sequences

0— Ln Mw — Mw & Nw — 0
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forj = 0,1, ---, | M|— 1 where | M| is the maximum dimension of the
indecomposable components of M.
These in turn give rise to the exact sequences

j—1 j—1 - j—1
Lo Mw™ i Mw™ & Nw
&, :

0— Lo Mw = Muw wa—)o
where t is the inclusion map (7 = 0,1, -+, | M| — 1).
Now
(Mw"“> - (Vi ® Vow™*
M )o =" Vg Vow
and

(5, s, T © V0,
Nw Jo— "7 (Vi ® Vow' ’

further by applying a result of Green ([3, 2.6d]) there exists a set of integers
J="{a, --,4 (4 <% < -+ <4),such that

V:® Vow'™" _ (Vi ® V)w™

(8.12) Vi@ Vow = o ® Vow

where 6(7, J) = 1 if jeJ and is otherwise zero.
We can now show

(3.13) if i < 7 < ji then ker ; = Lw* ™.

Proof. The result is trivially true for j = 0. Assume jiry < j < jx and
that ker ¢; =~ Lw*™ (= M ® M_441 by Lemma 2(d)). Ifj 4+ 1 5 ji then
ker £;41 = 0 and so ker ¢; = ker €;,; = Lw*™". Ifj + 1 = j; then by (3.12),
(ker &;)¢ and hence by Lemma 2(c) ker &; is annihilated by w. Thus
ker ¢, D ker £;,1, O (ker &;)w, i.e., Lw*™ D ker &;_; D Lw*. But again
by (3.12),

dim Lw*™ — dim ker &;44 = n,n, = dim Lw*™ — dim Lw".
Thus ker ¢;4; = Lw" and the result follows by induction.
From (3.13) since

~ M1 ® M

Luw* ™/ Lw* by Lemma 2(d)

- Mi® M’

>~ M ® M- by Lemma 8
we deduce
(3.14) fj=gred ker &, = M; ® Mi-®".

Given integers 7, s (r < s) define an interval [r, s| as the set of integers j

such that » < 7 < s. Then the set J may be uniquely written as the union
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of intervals

J = U, [a(p), b(p)]

such that b(p — 1) + 1 < a(p) < b(p) < a(p + 1) — 1 where defined.
Let a(p) = jun and b(p) = jiuw - Then

(3815) M + 2, Mi® Mot & *PH = N+ 35, M1 ® My &
Proof. By Lemma 2(d), and the proofs of Lemma 7 and Lemma 8,

(M‘{ ® M;(p)—l . mr—k(p)+l)wj—l

_ ' T na(p)—i+r—k(p)
LT ® My ooy~ M1 ® M@

if a(p) > 7 and is otherwise zero. Similarly

(Mci ® M‘l’)(p) . Cﬂr_l(p))’wj—l
(M3 ® My -®—1P)w!

- M: ® M;.(Rb(p)—j+r—l(p)

if b(p) > 7 — 1 and is otherwise zero.
Write

[Dew>il = Dawss M1 ® Mi-®*P7HHD
and

[2b>ic] = 2pwsima M1 @ Mi-® P10,
Then by Lemma 9 to prove (3.15) it suffices to show that

Muw™ Nw’™?
Yo T (2 atm>i] = Nor T [2sr>i-1]
forall j,1 < j < | M| Now since
- Mw'™
ker &, C U
and both are the direct sums of G-modules of unit suffix, ker &; is a component
Muw'™ Nw™
of T and has as complement N’ e
Mw™ Nw™ -
Mw ~ Ny TR

Thus proving (3.15) reduces to showing

(3.16) [Dam>il + ker & = [Dpw>i-1l

forallj, 1 <j<|M|

The proof will be by induction on | M | — j. Assume (3.16) true for all
j > d. This is true ford = |M|. Letd < |M|. We require to prove
that (3.16) is true for j = d.

Case (i). Let d, d + 1 be both contained in J or both outside J. Then
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d # b(p) forany pand d + 1 & a(p) for any p. Thus
[2awsd = [Zasanl ® and  [Dpsaa] = [2spsd- &

Further ker & = (ker &) -® by (3.14). By the induction hypothesis
forj=d+ 1,

[Dasais] + ker Zagr = [D sl
Thus

[ 2 smsaa] = [ ® = [2amsan] ® + (ker &a41) ®
= [Dam>d + ker &
whence (3.16) holds for j = d.

