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1. Introduction

1.1. Let G be a finite group with unit element e and K a field of prime
characteristic p. By a G-module M we mean a (K, G)-module (elements of
G act oa the right). Denote by dim M the dimension of M as a K-module;
we shall assume dim M is finite.
{M} denotes the (K, G)-isomorphism class of M.
The modular representation algebra A (K, G) is the linear algebra over the

complex field C defined as follows:
The elements of A(K, G) are the finite linear combinations over C of the

G-module classes {M}, subject to the relations

{M1 + M2} {M1} +
for all G-modules M1, M2. Here M M2 denotes the direct sum M1 Ms.
Multiplication in A (K, G) will be denoted by (R) and is defined by

(R) IMp} (R)

where M (R) M is the tensor product over K, considered as a G-module by
the rule (m (R) m)x mx (R) mx (m eM, ms e Ms, x e G).
By the Krull-Schmidt theorem for G-modules, A (K, G) has as a basis (over

C) the classes of the indecomposable G-modules. By a theorem of D. G.
Higmaa [5], the number of indecomposable classes is finite if and only if the
Sylow p-subgroups of G are cyclic.
Let H be a subgroup of G. For any G-module M let Mn be the H-module

formed by restriction of M to H; for any H-module L let L o be the G-module
induced from L. A G-module M is H-projective if there exists an H-module
L such that M is isomorphic to a direct summand of L o.
Denote by An(K, G) the subspace of A(K, G) spanned by the classes of

H-proiective G-modules. From the identity

L(R) M-- (L (R) Mn)

which holds for any H-module L and G-module M it follows that An(K, G)
is an ideal of A (K, G).

Let F be a subgroup of H. We shall write F _< H. Let N be an F-module.
Since (Nn) o

__
N a G-module which is F-projective is H-projective, i.e.

Received December 19, 1963.
The author is indebted to Dr. J. A. Green for his advice and criticism during the

preparation of this paper.

261



262 M.F. O’REILLY

A(K, G)

_
A,(K, G). Write

A(K, G) AF(K, G)

where the sum is taken over all proper subgroups F of H; define

Ale (K, G) 0. By the remark above, An(K, G) is an ideal of A(K, G)
and so of An(K, G).

Let Dn(K, G) An(K, G)/A;(K, G).
It is to be noted that if Q is a cyclic p-subgroup of G then since the num-

ber of Q-modules and so the number of Q-projective modules is finite, A(K, G)
and D(K, G) are both finite-dimensional algebras.
The aim of this paper is to prove the following result"

(i) If G is a finite group and Q a cyclic normal p-subgroup of G then the
algebra D(K, G) is semis#nple.

Now Green [2] has shown that

(ii) if Q is any p-subgroup of a finite group G then

D(K, G) - D(K, Ne(Q)

where Ne(Q) is the normalizer of Q in G.

These two results combine to give immediately that

(iii) If Q is any cyclic p-subgroup of a finite group G then D(K, G) is
semisimple.

For any group G, if S is a Sylow p-subgroup of G, A(K, G) As(K, G)
since every indecomposable G-module is S-projective (see for example Green
[4, Theorem 2]). Then it is easily shown (Green [2]) that A(K, G) is semi-
simple if and only if D(K, G) is semisimple for all p-subgroups Q of G. This
gives the following as an immediate corollary to (iii)"

(iv) If G is a finite group with a cyclic Sylow p-subgroup then A (K, G) is
semis#nple.

2. Representation algebra
2.1. By a character of a commutative algebra A with identity over C is

meant a non-zero algebra homomorphism A -- C. A finite-dimensional
algebra A will be semisimple if and only if the number of characters of A
equals the dimension of A.
From now on G is a finite group and Q a cyclic normal p-subgroup of G

with [Q h.
We shall prove D(K, G) is semisimple by induction oa Q (Theorem 1).

When Q (e) this follows from Lemma 12. If [QI > i let P be the cyclic
subgroup of Q of order p. Define ( G/P, O Q/P. Then by the iuduc-
tion hypothesis D(K, ) is semisimple.
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In 3, DQ(K, G) is expressed as an extension of D(K, ) by the relations
(3.11a, b, c).
In 4 we show a sufficient number of characters of DQ(K, G) can be obtained

by extending the characters of D(K, ) to ensure the semisimplicity of
D(K, G) (Lemma 13).
The remainder of 2 will be given over to describing the algebra A(K, G).

