ON THE SEMISIMPLICITY OF THE MODULAR REPRESENTATION ALGEBRA OF A FINITE GROUP

BY

M. F. O'Reilly¹

1. Introduction

1.1. Let G be a finite group with unit element e and K a field of prime characteristic p. By a G-module M we mean a (K, G)-module (elements of G act on the right). Denote by dim M the dimension of M as a K-module; we shall assume dim M is finite.

 $\{M\}$ denotes the (K, G)-isomorphism class of M.

The modular representation algebra A(K, G) is the linear algebra over the complex field C defined as follows:

The elements of A(K, G) are the finite linear combinations over C of the G-module classes $\{M\}$, subject to the relations

$$\{M_1 + M_2\} = \{M_1\} + \{M_2\}$$

for all G-modules M_1 , M_2 . Here $M_1 + M_2$ denotes the direct sum $M_1 \oplus M_2$. Multiplication in A(K, G) will be denoted by \otimes and is defined by

$$\{M_1\} \otimes \{M_2\} = \{M_1 \otimes M_2\}$$

where $M_1 \otimes M_2$ is the tensor product over K, considered as a G-module by the rule $(m_1 \otimes m_2)x = m_1x \otimes m_2x$ $(m_1 \epsilon M_1, m_2 \epsilon M_2, x \epsilon G)$.

By the Krull-Schmidt theorem for G-modules, A(K, G) has as a basis (over C) the classes of the indecomposable G-modules. By a theorem of D. G. Higman [5], the number of indecomposable classes is finite if and only if the Sylow p-subgroups of G are cyclic.

Let H be a subgroup of G. For any G-module M let M_H be the H-module formed by restriction of M to H; for any H-module L let L^{G} be the G-module induced from L. A G-module M is H-projective if there exists an H-module L such that M is isomorphic to a direct summand of L^{G} .

Denote by $A_H(K, G)$ the subspace of A(K, G) spanned by the classes of *H*-projective *G*-modules. From the identity

$$L^{g} \otimes M \cong (L \otimes M_{H})^{g}$$

which holds for any *H*-module *L* and *G*-module *M* it follows that $A_H(K, G)$ is an ideal of A(K, G).

Let F be a subgroup of H. We shall write $F \leq H$. Let N be an F-module. Since $(N^H)^{\sigma} \cong N^{\sigma}$, a G-module which is F-projective is H-projective, i.e.

Received December 19, 1963.

 $^{^{1}}$ The author is indebted to Dr. J. A. Green for his advice and criticism during the preparation of this paper.

 $A_F(K, G) \leq A_H(K, G)$. Write

$$A'_{H}(K, G) = \sum A_{F}(K, G)$$

where the sum is taken over all proper subgroups F of H; define $A'_{\{e\}}(K, G) = 0$. By the remark above, $A'_{H}(K, G)$ is an ideal of A(K, G) and so of $A_{H}(K, G)$.

Let $D_{\mathcal{H}}(K, G) = A_{\mathcal{H}}(K, G)/A'_{\mathcal{H}}(K, G).$

It is to be noted that if Q is a cyclic *p*-subgroup of G then since the number of Q-modules and so the number of Q-projective modules is finite, $A_Q(K, G)$ and $D_Q(K, G)$ are both finite-dimensional algebras.

The aim of this paper is to prove the following result:

(i) If G is a finite group and Q a cyclic normal p-subgroup of G then the algebra $D_Q(K, G)$ is semisimple.

Now Green [2] has shown that

(ii) if Q is any p-subgroup of a finite group G then

$$D_Q(K, G) \cong D_Q(K, N_G(Q))$$

where $N_{G}(Q)$ is the normalizer of Q in G.

These two results combine to give immediately that

(iii) If Q is any cyclic p-subgroup of a finite group G then $D_Q(K, G)$ is semisimple.

For any group G, if S is a Sylow p-subgroup of G, $A(K, G) = A_s(K, G)$ since every indecomposable G-module is S-projective (see for example Green [4, Theorem 2]). Then it is easily shown (Green [2]) that A(K, G) is semisimple if and only if $D_Q(K, G)$ is semisimple for all p-subgroups Q of G. This gives the following as an immediate corollary to (iii):

(iv) If G is a finite group with a cyclic Sylow p-subgroup then A(K, G) is semisimple.

2. Representation algebra

2.1. By a character of a commutative algebra A with identity over C is meant a non-zero algebra homomorphism $\varphi : A \to C$. A finite-dimensional algebra A will be semisimple if and only if the number of characters of A equals the dimension of A.

From now on G is a finite group and Q a cyclic normal p-subgroup of G with |Q| = h.

We shall prove $D_Q(K, G)$ is semisimple by induction on |Q| (Theorem 1). When Q = (e) this follows from Lemma 12. If |Q| > 1 let P be the cyclic subgroup of Q of order p. Define $\overline{G} = G/P$, $\overline{Q} = Q/P$. Then by the induction hypothesis $D_{\overline{Q}}(K, \overline{G})$ is semisimple.

In §3, $D_{Q}(K, G)$ is expressed as an extension of $D_{\overline{Q}}(K, \overline{G})$ by the relations (3.11a, b, c).

In §4 we show a sufficient number of characters of $D_q(K, G)$ can be obtained by extending the characters of $D_{\overline{q}}(K, \overline{G})$ to ensure the semisimplicity of $D_q(K, G)$ (Lemma 13).

The remainder of §2 will be given over to describing the algebra $A_{q}(K, G)$.

2.2. By the proof of Theorem 1 (Green [3]) we may assume K to be algebraically closed.

Let $\Gamma(K, Q)$ be the group algebra of Q over K; write w = x - e where x generates Q. Then

$$V_i = \Gamma(K, Q) w^{h-i} \qquad (i = 1, \cdots, h)$$

is an ideal of $\Gamma(K, Q)$ and V_1, \dots, V_h form a set of representatives of the indecomposable classes of Q-modules (see for example D. G. Higman [5]).

Since each V_i $(i = 1, \dots, h)$ is an ideal of $\Gamma(K, Q)$ we may interpret V_i^{σ} as $V_i \Gamma(K, G)$ (see for example Green [4, 2.6, p. 431]). From the same identity it can be seen that $(V_i^{\sigma})_Q \cong (G:Q)V_i$.

LEMMA 1. Let |Q| > 1. A necessary and sufficient condition that V_i is not F-projective for any proper subgroup F of Q is that (p, i) = 1.

Proof. Let Q' be the maximal proper subgroup of Q, viz., the subgroup generated by x^p . Let $\overline{h} = h/p$. Then since any proper subgroup F of Q is contained in Q', every F-projective Q-module is Q'-projective.

Let $\overline{w} = x^p - e$. Then $V'_j \cong \Gamma(K, Q')\overline{w}^{\bar{h}-j}$ $(j = 1, \dots, \bar{h})$ represent the indecomposable classes of Q'-modules. Further

$$(V'_{j})^{q} \cong V'_{j} \Gamma(K, Q) \cong \Gamma(K, Q')\overline{w}^{h-j}\Gamma(K, Q)$$
$$= \Gamma(K, Q)w^{h-j}$$

since Q and hence $\Gamma(K, Q)$ is abelian. That is

 $(V'_j)^Q \cong V_{pj}$.