Case (ii). LetdeJ andd + 1¢J. Thend = b(p) for some p = p; but
d + 1 # a(p) for any p. Thus

[Damsd = [Damzan] ®

[Zb(p)>d—1] = [Zb(p)>d]'(R + M ® MI_mT—l(pl)

since d = b(p). Further ker &, = 0 while ker & = Mi ® M7 &'
by (3.14). Applying the induction hypothesis for j = d + 1,

(2 emsanl = [2msdl.

[Dbsaa) = [Dsmsad ® + M7 ® Mi-q v
= [Damsan] & + ker &
= [2a>d + ker &
whence (3.16) is satisfied for j = d.

while

Thus

Case (iii). Letd¢J and d + leJ. Then d 5 b(p) for any p but d +
1 = a(p) for some p = p;. Thus

(Dbl = [Dpe>a ®

[2 arzd = [Daman] ® + M7 @ M3 -®H2H

since a(p;) = d + 1. Further ker &; = 0 while ker £,; = M1 ® M- @Y,
Applying the induction hypothesis for j = d 4 1,

[Datmsar] + Mi ® Mi-® ™ = [ psdl.

while

Thus
[Zb(»)>d——l] = [Zb(n»d]'(ﬁ = [Za(p)>d+1]'0’t + Mi® Mi-q~lenH

= [Za@>d]
whence (3.16) is satisfied for j = d.
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Proof of Lemma 10. The set J associated with the exact sequence of G-
modules
0> M{® M, 5 Mq® My, — M@ ® M7 — 0
where ¢ is the inclusion map is (see Green [3, 2.9¢, 2.9d])
J=¢g—r+1,q for0 <r<q
J=1[,rnqul(ro+1)g—r+1,(r+1)q
forg < r < pg = h.
The corresponding set associated with the exact sequence
0> M{® M, 5 Mo ® My —» M@ ® M7 — 0
° J =g+ 1,q-+ 1] for0 <r<g
J' =[L,r—qulng+1 (n+1g—rlul(n+1)g¢+1q+7]
forg <r < (p — 1l)g
J' =1,7r—=qgullp —Dg+1,pqg for(p —1)g<r<pg=nh
Hence by (3.15) for 0 < r < ¢ we have the relations in 4¢(K, G),
My ®® M, =M, ® M, + M1 ® Mg, ® — M1 ® M,
and Moy ® M, = My ® Mi-® + M1 ® My, — M1 ® My-&'.
From these, since Y, = >, b, M, we form the relations for 0 < r < g,
(3.17a) {(Yir® =Y ®Y, =Y, ® {Y,,® — Yy
(3.17b) (Yo = Y, ®l ® YV, =Y, ® (Yo, — Yo ®7.

Now Y, = 0 mod A4 (K, @) if and only if p divides r. Hence (3.17a, b)
give rise in Do(K, G) to the relations

Yq_l'(Pt ® Yr = Yl ® Yq_r‘(Rr

and

Yo ® Y, = Y1 ® Yo where (p, r) = 1.
Thus for 0 < r < ¢ such that (p, r) = 1,
(3.11&) Y., ® (Yq+1 - Yq_l'R) =Y, ® (Yq+r - Yq__r'Rr).

By a similar procedure (3.11b, ¢) are derived.

LeEMMA 11. The relations (3.11a, b, ¢) together with the relation (derived
from Lemma 6) M; = Yi-(Ma)x (¢ = 1, --+, h) define Do(K, G) as an
extension of Dg(K, G) considered as an algebra over C.

Proof. By (2.31) forany rand p, 1 < 7, p < s,

U.® M{ = U,- (M)x.
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Hence by Lemma 2(d), for any 7, 1 < 7 < b,
M;® Mi=Uw"®M = (U, ® M)w"™
= (U (M)x)w"™
= M;- (M?)x.

Thus V; ® Y, = Y;-(Y1)x and we may substitute this in (3.11). Further
by Lemma 7, (Y)x = 2 i ® - (Y1)x. But Y4x = ® by definition of
x and so

25 @7 (Y)x = G

whence (Y;)x has an inverse in A*(K, ¢). Also since ® operating on ele-
ments of B; causes a permutation of finite order, ® = ®; whence ® is in-
vertible in A*(K, G).