22. By the proof of Theorem 1 (Green [3]) we may assume K to be
algebraically closed.

Let F(K, Q) be the group algebra of Q over K; write w x e where x
generates Q. Then

V r(K, Q)wh-i (i 1,... h)

is an ideal of F(K, Q) and V1, Vh form a set of representatives of the
indecomposab]e classes of Q-modules (see for example D. G. Higman [5]).

Since each V (i 1, h) is an ideal of F(K, Q) we may interpret
V as VF(K, G) (see for example Green [4, 2.6, p. 431]). From the same
identity it can be seen that V G" Q V

LEMMA 1. Let Q] > 1. A necessary and sucient condition that V is not
F-projective for any proper subgroup F of Q is that (p, i) 1.

Proof. Let Q’ be the maximal proper subgroup of Q, viz., the subgroup
generated by x. Let ] hip. Then since any proper subgroup F of Q is
contained in Q’, every F-projective Q-modul_e is Q’-projective.

Let x- e. Then V. --- F(K, Q’)- (j 1, ..., f) represent the
indecomposable classes of Q’-modules. Further

(V) V F(K, Q) F(K, Q’)-F(K, Q)

r(K, Q)w-since Q and hence P(K, Q) is abelian. That is

(V;) V,;.

Thus the Q-module V will be Q’-projective if and only if p divides j, prov-
ing the lemma.

LEMMA 2. (a) For any G-module M and any i > O, Mw is a G-sub-
module of M.

(b) If MI M are G-modules tI, en for any i

_
O,

(c)
(d)

Then

(M1 + M=)w M, w + M= w.
For any Q-module L and i > O, (.Lwi) ( Lw.
Leg M be any G-module and S a G-module on which Q acts trivially.

(M (R) S)w--Mw (R) S.
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Proof. (a) It is trivial that Mw is a K-subspace of M.
g-lxg x, for some (1 <_ <_ h) and so

where

Let m e M; then

Let g e G; then

g-lwg g-xg- e xt- e bw wb

b (e + x + + xt-) r(K, G).

-Imwg mgg w g mgb w e Mw.
Hence Mw is a G-submodule of M.

(b) The proof here is trivial.
(c) By (b) it suffices to prove (c) for L indecomposable, i.e., for L V

(j 1,...,h). Then as in (a) ifgeG, g-lw’g bw,i.e.

w’g gbw r(K, G)w

If y e r(K, G), y a g (a e K) and so

wy a gw r(K, G)w.
Similarly ywe wr(K, G) whence wr(K, G) r(K, G)w. Thus

(V w) Vwr(K, G) V r(K, G)w V w.
(d) Let u e (M @ S)w; then u is a linear combination of ter of the

formm @ s (meM, seS). Since

(m @ s)w (m @ s)(x- e)

mx sx- m @ s

=mx@s-m@s

m(x- e) @ s

mw @ 8,

the mapping 8 (M @ S)w Mw @ S defined by

(m @ s)wO mw @ s

is a (K, G)-isomorphism.
Let R1, R, be the irreducible G-modules and U, U, the princi-

pal decomposable G-modules such that R is the unique minimal G-sub-
module of U (Artin, Nesbitt and Thrall, [1, pp. 99, 111]. We choose R1 to
be the unit G-module. Write M Uw- (i 1,..., h; r 1,’’’,
S). By Lemma 2(a), M: is a G-submodule of U,.

LEMMA 3. The classes {M:} (i 1, h; r 1, s) form a basis
for AQ(K, G).

Proof. By the Krull-Schmidt theorem for G-modules, A(K, G) will have
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as basis the set of indecomposable classes of Q-projective G-modules, viz.,
the classes of indecomposable components of V (i 1, .-., h).

Let fi dim R. Then

V r(K, Q)r(K, G) r(K, G).

Since r(K, G) ]:= L u (see [1])

and so by Lemma 2(b), (c)

(2.21) V Vh Wh-l) G Z:----1 fr M.
Since

r(K, G) (G:Q)r(K, q),

(UT)Q is isomorphic to the sum of say n (n 0) copies of r(K, Q) and so
(M:.)Q is isomorphic to the sum of n copies of r(K, Q)w- V and hence
is a non-zero G-module. By the same fact if i j, li is not isomorphic to
M for any r or p (, p 1, s).
As M:. has the unique minimal G-submodule R it is indecomposable and

not isomorphic toMforp r. Hence{M:.} (i 1, ...,h; r 1, ...,
s) are distinct indecomposable Q-projective classes and by 2.21 are the com-
plete set of such classes, which proves the lemma.