Thus the Q-module V_j will be Q'-projective if and only if p divides j, proving the lemma.

LEMMA 2. (a) For any G-module M and any i > 0, Mw^{i} is a G-submodule of M.

(b) If M_1 , M_2 are G-modules then for any $i \ge 0$,

$$(M_1 + M_2)w^i \cong M_1 w^i + M_2 w^i.$$

(c) For any Q-module L and i > 0, $(Lw^i)^G \cong L^G w^i$.

(d) Let M be any G-module and S a G-module on which Q acts trivially. Then

$$(M \otimes S)w \cong Mw \otimes S$$

Proof. (a) It is trivial that Mw^i is a K-subspace of M. Let $g \in G$; then $g^{-1}xg = x^i$ for some $t \ (1 \le t \le h)$ and so

$$g^{-1}wg = g^{-1}xg - e = x^t - e = bw = wb$$

where

$$b = (e + x + \cdots + x^{t-1}) \epsilon \Gamma(K, G).$$

Let $m \epsilon M$; then

$$mw^{i}g = mgg^{-1}w^{i}g = mgb^{i}w^{i} \epsilon Mw^{i}.$$

Hence Mw^i is a *G*-submodule of *M*.

(b) The proof here is trivial.

(c) By (b) it suffices to prove (c) for L indecomposable, i.e., for $L = V_j$ $(j = 1, \dots, h)$. Then as in (a) if $g \in G$, $g^{-1}w^i g = b^i w^i$, i.e.

$$w^{i}g = gb^{i}w^{i} \epsilon \Gamma(K, G)w^{i}.$$

If $y \in \Gamma(K, G)$, $y = \sum_{g \in G} a_g g (a_g \in K)$ and so $w^i y = \sum_{g \in G} a_g g w^i \in \Gamma(K, G) w^i$.

Similarly $yw^i \in w^i \Gamma(K, G)$ whence $w^i \Gamma(K, G) = \Gamma(K, G)w^i$. Thus

$$(V_j w^i)^{\ a} \cong V_j w^i \Gamma(K, G) = V_j \Gamma(K, G) w^i \cong V_j^{\ a} w^i.$$

(d) Let $u \in (M \otimes S)w$; then u is a linear combination of terms of the form $m \otimes s$ ($m \in M$, $s \in S$). Since

 $(m \otimes s)w = (m \otimes s)(x - e)$ $= mx \otimes sx - m \otimes s$ $= mx \otimes s - m \otimes s$ $= m(x - e) \otimes s$ $= mw \otimes s,$

the mapping θ : $(M \otimes S)w \to Mw \otimes S$ defined by

$$(m \otimes s)w\theta = mw \otimes s$$

is a (K, G)-isomorphism.

Let R_1, \dots, R_s be the irreducible *G*-modules and U_1, \dots, U_s the principal indecomposable *G*-modules such that R_τ is the unique minimal *G*-submodule of U_τ (Artin, Nesbitt and Thrall, [1, pp. 99, 111]. We choose R_1 to be the unit *G*-module. Write $M_i^{\tau} = U_\tau w^{h-i}$ $(i = 1, \dots, h; \tau = 1, \dots, s)$. By Lemma 2(a), M_i^{τ} is a *G*-submodule of U_τ .

LEMMA 3. The classes $\{M_i^{\tau}\}$ $(i = 1, \dots, h; \tau = 1, \dots, s)$ form a basis for $A_Q(K, G)$.

Proof. By the Krull-Schmidt theorem for G-modules, $A_q(K, G)$ will have

as basis the set of indecomposable classes of Q-projective G-modules, viz., the classes of indecomposable components of V_i^{σ} $(i = 1, \dots, h)$.

Let $f_{\tau} = \dim R_{\tau}$. Then

$$V_h^G \cong \Gamma(K, Q) \Gamma(K, G) = \Gamma(K, G).$$

Since $\Gamma(K, G) \cong \sum_{\tau=1}^{s} f_{\tau} U_{\tau}$ (see [1]) $V_{h}^{g} \cong \sum_{\tau=1}^{s} f_{\tau} U_{\tau}$

and so by Lemma 2(b), (c)

(2.21)
$$V_i^{\sigma} \cong (V_h w^{h-1})^{\sigma} \cong \sum_{\tau=1}^s f_{\tau} M_i^{\tau}.$$

Since

$$\Gamma(K,G)_{Q} \cong (G:Q)\Gamma(K,Q),$$

 $(U_{\tau})_{q}$ is isomorphic to the sum of say n_{τ} $(n_{\tau} \neq 0)$ copies of $\Gamma(K, Q)$ and so $(M_{i}^{\tau})_{q}$ is isomorphic to the sum of n_{τ} copies of $\Gamma(K, Q)w^{h-i} \cong V_{i}$ and hence is a non-zero *G*-module. By the same fact if $i \neq j$, M_{i}^{τ} is not isomorphic to M_{j}^{e} for any τ or ρ $(\tau, \rho = 1, \dots, s)$.

As M_i^{τ} has the unique minimal *G*-submodule R_{τ} it is indecomposable and not isomorphic to M_i^{ρ} for $\rho \neq \tau$. Hence $\{M_i^{\tau}\}$ $(i = 1, \dots, h; \tau = 1, \dots, s)$ are distinct indecomposable *Q*-projective classes and by 2.21 are the complete set of such classes, which proves the lemma.

COROLLARY I. The classes $\{M_i\} + A'_Q(K, G) \ (\tau = 1, \dots, s; i = 1, \dots, h; (i, p) = 1)$ form a basis for $D_Q(K, G)$.

Proof. M_i^{τ} is *F*-projective for some subgroup *F* of *Q* if and only if $(M_i^{\tau})_Q$ is *F*-projective. Since $(M_i^{\tau})_Q \cong n_{\tau} V_i$, by Lemma 1 M_i^{τ} is not *F*-projective for a proper subgroup *F* of *Q* unless *p* divides *i*. Thus $\{M_i^{\tau}\} \in A'_Q(K, G)$ if and only if *p* divides *i*, proving the result.

COROLLARY II. Elements of Q act trivially on M_1^{τ} and hence on R_{τ} ($\tau = 1, \dots, s$).

For, $(M_1^{\tau})_Q \cong n_\tau V_1 \cong n_\tau K_G$ and $R_\tau \subset M_1^{\tau}$.

From now on we shall simplify the notation by writing M for the isomorphism class $\{M\}$ in A(K, G) and also for its quotient class $\{M\} + A'_{q}(K, G)$ in $D_{q}(K, G)$.

2.3 Let \mathfrak{g} be the ideal of A(K, G) generated by all elements of A(K, G) of the form M - M' - M'' where there exists an exact sequence of G-modules and G-homomorphisms

$$0 \to M' \to M \to M'' \to 0.$$

The Grothendieck algebra $A^*(K, G)$ is the quotient $A(K, G)/\mathfrak{g}$. By the Jordan-Holder theorem for G-modules, writing $\mathfrak{R}_{\tau} = \mathbb{R}_{\tau} + \mathfrak{g} \epsilon A^*(K, G)$, $\mathfrak{R}_1, \dots, \mathfrak{R}_s$ form a basis of $A^*(K, G)$.