With this knowledge we may now use (3.11) to write Y,(¢ < ¢ < h;
(¢, p) = 1) as a polynomial in W = Y4 — Y, ® with coefficients in
A*(K, G) and Dg(K, G). Again using (3.11) we may express ¥V; @ W
(1 <7 <h;(4,p) =1) as a linear combination of the Y;’s with coefficients
in A*(K, @). Combining these two expressions we may write ¥; ® Y, as a
linear combination of elements of Do(K, G).

Using the relation M; = Y;-(Mi)x we may then obtain any product
M ® M7, showing that the relations above are sufficient.

4 Characters
4.1. Lemma 12. If | Q| = 1, Do(K, @) is semisimple.

Proof. When |Q| = 1, Do(K, G) has as basis Uy, -+, U, since U,
= Mi. Lety, ---, ¥, be the s distinct characters of A*(K, @) (see Green
[4 Theorem 1]). Define the map ¥, : Do(K, G) — C by

\If,(U,) = ‘pa{(Uf)X} (r,0 =1, cee,8).
Since x is an A*(K, @)-isomorphism, ¥, is a character of Do(K, G) proving
the lemma.

We now assume [ Q| > 1. Since A(K, Q) can be expressed as an exten-
sion of A(K, Q) with extension relations as in Green [3, 2.8¢, d, e; 2.9¢, d],
Do(K, Q) can be expressed as an extension of Dg(K, Q) and so a character
¢ of Do(K, Q) will be a character on restriction to Dg(K, @) and will be con-
sistent with the extension relations, i.e., if 2, = o(V,) (1 < r < h; (p,r) =
1) and y = 2441 — 2,1 then

BrlY = Zryq T Rgr, 1<r<yg
(4.11) &Y = Brig T Rr—q, g<r<(p— 1y
ZBrY = Zr—q T Zh—(rt9) ) (p— g <r<h

Let ¢ be a character of A*(K, @) and ¢ a character of Do(K, Q). Define
the mapping 7 : Do(K, G) — C by

(4.12) n(M3) = (R ML (V).
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Then 7(Y1) = ¢{(Y1)x} # 0 since (¥1)x has an inverse in A¥(K,®). Also
$(®) # 0. Forif ¢(®) = 0, since M1 = M1 -® forsome 7/, 1 < 7, 7/ < 5,
then ¢(Mix) = ¢(Mix)¢(®) = 0 whence ¢{(Y1)x} = 0.

LeMMA 13, Letn be defined asin (4.12). Thennisacharacter of Do(K, Q).

Proof. The proof is by induction on | @ |. By Lemma 12 the result holds
for |Q| = 1. Assume it true for | Q| < h. Let | Q| = h and define » as
in (4.12) where ¢ is a character of A*(K, @) and ¢ a character of Do(K, Q).
Since A*(K, @) =~ A™(K, @) and ¢ restricts to a character on Dg(K, Q),
n restricted to Dgz(K, G) by the hypothesis is a character of Dg(K, G). It
will thus be a character of Do(K, @) if it is consistent with the extension
relations formulated in Lemma 11.

7 is trivially consistent with the relation M1 = Y,-(Mz)x (¢ = 1, ---,
h; (i, p) = 1). Write C; = 7(Y,) and » = {¢(R)}"">. Then 7 is consistent
with (3.11) if and only if, with (r, p) = 1,

Cr(Cogin — VZCq—l) = C1(Cqtr — VZCQ_,.), 1<r<y,
C(Conn — Vch—l) = Ci(Co4r — v —a)) g<r<(p— lyg,
C(Coss — ¥Coy) = CL(HCrg— ¥Chvy), (p— 1)g <7 < h.

Since C, = v Y{(Y1)x}Z: it is trivial, using (4.11), to verify that these
equations hold.

TaHEOREM 1. Do(K, @) s semisimple.

Proof. Since Do(K, Q) is semisimple it has (p — 1)¢ distinet characters
0;i, 1 <j < (p— 1)¢ Similarly A*(K, @) has s distinct characters y,
(1 £ ¢ < s). Thus there exist s(p — 1)gcharactersn; defined as in (4.12).
These are distinct. For if n;, = m, then n;(M1) = m(Mi) (1 < 7 < s),
ie., Yo (M1 x) = ¥.(M7x) for all = since M3 x is the sum of terms of the form
M; X- By Lemma 4, Yo = Y. Thus gaj(Vi) = gok(Vi) (1 <1< h,
(¢, p) = 1) whence ¢ = j.

Since the dimension of Do(K, G) is s(p — 1)q, Do(K, @) is semisimple.
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