COROLLAY I. The classes {M:.} -+- A(K, G) (r 1, s; i 1,
h; (i, p) 1) form a basis for Da(K, G).

Proof. M is F-projective for some subgroup F of Q if and only if (M:.)
is F-projective. Since (M.) W_= n Vi, by Lemma 1 M. is not F-projective
for a proper subgroup F of Q unless p divides i. Thus {M:.} e A (K, G) if
and only if p divides i, proving the result.

COnOLLARV II. Elements of Q act trivially on M and hence on R (r 1,
78).

For, (M) -- n, Va n, Ko and R, M.
From now on we shall simplify the notation by writing M for the isomor-

phism class M} in A (K, G) and also for its quotient class M} -[- A (K, G)
in DQ(K, G).

2.3 Let q be the ideal of A (K, G) generated by all elements of A(K, G)
of the form M M M" where there exists an exact sequence of G-modules
and G-homomorphisms

M0-- M’ -- M -- -,0.

The Grothendieck algebra A*(K, G) is the quotient A (K, G)/O. By the
Jordan-Holder theorem for G-modules, writing (R, R, -k- o9 e A*(K, G),
6h, ..-, (R form a basis of A*(K, G).
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Let m. (M) be the multiplicity of R as a composition factor of the G-module
M. We may extend this notation to an arbitrary element X b M
(b C) of A(K, G) by putting m(X) , b m(M). Then again by
the Jordan-Holder theorem, M q- q =1 m(M).

Let M’ be the maximal proper G-submodule of the G-module M; then M/M’
R, for some (1 _< _< s) and there exists an exact sequence of G-modules

and G-homomorphisms
0-- M’ -- M -- R -* 0.

From this may be formed, by tensor multiplication with U (1 <_ r <_ s),
the exact sequence

Since U, and thus U (R) R, is projective, this sequence splits and
so M (R) U --- M’ (R) U if- R (R) U. By repeated application we find

V, (R) M .o UT (R) mo(M)R,.
Thus

(2.31) (R) x Eo (R)

Let Bi be the subspace of A (K, G) spanned by the indecomposable classes
M i.

LEMM_ 4. For each i (1 <_ i <_ h), B is an A*(K, G)-module with elements
of A*(K, G) acting on the right according to the rule

M.5{, M (R) R, r, (r 1, ..., ) (M eBb, 5{, e A*(K, G) ).

Proof. Any element of q is a linear combination of elements of the form
Z N- N’ N" where there is an exact sequence of G-modules and G-
homomorphisms

0 -- N’ --,N--N" --,0.

Since m(Z) 0 ( 1, s), M (R) Z U. (R) Z 0 by (2.31) and so

B is made an A*(K, G)-module by the rule defined above.
Further by Lemma 2(d),

M (R) R M (R) R)w-eB.
Thus B is also an A*(K, G)-module by this rule.
We now define the mapping x A(K, G) -- A*(K, G) by

M x m,(M)OG (r 1, s; i 1, h).

x is obviously an algebra homomorphism. Further,

U x Co (R

where c m(U) and (c) is the Cartan matrix, which is non-singular.
Also for any p (p 1, ..., s) and r (r 1,...,s)

(U. .)x Co, (R) Ux (R) .
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Thus we have

LEMMA 5. X is an A*(K, G)-isomorphism when restricted to Bh.

For any element X ,r u.r M (u. C) of AQ(K, G) write Xw
,T u.T M-w’. Also given an element Zi :--1 u M[. (u e C) of B
define Xj =uM then Xi Xhw-i. Define

--1Y RIx brM (say)
and Y Y wh-.
LEMMA 6. Let Xi B then X Yi (X).
Proof. Since x restricted to B is an isomorphism Yh is the identity of B

and thus
X X(R) Y S(Xh) (R) Y

where S(X) m(X)Ro, by (2.31). Then for 1 _< i_< h,

x x w- (s(x) (R) y)w-S(X) (R) Ywh-i

by Lemma 2(d).
By Lemma 4, S(Xh) (R) Y Y .(Xh)x.
From Lemma 6 we can deduce immediately that Y1,

A*(K, G)-basis for AQ(K, G), since M Y. (M)x.
.., Y form an
Similarly the set

{Y,:;i 1, ...,h; (i,p) 1}

forms a free A*(K, G)-basis for D(K, G). In each case the basis is a free
basis since, from the non-singularity of the Cartan matrix, M x is distinct
for distinct r.