Let $m_{\epsilon}(M)$ be the multiplicity of R_{σ} as a composition factor of the *G*-module M. We may extend this notation to an arbitrary element $X = \sum_{\delta} b_{\delta} M_{\delta}$ $(b_{\delta} \in \mathbf{C})$ of A(K, G) by putting $m_{\sigma}(X) = \sum_{\delta} b_{\delta} m_{\sigma}(M_{\delta})$. Then again by the Jordan-Holder theorem, $M + \mathcal{J} = \sum_{\sigma=1}^{s} m_{\sigma}(M) \mathfrak{R}_{\sigma}$.

Let M' be the maximal proper G-submodule of the G-module M; then $M/M' \cong R_{\sigma}$ for some σ $(1 \leq \sigma \leq s)$ and there exists an exact sequence of G-modules and G-homomorphisms

$$0 \to M' \to M \to R_{\sigma} \to 0.$$

From this may be formed, by tensor multiplication with U_{τ} $(1 \leq \tau \leq s)$, the exact sequence

$$0 \to M' \otimes U_{\tau} \to M \otimes U_{\tau} \to R_{\sigma} \otimes U_{\tau} \to 0.$$

Since U_{τ} , and thus $U_{\tau} \otimes R_{\sigma}$, is projective, this sequence splits and so $M \otimes U_{\tau} \cong M' \otimes U_{\tau} + R_{\sigma} \otimes U_{\tau}$. By repeated application we find

$$U_{\tau} \otimes M \cong \sum_{\sigma} U_{\tau} \otimes m_{\sigma}(M) R_{\sigma}$$

Thus

(2.31)
$$U_{\tau} \otimes X = \sum_{\sigma} U_{\tau} \otimes m_{\sigma}(X) \mathfrak{R}_{\sigma}.$$

Let B_i be the subspace of A(K, G) spanned by the indecomposable classes M_i^1, \dots, M_i^s .

LEMMA 4. For each $i (1 \le i \le h)$, B_i is an $A^*(K, G)$ -module with elements of $A^*(K, G)$ acting on the right according to the rule

$$M_i^{\tau} \cdot \mathfrak{R}_{\sigma} = M_i^{\tau} \otimes R_{\sigma} \quad (\tau, \sigma = 1, \cdots, s) \ (M_i^{\tau} \epsilon B_i, \mathfrak{R}_{\sigma} \epsilon A^*(K, G)).$$

Proof. Any element of \mathcal{J} is a linear combination of elements of the form Z = N - N' - N'' where there is an exact sequence of G-modules and G-homomorphisms

$$0 \to N' \to N \to N'' \to 0$$

Since $m_{\sigma}(Z) = 0$ ($\sigma = 1, \dots, s$), $M_h^{\tau} \otimes Z = U_{\tau} \otimes Z = 0$ by (2.31) and so B_h is made an $A^*(K, G)$ -module by the rule defined above.

Further by Lemma 2(d),

$$M_i^{\tau} \otimes R_{\sigma} = (M_h^{\tau} \otimes R_{\sigma}) w^{h-i} \epsilon B_i.$$

Thus B_i is also an $A^*(K, G)$ -module by this rule.

We now define the mapping $\chi : A_{\varrho}(K, G) \to A^*(K, G)$ by

$$M_i^{\tau} \chi = \sum_{\sigma} m_{\sigma}(M_i^{\tau}) \mathfrak{R}_{\sigma} \qquad (\tau = 1, \cdots, s; i = 1, \cdots, h).$$

 χ is obviously an algebra homomorphism. Further,

$$U_{\tau} \chi = \sum_{\sigma} c_{\sigma \tau} \Re_{\sigma}$$

where $c_{\sigma\tau} = m_{\sigma}(U_{\tau})$ and $(c_{\sigma\tau})$ is the Cartan matrix, which is non-singular. Also for any ρ ($\rho = 1, \dots, s$) and τ ($\tau = 1, \dots, s$)

$$(U_{\tau} \cdot \mathfrak{R}_{\rho})\chi = \sum_{\sigma} c_{\sigma\tau} \mathfrak{R}_{\sigma} \otimes \mathfrak{R}_{\rho} = U_{\tau} \chi \otimes \mathfrak{R}_{\rho}.$$

Thus we have

LEMMA 5. χ is an $A^*(K, G)$ -isomorphism when restricted to B_h .

For any element $X = \sum_{j,\tau} u_{j\tau} M_j^{\tau} (u_{j\tau} \epsilon \mathbf{C})$ of $A_Q(K, G)$ write $X w^i = \sum_{j,\tau} u_{j\tau} M_j^{\tau} w^i$. Also given an element $X_i = \sum_{\tau=1}^s u_{\tau} M_i^{\tau} (u_{\tau} \epsilon \mathbf{C})$ of B_i define $X_j = \sum_{\tau=1}^s u_{\tau} M_j^{\tau}$; then $X_i = X_h w^{h-i}$. Define

$$Y_h = R_1 \chi^{-1} = \sum b_{\tau} M_h^{\tau}$$
 (say)

and $Y_i = Y_h w^{h-i}$.

LEMMA 6. Let $X_i \in B_i$; then $X_i = Y_i \cdot (X_h)\chi$.

Proof. Since χ restricted to B_h is an isomorphism Y_h is the identity of B_h and thus

$$X_h = X_h \otimes Y_h = S(X_h) \otimes Y_h$$

where $S(X) = \sum_{\sigma} m_{\sigma}(X) R_{\sigma}$, by (2.31). Then for $1 \le i \le h$, $X_i = X_h w^{h-i} = (S(X_h) \otimes Y_h) w^{h-i}$ $= S(X_h) \otimes Y_h w^{h-i}$

by Lemma 2(d).

By Lemma 4, $S(X_h) \otimes Y_i = Y_i \cdot (X_h)\chi$.

From Lemma 6 we can deduce immediately that Y_1, \dots, Y_h form an $A^*(K, G)$ -basis for $A_Q(K, G)$, since $M_i^{\tau} = Y_i \cdot (M_h^{\tau})\chi$. Similarly the set

 $\{Y_i ; i = 1, \cdots, h; (i, p) = 1\}$

forms a free $A^*(K, G)$ -basis for $D_Q(K, G)$. In each case the basis is a free basis since, from the non-singularity of the Cartan matrix, $M_h^{\tau} \chi$ is distinct for distinct τ .

Given $X_h = \sum_{\tau} u_{\tau} M_h^{\tau} \epsilon B_h$ we define for j < i

$$X_i/X_j = \sum_{\tau} u_{\tau} M_i^{\tau}/M_j^{\tau}$$
.

LEMMA 7. Let R be any element of $A^*(K, G)$; then for $X_h \in B_h$, and j < i, $(X_i \cdot \mathfrak{R})/(X_j \cdot \mathfrak{R}) = (X_i/X_j) \cdot \mathfrak{R}$.