Given X urMeB we define forj < i

X,:/X _, u M/M
LEMMA 7. Let R be any element of A*(K, G); then for X e Bh, and j < i,

(x. )/(x. ) (xJx) .
Proof. From the definition of X/X it is sufficient to prove the result in

the case where X M. (r 1, s) and (R (a 1, ..., s). In
this case it is easily verified that the mapping

O" (M (R) S)/(M (R) S)-+ (M/M) (R) S
defined by

{m (R) n +M} (R) S}O (re+M}) (R) n, (meM,neS)
is a G-isomorphism where S is Q-trivial. Since M:. (R) R M. (%, the
result is proved.

LEMMA 8. There exists an element of A*(K, G) such that, for any Xh
B,

X/X X__
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for all j and i (j 1,
copies of 6t.

h; j < i <_ h) where 6 denotes the product of j

Proof. Given j < i,
G V/V

i.e., Z--IL M_ ..1 fi M/M (see (2.21)).

Since there are the same number of distinct summands on the right as there
are distinct indecomposable G-modules on the left, by the Krull-Schmidt
theorem for G-modules, there exists a permutation (i, j)" r -- r’ such that

Thus

Hence

Write 6l
Then

M/M

M/MI Mi’ Yx M’ )x.

Y2/YI ]=l bT M/MI Z,I bT Y (M’)x.
=b,(M’)x where r’ r(2, 1).

X/X Y2 (Xh)x/Y (Xl)x

(Y/Y). (Xh) X, by Lemma 7,

Y1 (vt). (Xh) x, by above

=X1.6t.

Further since for 1 < i < h, M/MI is indecompossble, cont8ins M/MI 8rid
Vi-1is isomohic to a summaud of a M/M M’_ where again r’

r(2, 1). Hence
M/M

Thus the lemma is true for j 1. Assume that j > 1 and that it is true for
j- 1. Then fori > j

x#x (x#x)/(x#x)

X_ /X_ , by the case j 1

(X_x/X_) , by Lemma 7

X_y. -a. , by the hypothesis

X_. .
Thus the lemma is proved by induction.
We note that operating on elements of A(K, G) induces the permutation

(2, 1) of the superscripts . Further, since V . V, dim dim
R=I.

LEMMA 9. Let M and N be direct sums of Q-projective G-modules. Then
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M N if and only if
Mw-I Nwn-

Mwi for all j 1,2,

Assume

If M N it is trivial to show that

Mw-I Nw-Mw+

Then, in particular

for all j.

Mwi-1 Nwi-1

Mw/ Nw for all j.

M N
Mw- Nw

whence M and N have the same number of indecomposable compolents.
Further if M, is an indecomposable component of M such that/ is maximum
as a suffix of indecomposable components of M, then since Moo 0 for
j >_ ]c, No 0 for j _> k and so ]c is maximum as a suffix of indecompos-
able components of N.

If M is indecomposable, i.e., has only one indecomposable component,
M --- M for some r (1 _< r _< s) and /c. Thus N N for some z

(1 _< z_< s). Further
Mwk- Nwk-1

i NMw Nw

whence r. Thus the result is true for 1.
Assume the result true for all G modules M and N with less than inde-

composable components. Let M have indecomposable components.
Choose one such component M’ of M such that M’ -- M where/c is maxi-
mum as a suffix of indecomposable components of M. Let M" be the com-
plement of M’ in M, i.e., the G-module such that M’ + M" M. Then
M contributes a component

M wk-

and so there exists an indecomposable component N’ of N such that

Ntwk-1

M.

Now N’w 0; thus M1 whence N’ M Let N’ be the com-
plement of N’ in N. Then M" and N" satisfy the conditions of the hypothe-
sis and so N" M".
Thus M M’ M+ : + :N.
The result thus follows by induction on
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3. Extension Relations

3.1. Define P, , as in 2 and let q I, Then h pq. The epi-
morphism from G onto which takes an element g of G to gP induces a
monomorphism 0" A(K, ) ---+ A(K, G) by identifying a -module with
the G-module having the same underlying space as _r and on which each
element g of G acts by rg r (re/r). SinceR (z 1, ...,s) isP-
trivial it will be the image under 0 of an irreducible -module / whence
A*(K, G) is isomorphic to A*(K, ). 0 also identifies the indecomposable
(-module Mi with the corresponding G-module Mi (i 1, q; r 1,

s) and so embeds AN(K, ) in AQ(K, G) as an algebra over C and, by
the isomorphism of A*(K, ) to A*(K, G), as an algebra over A*(K, G).

Since/r:. A’(K, ) and M A’(K, G) if andonlyif pdividesi, D(K, )
is embedded as an algebra over A*(K, G) in DQ(K, G).

Write Mi -Mi. For any integer r such that 0 < r < hwriter r0q

-+-r (0 _< r < q). We shall prove

LEMMA 10. For any r, 0 < r < h, such that (p, r) 1 one of the following
relation holds in D(K, G)"

Y (R) Y+ Y_ Y (R) Y+,. Y_
(a.11)

ifl <_r<q;

Y,. (R) Yv+ Y_ ) Y (R) (Y,.+ y,._. (R)
(3.11b)

if < r < (p ) ;

Y (R) (Y+ Y-. ) Y (R) (Yr-" R Y,-,.," *)
(3.11c)

/f (p- 1)q < r < h;

where (R is as defined in Lemma 8.

Before embarking on the proof of Lemma 9 it is necessary to discuss some
of the properties of tensor multiplication of G-modules.

Consider the exact sequence of G-modules

where is the inclusion map.
obtains the exact sequence

By taking the tensor product with M: one

0 -+ M[ (R) M 2+ M[. (R) M: -+ M-I (R (R) M -- 0.

WritingL M (R) M, M M (R) M,N M_a. (R (R) Mwe can form
the exact sequences

0 L n Mw ---+ Mw - Nw -+ 0
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forj 0, 1, ..., M I- lwherelMlis the maximum dimension of the
iadecomposable components of M.
These in turn give rise to the exact sequences

L n Mwj-1 Mw-1" Nw-O 0
L n Mw+ Mwi Nw

where is the inclusion map (j 0, 1, ..., MI 1).
Now

Mw- _. (V (R) V,.)w-Mw /o.
n n (V (R) Vr)wJ

Nwi-l Vi-1 (R) Vr)w-1

\ Nwi/ (V-I (R) V)w

further by applying a result of Green ([3, 2.6d]) there exists a set of integers
J {i ,..., i} (i < i < < i), such that

(3.12) (V (R) Vr)wj- _ (V-i (R) V)w- + (j, j) Vl(V (R) V)w (v_ (R) V)w

where (j, J) 1 if j e J and is otherwise zero.
We can now show

(3.13) ifj_ <_ j < j then ker e ----- Lw-.Proof. The result is trivially true for j 0. Assume j_

_
j < j and

that ker e. Lw- (__ M (R) M_+ by Lemma 2(d) ). If j -+- 1 j then
ker $.+1 0 and so ker e. --- ker e.+ ----- Lw-1. If j -- 1 j then by (3.12),
(ker .) and hence by Lemma 2(c) ker g. is annihilated by w. Thus
ker s ker ei+ (ker e.)w, i.e., Lw- ker ._ Lw. But again
by (3.12),

dim Lw- dim ker e+l n n dim Lw- dim Lw.
Thus ker e+x --- Lw and the result follows by induction.
From (3.13) since

Lw_/Lw_ M (R) M-+I by Lemma 2(d)
M (R) M_,

we deduce

(3.14) if j j J, ker . ----- M[ (R) M[. (r--.

by Lemma 8

Given integers r, s (r

_
s) define an interval [r, s] as the set of integers j

such that r

_
j

_
s. Then the set J may be uniquely written as the union
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of intervals
J (Jp [a(p), b(p)]

such that b(p- 1) + 1 < a(p) < b(p) < a(p + 1) 1 where defined.
Let a(p) jp) and b(p) jzp). Then

(3.15) M + M @ M:)_,. N + M @ Mb().r-p).

Proof. By Lemma 2(d), and the proofs of Lemma 7 and Lemma 8,

(M @ M:()-I" r--k()+)WJ--1 M @ M.

if a(p) > j and is otherwise zero. Similarly

(M M().-())w- M M.()-+-()

if b(p) > j 1 and is otherwise zero.
Write

[a(p)>j] a(p)>3 M @ M.()-+-()

and
[()>_] ()>_ Mi @ i.()-+-().