Proof. From the definition of X_i/X_j it is sufficient to prove the result in the case where $X_i = M_i^{\tau}$ ($\tau = 1, \dots, s$) and $\mathfrak{R} = \mathfrak{R}_o$ ($\sigma = 1, \dots, s$). In this case it is easily verified that the mapping

$$\theta: (M_i^{\tau} \otimes S)/(M_j^{\tau} \otimes S) \to (M_i^{\tau}/M_j^{\tau}) \otimes S$$

defined by

 $\{m \otimes n + M_j^{\tau} \otimes S\}\theta = (m + M_j^{\tau}) \otimes n, \quad (m \in M_j^{\tau}, n \in S)$

is a G-isomorphism where S is Q-trivial. Since $M_i^{\tau} \otimes R_{\sigma} = M_i^{\tau} \cdot \mathfrak{R}_{\sigma}$, the result is proved.

LEMMA 8. There exists an element \mathfrak{R} of $A^*(K, G)$ such that, for any $X_h \in B_h$,

$$X_i/X_j = X_{i-j} \cdot \mathfrak{R}^j$$

for all j and i $(j = 1, \dots, h; j < i \leq h)$ where \mathbb{R}^{j} denotes the product of j copies of \mathbb{R} .

Proof. Given
$$j < i$$
,

$$V_{i-j}^{g} \cong (V_i/V_j)^{g} \cong V_i^{g}/V_j^{g},$$
i.e.,
$$\sum_{\tau=1}^{s} f_{\tau} M_{i-j}^{\tau} \cong \sum_{\tau=1}^{s} f_{\tau} M_i^{\tau}/M_j^{\tau} \qquad (\text{see } (2.21)).$$

Since there are the same number of distinct summands on the right as there are distinct indecomposable G-modules on the left, by the Krull-Schmidt theorem for G-modules, there exists a permutation $\xi(i, j): \tau \to \tau'$ such that

$$M_i^{\tau}/M_j^{\tau} \cong M_{i-j}^{\tau'}$$
.

Thus

$$M_2^{\tau}/M_1^{\tau} \cong M_1^{\tau'} = Y_1 \cdot (M_h^{\tau'})\chi.$$

Hence

$$Y_2/Y_1 = \sum_{\tau=1}^s b_{\tau} M_2^{\tau}/M_1^{\tau} = \sum_{\tau=1}^s b_{\tau} Y_1 \cdot (M_h^{\tau'})\chi.$$

Write $\mathfrak{R} = \sum_{\tau=1}^{s} b_{\tau}(M_{h}^{\tau'})\chi$ where $\tau' = \tau \xi(2, 1)$. Then

$$\begin{aligned} X_2/X_1 &= Y_2 \cdot (X_h)\chi/Y_1 \cdot (X_1)\chi \\ &= (Y_2/Y_1) \cdot (X_h)\chi, & \text{by Lemma 7,} \\ &= (Y_1 \cdot \Re) \cdot (X_h)\chi, & \text{by above} \\ &= X_1 \cdot \Re. \end{aligned}$$

Further since for $1 \leq i \leq h$, M_i^{τ}/M_1^{τ} is indecomposable, contains M_2^{τ}/M_1^{τ} and is isomorphic to a summand of V_{i-1}^{q} , $M_i^{\tau}/M_1^{\tau} \cong M_{i-1}^{\tau'}$ where again $\tau' = \tau \xi(2, 1)$. Hence

$$M_i^{\tau}/M_1^{\tau} \cong M_{i-1}^{\tau} \cdot \mathfrak{R}.$$

Thus the lemma is true for j = 1. Assume that j > 1 and that it is true for j = 1. Then for i > j

$$\begin{aligned} X_i/X_j &= (X_i/X_1)/(X_j/X_i) \\ &= X_{i-1} \cdot \Re/X_{j-1} \cdot \Re, \\ &= (X_{i-1}/X_{j-1}) \cdot \Re, \\ &= X_{i-j} \cdot \Re^{j-1} \cdot \Re, \\ &= X_{i-j} \cdot \Re^j. \end{aligned}$$
 by the hypothesis

Thus the lemma is proved by induction.

We note that \mathfrak{R} operating on elements of $A_{\mathfrak{Q}}(K, G)$ induces the permutation $\xi(2, 1)$ of the superscripts τ . Further, since $V_1^{\mathfrak{G}} \cdot \mathfrak{R} = V_1^{\mathfrak{G}}$, dim $\mathfrak{R} = \dim \mathbb{R} = 1$.

LEMMA 9. Let M and N be direct sums of Q-projective G-modules. Then

 $M \cong N$ if and only if

$$\frac{Mw^{j-1}}{Mw^{j}} \cong \frac{Nw^{n-1}}{Nw^{j}} \qquad \text{for all} \quad j = 1, 2, \cdots$$

Proof. If $M \cong N$ it is trivial to show that

$$\frac{Mw^{j-1}}{Mw^{j}} \cong \frac{Nw^{j-1}}{Nw^{j}} \qquad \qquad \text{for all } j.$$

Assume

$$\frac{Mw^{j-1}}{Mw^{j}} \cong \frac{Nw^{j-1}}{Nw^{j}} \qquad \qquad \text{for all } j.$$

Then, in particular

$$\frac{M}{Mw} \cong \frac{N}{Nw}$$

whence M and N have the same number t of indecomposable components. Further if M_k^{τ} is an indecomposable component of M such that k is maximum as a suffix of indecomposable components of M, then since $M\omega^j = 0$ for $j \geq k$, $N\omega^j = 0$ for $j \geq k$ and so k is maximum as a suffix of indecomposable components of N.

If M is indecomposable, i.e., has only one indecomposable component, $M \cong M_k^{\tau}$ for some τ $(1 \leq \tau \leq s)$ and k. Thus $N \cong N_k^{\sigma}$ for some σ $(1 \leq \sigma \leq s)$. Further

$$M_1^{\tau} \cong rac{Mw^{k-1}}{Mw^k} \cong rac{Nw^{k-1}}{Nw^k} \cong N_1^{\sigma}$$

whence $\sigma = \tau$. Thus the result is true for t = 1.

Assume the result true for all G modules M and N with less than t indecomposable components. Let M have t indecomposable components. Choose one such component M' of M such that $M' \cong M_k^{\tau}$ where k is maximum as a suffix of indecomposable components of M. Let M'' be the complement of M' in M, i.e., the G-module such that $M' + M'' \cong M$. Then M_k^{τ} contributes a component

$$rac{M_k^{ au} \, w^{k-1}}{M_k^{ au} \, w^k} \cong M_1^{ au}$$

to $\frac{Mw^{k-1}}{Mw^k}$ and so there exists an indecomposable component N' of N such that

$$rac{N'w^{k-1}}{N'w^k}\cong M_1^{ au}$$
 .

Now $N'w^k = 0$; thus $N'w^{k-1} \cong M_1^r$ whence $N' \cong M_k^r$. Let N'' be the complement of N' in N. Then M'' and N'' satisfy the conditions of the hypothesis and so $N'' \cong M''$.

Thus $M \cong M' + M'' \cong N' + N'' \cong N$.

The result thus follows by induction on t.

3. Extension Relations

3.1. Define P, \tilde{G}, \tilde{Q} as in §2 and let $q = |\tilde{Q}|$. Then h = pq. The epimorphism from G onto \tilde{G} which takes an element g of G to $\tilde{g} = gP$ induces a monomorphism $\theta : A(K, \tilde{G}) \to A(K, G)$ by identifying a \tilde{G} -module \tilde{M} with the G-module having the same underlying space as \tilde{M} and on which each element g of G acts by $\bar{m}g = \bar{m}\tilde{g}$ ($\bar{m} \in \tilde{M}$). Since R_{σ} ($\sigma = 1, \dots, s$) is Ptrivial it will be the image under θ of an irreducible \tilde{G} -module \bar{R}_{σ} whence $A^*(K, G)$ is isomorphic to $A^*(K, \tilde{G})$. θ also identifies the indecomposable \tilde{G} -module \tilde{M}_i^r with the corresponding G-module M_i^r ($i = 1, \dots, q; \tau = 1,$ \dots, s) and so embeds $A_{\bar{Q}}(K, \tilde{G})$ in $A_Q(K, G)$ as an algebra over C and, by the isomorphism of $A^*(K, \tilde{G})$ to $A^*(K, G)$, as an algebra over $A^*(K, G)$.

Since $\overline{M}_i^{\overline{\tau}} \epsilon A'_Q(K, \overline{G})$ and $M'_i \epsilon A'_Q(K, G)$ if and only if p divides $i, D_{\overline{Q}}(K, \overline{G})$ is embedded as an algebra over $A^*(K, G)$ in $D_Q(K, G)$.

Write $M_i^r = \bar{M}_i^r$. For any integer r such that $0 < r \le h$ write $r = r_0 q + r_1$ ($0 \le r_1 < q$). We shall prove

LEMMA 10. For any r, 0 < r < h, such that (p, r) = 1 one of the following relation holds in $D_q(K, G)$:

where R is as defined in Lemma 8.

Before embarking on the proof of Lemma 9 it is necessary to discuss some of the properties of tensor multiplication of G-modules.

Consider the exact sequence of G-modules

$$0 \to M_1^{\sigma} \xrightarrow{\iota} M_i^{\sigma} \to M_{i-1}^{\sigma} \cdot \mathfrak{R} \to 0$$

where ι is the inclusion map. By taking the tensor product with M_r^{τ} one obtains the exact sequence

$$0 \to M_1^{\sigma} \otimes M_r^{\tau} \xrightarrow{\iota} M_i^{\sigma} \otimes M_r^{\tau} \to M_{i-1}^{\sigma} \cdot \mathfrak{R} \otimes M_r^{\tau} \to 0.$$

Writing $L = M_1^{\sigma} \otimes M_r^{\tau}$, $M = M_i^{\sigma} \otimes M_r^{\tau}$, $N = M_{i-1}^{\sigma} \cdot \mathfrak{R} \otimes M_r^{\tau}$ we can form the exact sequences

$$0 \to L \cap Mw^{j} \to Mw^{j} \xrightarrow{\mathcal{E}_{j}} Nw^{j} \to 0$$

for $j = 0, 1, \dots, |M| - 1$ where |M| is the maximum dimension of the indecomposable components of M.

These in turn give rise to the exact sequences

$$0 \to \frac{L \cap Mw^{j-1}}{L \cap Mw^{j}} \xrightarrow{\tilde{\iota}} \frac{Mw^{j-1}}{Mw^{j}} \xrightarrow{\tilde{\epsilon}_{j}} \frac{Nw^{j-1}}{Nw^{j}} \to 0$$

where $\bar{\iota}$ is the inclusion map $(j = 0, 1, \dots, |M| - 1)$. Now

$$\left(\frac{Mw^{j-1}}{Mw^{j}}\right)_{Q} \cong n_{\sigma} n_{\tau} \frac{(V_{i} \otimes V_{r})w^{j-1}}{(V_{i} \otimes V_{r})w^{j}}$$

and

$$\left(\frac{Nw^{j-1}}{Nw^{j}}\right)_{\mathbf{Q}} \cong n_{\sigma} n_{\tau} \frac{(V_{i-1} \otimes V_{r})w^{j-1}}{(V_{i-1} \otimes V_{r})w^{j}}$$

further by applying a result of Green ([3, 2.6d]) there exists a set of integers $J = \{i_1, \dots, i_r\}$ $(i_1 < i_2 < \dots < i_r)$, such that

(3.12)
$$\frac{(V_i \otimes V_r)w^{j-1}}{(V_i \otimes V_r)w^j} \cong \frac{(V_{i-1} \otimes V_r)w^{j-1}}{(v_{i-1} \otimes V_r)w^j} + \delta(j,J)V_1$$

where $\delta(j, J) = 1$ if $j \in J$ and is otherwise zero.

We can now show

(3.13)
$$if j_{k-1} \leq j < j_k ext{ then } \ker \varepsilon_j \cong Lw^{k-1}.$$

Proof. The result is trivially true for j = 0. Assume $j_{k-1} \leq j < j_k$ and that ker $\varepsilon_j \cong Lw^{k-1} (\cong M_1^{\sigma} \otimes M_{r-k+1}^{\tau}$ by Lemma 2(d)). If $j + 1 \neq j_k$ then ker $\overline{\varepsilon}_{j+1} = 0$ and so ker $\varepsilon_j \cong \ker \varepsilon_{j+1} \cong Lw^{k-1}$. If $j + 1 = j_k$ then by (3.12), (ker $\overline{\varepsilon}_j)_Q$ and hence by Lemma 2(c) ker $\overline{\varepsilon}_j$ is annihilated by w. Thus ker $\varepsilon_j \supset \ker \varepsilon_{j+1} \supset (\ker \varepsilon_j)w$, i.e., $Lw^{k-1} \supset \ker \varepsilon_{j-1} \supset Lw^k$. But again by (3.12),

$$\dim Lw^{k-1} - \dim \ker \varepsilon_{j+1} = n_{\sigma} n_{\tau} = \dim Lw^{k-1} - \dim Lw^k.$$

Thus ker $\varepsilon_{j+1} \cong Lw^k$ and the result follows by induction.