Then by Lemma 9 to prove (3.15) it suffices to show that

Mw-
Mw + [a()>] Nw-i

for all j, 1 g j g ]M]. Now since

Mw-
ker a Mwi

and both are the direct sums of G-modules of unit suffix, ker $. is a component
Mw-I Nw-1

of
Mw

and has as complement
Nwi

i.e.,

Mw-1 Nwi-1

Mw] W ker .
Thus proving (3.15) reduces to showing

(3.16) [:’a(p)>’] + ker i [b)>i-1]

for all j, 1 g j g M [.
The proof will be by induction on [M[ j. Assume (3.16) true for all

j > d. This is true ford ]M]. Let d < [M[. We require to prove
that (3.16) is true for j d.

Case (i). Let d, d + 1 be both contained in J or both outside J. Then
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d b(p) for any p and d W 1 a(p) for any p. Thus

[Ea(p)>d] [Ea(p)),d-[-1]" ( and

Further ker $ (ker d+l)’( by (3.14). By the induction hypothesis
for j d + 1,

[()>+] -- ker +i [’()>].
Thus

[Eb(p)>d--l] [Eb{p)>d] "(j, [Ea(p)>d-t-1]’( + (ker

[a()>] + ker &

whence (3.16) holds for j d.

Case ii). LetdeJandd+ leJ.
d -t- 1 a(p) for any p. Thus

Then d b(pl) for some p pl but

[Ea(p)>d] [Ea(p)>d+l]"
while

[()>_] [()>a].a + M @ M.
since d b(p). Further ker $+ 0 while ker M@M.-()
by (3.14). Applying the induction hypothesis for j d + 1,

[Ea(p)>d+l]
Thus

[(,)>+,].(R -t- ker d

[()>] + ker g

whence (3.16) is stisfied for j d.

Case (iii). LetdeJandd + leJ.
1 a(p) for some p p.. Thus

Then d b(p) for any p but d +

while
[a()>] [a(p)>+l]’(R + M (R) M.(R-(=)+

since a(p) d + 1. Further ker & 0 while ker + M’@M.-()
Applying the induction hypothesis for j d + 1,

[a()>+] + M[ i.r-l(p2) [b()>d].
Thus

(R + (R

whence (3.16) is satisfied for j d.
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Proof o/Lemma 10. The set J associated with the exact sequence of G-
modules

0--M (R) M:-L>M(R) MM-. @ M0

where is the inclusion map is (see Green [3, 2.9c, 2.9d])

J [q- r 1, q] for0 < r q

J [1, r0q][(r0+ 1) q- r + 1, (r0+ 1) q]

forq < r pq h.

The corresponding set associated with the exact sequence

0M @M M @ M:0
is

J’ [q W 1, q W r] for0 < r g q

J’ [1, r- q] [r0q + 1, (r0+ 1)q- r] [(r0 + 1)q + 1, q + r]

forq < r < (p 1)q

J’ [1, r-- q] [(p 1)q + 1, pq] for(p-- 1)q r pq h.

Hence by (3.15) for 0 < r g q we have the relations in A(K, G),

Mq_’ @ M Mq M M @ Mq_.’ M @ Mq
and

Mq+ @ M Mq @ M. W M @ Mq+ M @ Mq.r.
From these, since Y b M: we form the relations for 0 < r q,

(3.17a) {Yq-’- Yq} @ Yr Y @ {Yq-’-- Yq}

(3.17b) {Yq+ Yq" } @ Yr Y1 @ Yq+ Yq" r}

Now Y 0 rood A(K, G) if and only if p divides r. Hence (3.17a, b)
give rise inD,(K, G) to the relations

Yq-l’ @ Yr Yl @ Yq-r’
and

Yq+ Y Y @ Yq. where (p, r) 1.

Thus for 0 < r < q such that (p, r) 1,

(3.11a) Y @ (Yq+- Yq_.R) Y, (Yq+- Yq_.R).

By a similar procedure (3.11b, c) are derived.

LEMMA 11. The relations (3.11a, b, c) together with the relation (derived
from Lemma 6) M Y.(M)x (i 1, ..., h) define D(K, G) as an

extension of D(K, ) consered as an algebra over C.