From (3.13) since

$$Lw^{k-1}/Lw^k \cong rac{M_1^{ au} \otimes M_{r-k+1}^{ au}}{M_1^{ au} \otimes M_{r-k}^{ au}}, \hspace{1cm} ext{by Lemma 2(d)}$$

 $\cong M_1^{\sigma} \otimes M_1^{\tau} \cdot \mathbb{R}^{r-k}$ by Lemma 8

we deduce

(3.14)
$$if j = j_k \ \epsilon \ J, \ \ker \ \bar{\epsilon}_j \cong M_1^{\sigma} \otimes M_1^{\tau} \cdot \mathbb{R}^{r-k}.$$

Given integers r, s $(r \leq s)$ define an interval [r, s] as the set of integers j such that $r \leq j \leq s$. Then the set J may be uniquely written as the union

of intervals

 $J \,=\, {\sf U}_{\rho}\left[a(\rho),\,b(\rho)\right]$

such that $b(\rho - 1) + 1 < a(\rho) < b(\rho) < a(\rho + 1) - 1$ where defined. Let $a(\rho) = j_{k(\rho)}$ and $b(\rho) = j_{l(\rho)}$. Then

$$(3.15) \quad M + \sum_{\rho} M_1^{\sigma} \otimes M_{a(\rho)-1}^{\tau} \cdot \mathfrak{R}^{r-k(\rho)+1} = N + \sum_{\rho} M_1^{\sigma} \otimes M_{b(\rho)}^{\tau} \cdot \mathfrak{R}^{r-l(\rho)}.$$

Proof. By Lemma 2(d), and the proofs of Lemma 7 and Lemma 8,

$$\frac{(M_1^{\sigma} \otimes M_{a(\rho)-1}^{\tau} \cdot \mathfrak{R}^{r-k(\rho)+1})w^{j-1}}{(M_1^{\sigma} \otimes M_{a(\rho)-1}^{\tau} \cdot \mathfrak{R}^{r-k(\rho)+1})w^j} = M_1^{\sigma} \otimes M_1^{\tau} \cdot \mathfrak{R}^{a(\rho)-j+r-k(\rho)}$$

if $a(\rho) > j$ and is otherwise zero. Similarly

$$\frac{(M_1^{\sigma} \otimes M_{b(\rho)}^{\tau} \cdot \mathfrak{K}^{r-l(\rho)}) w^{j-1}}{(M_1^{\sigma} \otimes M_{b(\rho)}^{\tau} \cdot \mathfrak{K}^{r-l(\rho)}) w^j} = M_1^{\sigma} \otimes M_1^{\tau} \cdot \mathfrak{K}^{b(\rho)-j+r-l(\rho)}$$

if $b(\rho) > j - 1$ and is otherwise zero.

Write

$$\left[\sum_{a(\rho)>j}\right] = \sum_{a(\rho)>j} M_1^{\sigma} \otimes M_1^{\tau} \cdot \mathfrak{R}^{a(\rho)-j+r-k(\rho)}$$

and

$$\left[\sum_{b(\rho)>j-1}\right] = \sum_{b(\rho)>j-1} M_1^{\sigma} \otimes M_1^{\tau} \cdot \mathfrak{R}^{b(\rho)-j+r-l(\rho)}$$

Then by Lemma 9 to prove (3.15) it suffices to show that

$$\frac{Mw^{j-1}}{Mw^{j}} + \left[\sum_{a(\rho)>j}\right] = \frac{Nw^{j-1}}{Nw^{j}} + \left[\sum_{b(\rho)>j-1}\right]$$

for all $j, 1 \leq j \leq |M|$. Now since

$$\ker \, \bar{\varepsilon}_{j} \subset \frac{Mw^{j-1}}{Mw^{j}}$$

and both are the direct sums of G-modules of unit suffix, ker $\bar{\varepsilon}_j$ is a component of $\frac{Mw^{j-1}}{Mw^j}$ and has as complement $\frac{Nw^{j-1}}{Nw^i}$, i.e.,

$$rac{Mw^{j-1}}{Mw^j} = rac{Nw^{j-1}}{Nw^j} + \ker ar{arepsilon}_j \,.$$

Thus proving (3.15) reduces to showing

(3.16)
$$[\sum_{a(\rho)>j}] + \ker \bar{e}_j = [\sum_{b(\rho)>j-1}]$$

for all $j, 1 \leq j \leq |M|$.

The proof will be by induction on |M| - j. Assume (3.16) true for all j > d. This is true for d = |M|. Let d < |M|. We require to prove that (3.16) is true for j = d.

Case (i). Let d, d + 1 be both contained in J or both outside J. Then

 $\mathbf{272}$

 $d \neq b(\rho)$ for any ρ and $d + 1 \neq a(\rho)$ for any ρ . Thus

$$\left[\sum_{a(\rho)>d}\right] = \left[\sum_{a(\rho)>d+1}\right] \cdot \mathfrak{R} \quad \text{and} \quad \left[\sum_{b(\rho)>d-1}\right] = \left[\sum_{b(\rho)>d}\right] \cdot \mathfrak{R}.$$

Further ker $\tilde{\varepsilon}_d = (\text{ker } \tilde{\varepsilon}_{d+1}) \cdot \Re$ by (3.14). By the induction hypothesis for j = d + 1,

$$[\sum_{a(\rho)>d+1}] + \ker \bar{e}_{d+1} = [\sum_{b(\rho)>d}].$$

Thus

$$\begin{bmatrix} \sum_{b(\rho)>d-1} \end{bmatrix} = \begin{bmatrix} \sum_{b(\rho)>d} \end{bmatrix} \cdot \mathfrak{R} = \begin{bmatrix} \sum_{a(\rho)>d+1} \end{bmatrix} \cdot \mathfrak{R} + (\ker \, \tilde{\varepsilon}_{d+1}) \cdot \mathfrak{R}$$
$$= \begin{bmatrix} \sum_{a(\rho)>d} \end{bmatrix} + \ker \, \tilde{\varepsilon}_d$$

whence (3.16) holds for j = d.

Case (ii). Let $d \in J$ and $d + 1 \notin J$. Then $d = b(\rho_1)$ for some $\rho = \rho_1$ but $d + 1 \neq a(\rho)$ for any ρ . Thus

$$\left[\sum_{a(\rho)>d}\right] = \left[\sum_{a(\rho)>d+1}\right] \cdot \mathfrak{R}$$

while

$$\left[\sum_{b(\rho)>d-1}\right] = \left[\sum_{b(\rho)>d}\right] \cdot \mathfrak{R} + M_1^{\sigma} \otimes M_1^{\tau} \cdot \mathfrak{R}^{r-l(\rho_1)}$$

since $d = b(\rho_1)$. Further ker $\bar{\varepsilon}_{d+1} = 0$ while ker $\bar{\varepsilon}_d = M_1^{\sigma} \otimes M_1^{\tau} \cdot \mathfrak{R}^{r-l(\rho_1)}$ by (3.14). Applying the induction hypothesis for j = d + 1,

$$\left[\sum_{a(\rho)>d+1}\right] = \left[\sum_{b(\rho)>d}\right].$$

Thus

$$\begin{split} [\sum_{b(\rho)>d-1}] &= [\sum_{b(\rho)>d}] \cdot \mathfrak{R} + M_1^{\sigma} \otimes M_1^{\tau} \cdot \mathfrak{R}^{r-l(\rho_1)} \\ &= [\sum_{a(\rho)>d+1}] \cdot \mathfrak{R} + \ker \bar{\varepsilon}_d \\ &= [\sum_{a(\rho)>d}] + \ker \bar{\varepsilon}_d \end{split}$$

whence (3.16) is satisfied for j = d.

Case (iii). Let $d \notin J$ and $d + 1 \notin J$. Then $d \neq b(\rho)$ for any ρ but $d + 1 = a(\rho_2)$ for some $\rho = \rho_2$. Thus

$$\left[\sum_{b(\rho)>d-1}\right] = \left[\sum_{b(\rho)>d}\right] \cdot \Re$$

while

$$\left[\sum_{a(\rho)>d}\right] = \left[\sum_{a(\rho)>d+1}\right] \cdot \mathfrak{K} + M_1^{\sigma} \otimes M_1^{\tau} \cdot \mathfrak{K}^{r-k(\rho_2)+1}$$

since $a(\rho_2) = d + 1$. Further ker $\bar{\varepsilon}_d = 0$ while ker $\bar{\varepsilon}_{d+1} = M_1^{\sigma} \otimes M_1^{\tau} \cdot \mathfrak{R}^{r-l(\rho_2)}$. Applying the induction hypothesis for j = d + 1,

$$\left[\sum_{a(\rho)>d+1}\right] + M_1^{\sigma} \otimes M_1^{\tau} \cdot \mathfrak{R}^{r-l(\rho_2)} = \left[\sum_{b(\rho)>d}\right].$$

Thus

$$\begin{bmatrix} \sum_{b(\rho)>d-1} \end{bmatrix} = \begin{bmatrix} \sum_{b(\rho)>d} \end{bmatrix} \cdot \mathfrak{R} = \begin{bmatrix} \sum_{a(\rho)>d+1} \end{bmatrix} \cdot \mathfrak{R} + M_1^{\sigma} \otimes M_1^{\tau} \cdot \mathfrak{R}^{r-l(\rho_2)+1} \\ = \begin{bmatrix} \sum_{a(\rho)>d} \end{bmatrix}$$

whence (3.16) is satisfied for j = d.

Proof of Lemma 10. The set J associated with the exact sequence of Gmodules

$$0 \to M_1^{\sigma} \otimes M_r^{\tau} \xrightarrow{\iota} M_q^{\sigma} \otimes M_r^{\tau} \to M_{q-1}^{\sigma} \cdot \mathfrak{K} \otimes M_r^{\tau} \to 0$$

where ι is the inclusion map is (see Green [3, 2.9c, 2.9d])

$$J = [q - r + 1, q] \qquad \text{for } 0 < r \le q$$

$$J = [1, r_0 q] \cup [(r_0 + 1) q - r_1 + 1, (r_0 + 1) q]$$

for $q < r \le pq = h$.

The corresponding set associated with the exact sequence

$$0 \rightarrow M_1^{\sigma} \otimes M_r^{\tau} \stackrel{\iota}{\rightarrow} M_{q+1}^{\sigma} \otimes M_r^{\tau} \rightarrow M_q^{\sigma} \cdot \mathfrak{K} \otimes M_r^{\tau} \rightarrow 0$$
is
$$J' = [q+1, q+r] \qquad \text{for } 0 < r \leq q$$

$$J' = [1, r-q] \cup [r_0 q+1, (r_0+1)q-r_1] \cup [(r_0+1)q+1, q+r]$$

$$\text{for } q < r < (p-1)q$$

$$J' = [1, r-q] \cup [(p-1)q+1, pq] \qquad \text{for } (p-1)q \leq r \leq pq = h.$$
Hence by (3.15) for $0 < r \leq q$ we have the relations in $A_q(K, G)$,
$$M_{q-1}^{\sigma} \cdot \mathfrak{K} \otimes M_r^{\tau} = M_q^{\sigma} \otimes M_r^{\tau} + M_1^{\sigma} \otimes M_{q-r}^{\tau} \cdot \mathfrak{K}^{r} - M_1^{\sigma} \otimes M_q^{\tau}$$

and

is

$$\begin{split} M_{q+1}^{\sigma} \otimes M_{r}^{\tau} &= M_{q}^{\sigma} \otimes M_{r}^{\tau} \cdot \mathfrak{R} + M_{1}^{\sigma} \otimes M_{q+r}^{\tau} - M_{1}^{\sigma} \otimes M_{q}^{\tau} \cdot \mathfrak{R}^{r}. \\ \text{From these, since } Y_{r} &= \sum_{r} b_{r} M_{r}^{\tau} \text{ we form the relations for } 0 < r \leq q, \\ (3.17a) \qquad \{Y_{q-1} \cdot \mathfrak{R} - Y_{q}\} \otimes Y_{r} = Y_{1} \otimes \{Y_{q-r} \cdot \mathfrak{R}^{r} - Y_{q}\} \\ (3.17b) \qquad \{Y_{q+1} - Y_{q} \cdot \mathfrak{R}\} \otimes Y_{r} = Y_{1} \otimes \{Y_{q+r} - Y_{q} \cdot \mathfrak{R}^{r}\}. \end{split}$$

Now $Y_r = 0 \mod A'_q(K, G)$ if and only if p divides r. Hence (3.17a, b) give rise in $D_Q(K, G)$ to the relations

$$Y_{q-1} \cdot \mathbb{R} \otimes Y_r = Y_1 \otimes Y_{q-r} \cdot \mathbb{R}^{d}$$

and

$$Y_{q+1} \otimes Y_r = Y_1 \otimes Y_{q+r}$$
 where $(p, r) = 1$.

Thus for 0 < r < q such that (p, r) = 1,

(3.11a)
$$Y_r \otimes (Y_{q+1} - Y_{q-1} \cdot R) = Y_1 \otimes (Y_{q+r} - Y_{q-r} \cdot R^r).$$

By a similar procedure (3.11b, c) are derived.

LEMMA 11. The relations (3.11a, b, c) together with the relation (derived from Lemma 6) $M_i^{\tau} = Y_i \cdot (M_h^{\tau}) \chi$ $(i = 1, \dots, h)$ define $D_Q(K, G)$ as an extension of $D_{\overline{Q}}(K, \overline{G})$ considered as an algebra over C.

Proof. By (2.31) for any
$$\tau$$
 and ρ , $1 \leq \tau$, $\rho \leq s$,
$$U_{\tau} \otimes M_{1}^{\rho} = U_{\tau} \cdot (M_{1}^{\rho}) \chi.$$

Hence by Lemma 2(d), for any $i, 1 \leq i \leq h$, $M_i^{\tau} \otimes M_1^{\rho} = U_{\tau} w^{h-i} \otimes M_1^{\rho} = (U_{\tau} \otimes M_1^{\rho}) w^{h-i}$ $= (U_{\tau} \cdot (M_1^{\rho}) \chi) w^{h-i}$ $= M_i^{\tau} \cdot (M_1^{\rho}) \chi.$

Thus $Y_i \otimes Y_1 = Y_i \cdot (Y_1)\chi$ and we may substitute this in (3.11). Further by Lemma 7, $(Y_i)\chi = \sum_{j=1}^{i} \mathfrak{R}^{j-1} \cdot (Y_1)\chi$. But $Y_h \chi = \mathfrak{R}_1$ by definition of χ and so

$$\sum_{j=1}^{h} \mathfrak{R}^{h-1} \cdot (Y_1) \chi = \mathfrak{R}_1$$

whence $(Y_1)\chi$ has an inverse in $A^*(K, G)$. Also since \mathfrak{R} operating on elements of B_i causes a permutation of finite order, $\mathfrak{R}^f = \mathfrak{R}_1$ whence \mathfrak{R} is invertible in $A^*(K, G)$.