Proof. By (2.31) for any r and p, 1 r, p s,
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Hence by Lemma 2(d), for any i, 1 <_ i <_ h,

M (R) M Uwh- (R) M (U (R) M)w-(U. (M)x)w-M:.. (MJ)x.
Thus Y (R) Y1 Y" (Y1)x and we may substitute this in (3.11). Further
by Lemma 7, (Y)x ’= 6t’-1" (Y)x. But Y x 6ll by definition of
x and so

Z----1 (h--1, Y1)x (1

whence (Y)x has an inverse iu A*(K, G). Also since 6l operating on ele-
ments of B causes a permutation of finite order, 6tf 6t whence 6l is in-
vertible in A*(K, G).
With this knowledge we may now use (3.11) to write Y(q < i < h;

(i, p) 1) as a polynomial in W Yq+ Yq_. 6t with coefficients in
A*(K, G) and D(K, (). Again using (3.11) we may express Yj (R) W
(1 < j < h; (j, p) 1) as a linear combination of the Yk’s with coefficients
in A*(K, G). Combining these two expressions we may write Y. (R) Y as a
linear combination of elements of De(K, G).

Using the relation M Y’(M)x we may then obtain any product
M (R) M., showing that the relations above are sufficient.

4 Characters
4.1. LEMMA 12. If lQI 1, DQ(K, G) is semisimple.

Proof. When QI 1, De(K, G) has as basis U1, ..., U8 since U
M[. Let , b8 be the s distinct characters of A*(K, G) (see Green

[4 Theorem 1]). Define the map xI," De(K, G) C by

xI,(U) {(U)x} (r, o 1, -.., s).
Since x is an A*(K, G)-isomorphism, is a character of De(K, G) proving
the lemma.
We now assume QI > 1. Since A(K, Q) can be expressed as an exten-

sion of A (K, Q) with extension relations as in Green [3, 2.8c, d, e; 2.9c, d],
De(K, Q) can be expressed as an extension of Do (K, Q) and so a character

of De(K, Q) will be a character on restriction to D(K, Q) and will be con-
sistent with the extension relations, i.e., if z (V,) (1 <_ r < h; (p, r)
1) and y zq+- zq_x then

z y z+q zq_ 1 r < q,

(4.11) zy--Zr+q Zr--q, q < r < (p-- 1)q,

z, y Zr_q Z2h--(rcq), (p- 1)q < r < h.

Let be a character of A*(K, G) and a character of De(K, Q). Define
the mapping v’De(K, G) -- C by



Then 7(Y,) {(Y,)x} 0 since (Y,)x has an inverse in A*(K, G). Also
(() 0 For if ((R) 0, since M ’M1 .(Rforsomer’,l

_
r,r’_ s,

then b(Mx) b(M’x)((R) 0 whence {(Y,)x} 0.

LEMM13. Letbedefinedasin(4.12). ThenisacharacterofD(K, G).

Proof. The proof is by induction on ]Q [. By Lemma 12 the result holds
for [Ol 1. Assume it true for [Q] < h. Let ]QI handdefine as
in (4.12) where b is a character of A*(K, G) and a character of D(K, Q).
Since A*(K, ) A*(K, G) and restricts to a character on D$(K, ),

restricted to D(K, ) by the hypothesis is a character of D’5(K, ). It
will thus be a character of D(K, G) if it is consistent with the extension
relations formulated in Lemma 11.

is trivially consistent with the relation M Yi’(M)x (i 1, ...,
h; (i, p) 1). Write C (Y.) and v {b(R)} ’/. Then "0 is consistent
with (3.11) if and only if, with (r, p) 1,

Cr(Cq+,- ,Cq_,) C,(C+r- C_), 1 < r < q,

C,(C+- C_) C,(C+- qC_), q < r < (p- 1)q,
2rl f/C,(Cq+- Cq_,) C(qC,_q _,), (p 1)q < r < h.

Since Cr ’-{(Y,)x}Z it is trivial, using (4.11), to verify that these
equations hold.

TEOnEM 1. D(K, G) is semisimple.

Proof. Since D(K, Q) is semisimple it has (p 1)q distinct characters, 1 _< j _< (p 1)q. Similarly A*(K, G) has s distinct characters ,
(1 _< a <_ s). Thus there exist s(p- 1)qcharactersv.defined as in (4.12).
These are distinct. For if v’, v then v’(M) w(M) (1 _< <: s),
i.e.,, (M x) (M x) for all since M x is the sum of terms of the form
Mx. By Lemma 4, . Thus (V) w(V) (1 <_ i < h,
(i, p) 1) whence i j.

Since the dimension of D(K, G) is s(p 1)q, D(K, G) is semisimple.
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