With this knowledge we may now use (3.11) to write $Y_i(q < i < h;$ (i, p) = 1) as a polynomial in $W = Y_{q+1} - Y_{q-1}$ \mathfrak{R} with coefficients in $A^*(K, G)$ and $D_{\overline{q}}(K, \overline{G})$. Again using (3.11) we may express $Y_j \otimes W$ $(1 \leq j < h; (j, p) = 1)$ as a linear combination of the Y_k 's with coefficients in $A^*(K, G)$. Combining these two expressions we may write $Y_j \otimes Y_i$ as a linear combination of elements of $D_Q(K, G)$.

Using the relation $M_i^{\tau} = Y_i \cdot (M_h^{\tau}) \chi$ we may then obtain any product $M_j^{\tau} \otimes M_i^{\sigma}$, showing that the relations above are sufficient.

4 Characters

4.1. LEMMA 12. If |Q| = 1, $D_Q(K, G)$ is semisimple.

Proof. When |Q| = 1, $D_Q(K, G)$ has as basis U_1, \dots, U_s since $U_{\tau} = M_1^{\tau}$. Let ψ_1, \dots, ψ_s be the *s* distinct characters of $A^*(K, G)$ (see Green [4 Theorem 1]). Define the map $\Psi_{\sigma} : D_Q(K, G) \to C$ by

$$\Psi_{\sigma}(U_{\tau}) = \psi_{\sigma}\{(U_{\tau})\chi\} \qquad (\tau, \sigma = 1, \cdots, s).$$

Since χ is an $A^*(K, G)$ -isomorphism, Ψ_{σ} is a character of $D_Q(K, G)$ proving the lemma.

We now assume |Q| > 1. Since A(K, Q) can be expressed as an extension of $A(K, \bar{Q})$ with extension relations as in Green [3, 2.8c, d, e; 2.9c, d], $D_q(K, Q)$ can be expressed as an extension of $D_{\bar{q}}(K, \bar{Q})$ and so a character φ of $D_q(K, Q)$ will be a character on restriction to $D_{\bar{q}}(K, \bar{Q})$ and will be consistent with the extension relations, i.e., if $z_r = \varphi(V_r)$ $(1 \le r < h; (p, r) = 1)$ and $y = z_{q+1} - z_{q-1}$ then

(4.11)
$$z_{r} y = z_{r+q} - z_{q-r}, \qquad 1 \le r < q,$$
$$z_{r} y = z_{r+q} - z_{r-q}, \qquad q < r < (p-1)q,$$
$$z_{r} y = z_{r-q} - z_{2h-(r+q)}, \qquad (p-1)q < r < h.$$

Let ψ be a character of $A^*(K, G)$ and φ a character of $D_Q(K, Q)$. Define the mapping $\eta: D_Q(K, G) \to C$ by

(4.12)
$$\eta(M_i^{\tau}) = \{\psi(R)\}^{(i-1)/2} \psi\{M_1^{\tau}\chi\}\varphi(V_i).$$

Then $\eta(Y_1) = \psi\{(Y_1)\chi\} \neq 0$ since $(Y_1)\chi$ has an inverse in $A^*(K, G)$. Also $\psi(\mathfrak{R}) \neq 0$. For if $\psi(\mathfrak{R}) = 0$, since $M_1^{\tau} = M_1^{\tau'} \cdot \mathfrak{R}$ for some $\tau', 1 \leq \tau, \tau' \leq s$, then $\psi(M_1^{\tau}\chi) = \psi(M_1^{\tau'}\chi)\psi(\mathfrak{R}) = 0$ whence $\psi\{(Y_1)\chi\} = 0$.

LEMMA 13. Let η be defined as in (4.12). Then η is a character of $D_Q(K, G)$.

Proof. The proof is by induction on |Q|. By Lemma 12 the result holds for |Q| = 1. Assume it true for |Q| < h. Let |Q| = h and define η as in (4.12) where ψ is a character of $A^*(K, G)$ and φ a character of $D_Q(K, Q)$. Since $A^*(K, \bar{G}) \cong A^*(K, G)$ and φ restricts to a character on $D_{\bar{Q}}(K, \bar{Q})$, η restricted to $D_{\bar{Q}}(K, \bar{G})$ by the hypothesis is a character of $D_{\bar{Q}}(K, \bar{G})$. It will thus be a character of $D_Q(K, G)$ if it is consistent with the extension relations formulated in Lemma 11.

 η is trivially consistent with the relation $M_1^{\tau} = Y_i \cdot (M_h^{\tau})\chi$ $(i = 1, \dots, h; (i, p) = 1)$. Write $C_i = \eta(Y_i)$ and $\nu = \{\psi(R)\}^{1/2}$. Then η is consistent with (3.11) if and only if, with (r, p) = 1,

$$\begin{split} C_r(C_{q+1} - \nu^2 C_{q-1}) &= C_1(C_{q+r} - \nu^2 C_{q-r}), & 1 < r < q, \\ C_r(C_{q+1} - \nu^2 C_{q-1}) &= C_1(C_{q+r} - \nu^{2q} C_{r-q}), & q < r < (p-1)q, \\ C_r(C_{q+1} - \nu^2 C_{q-1}) &= C_1(\nu^{2q} C_{r-q} - \nu^{2r_1} C_{h-r_1}), & (p-1)q < r < h. \end{split}$$

Since $C_r = \nu^{r-1} \psi\{(Y_1)\chi\}Z_i$ it is trivial, using (4.11), to verify that these equations hold.

THEOREM 1. $D_Q(K, G)$ is semisimple.

Proof. Since $D_Q(K, Q)$ is semisimple it has (p-1)q distinct characters φ_j , $1 \leq j \leq (p-1)q$. Similarly $A^*(K, G)$ has s distinct characters ψ_{σ} $(1 \leq \sigma \leq s)$. Thus there exist s(p-1)q characters $\eta_{j\sigma}$ defined as in (4.12). These are distinct. For if $\eta_{j\sigma} = \eta_{k\rho}$ then $\eta_{j\sigma}(M_1^\tau) = \eta_{k\rho}(M_1^\tau)$ $(1 \leq \tau \leq s)$, i.e., $\psi_{\sigma}(M_1^\tau\chi) = \psi_{\rho}(M_1^\tau\chi)$ for all τ since $M_h^\tau\chi$ is the sum of terms of the form $M_1^\tau\chi$. By Lemma 4, $\psi_{\sigma} = \psi_{\rho}$. Thus $\varphi_j(V_i) = \varphi_k(V_i)$ $(1 \leq i < h, (i, p) = 1)$ whence i = j.

Since the dimension of $D_q(K, G)$ is $s(p-1)q, D_q(K, G)$ is semisimple.

References

- 1. E. ARTIN, C. J. NESBITT, AND R. M. THRALL, *Rings with minimum condition*, University of Michigan Press, 1944.
- 2. J. A. GREEN, A transfer theorem for modular representations, Journal of Algebra, 1964 (June).
- 3. ——, On the indecomposable representations of a finite group, Math. Zeitschrift, vol. 70 (1959), pp. 430-445.
- 4. ——, The modular representation algebra of a finite group, Illinois J. Math., vol. 6 (1962), pp. 607–619.
- 5. D. G. HIGMAN, Indecomposable representations at characteristic P, Duke Math. J., vol. 21 (1954), pp. 377–381.

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS