ON TOPOLOGIES OF FINITE W*-ALGEBRAS

BY
SHOICHIRO SAKAT

1. Let M be a W*-algebra (namely, a C*-algebra with a dual structure
as a Banach space [4], [7]).

We may consider the following five typical topologies on M: (1) the norm
topology u as a Banach space; (2) the Mackey topology 7 defined by uniform
convergences on every relatively o(M s, M)-compact convex set of My,
where M 4 is the associated space of M (namely, M is the dual of M4); (3)
the topology «* defined by a family of semi-norms {a,, a’ | all positive ¢ e M4},
where a,(z) = o(z*z)"* and as(x) = e(xa®)'? for & e M; (4) the topology
s defined by a family of semi-norms {a, | all positive ¢ ¢ M4}; (5) the weak™-
topology ¢ (namely, o(M, M«)).

We can easily see that w < r if M is infinite-dimensional. By intro-
ducing the 7-topology into W*-algebras, the author [7] simplified the proof
that two topologies s and o have the same dual M 4 as a set—that is, we showed
T X & < s < o, so that by the theorem of Mackey these four topologies
have the same dual M « as a set.

Considering this fact, the extremal property of the r-topology must be a
powerful tool in the theory of W*-algebras.

On the other hand, for the *-, «- and o-topologies, we have nice concrete
representations—in fact, the «* (resp. « and o) coincides with the strong™-
operator topology—namely, the operator topology is defined by a family of
semi-norms {|| z¢ ||, || 2*¢ || | £ ¢ §} (resp. the strong operator topology and
the weak operator topology) on bounded spheres, when M is faithfully repre-
sented as a weakly closed*-algebra on a hilbert space . Therefore, it is
also important to have an analogous representation for the r-topology. In
this note, we shall show a concrete representation of the r-topology of finite
W*-algebras as follows: the r-topology of finite W*-algebras is equivalent
to the s-topology on bounded spheres. As a corollary of this result, we shall
show that every c-continuous linear mapping of a finite W*-algebra into
another W*-algebra is s-continuous on bounded spheres. For non-finite
W*-algebra, we have no solution; clearly r is < s on bounded spheres for
non-finite ones, because «* is < s on bounded spheres (cf. [5], [7]).

Our conjecture is as follows: can we conclude that the =-topology is
equivalent to the s*-topology on bounded spheres for all W*-algebras?

2. Let M be a finite W*-algebra, M4 the associated space of M.
LemmA 1. Let (f;) be a countable family of elements in M 4 ; then there is a
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central projection z of M such that M, is countably decomposable and

filM(1 —2)) =0

Sor all i, where 1 s the identity of M.

Proof. Let f; = L,{‘Ifil be the polar decomposition of f; (cf. [6], [7]).
Put o = 2 oy | f:1/2' f: |(1); then ¢ is a normal positive functional on M.
Let s(p) be the support of ¢; then s(¢)Ms(e) is countably decomposable;
let 2 be the central envelope of s(¢); then M, is also countably decomposable,
for M is finite. Then fi(M(1 — 2)) = |fi|(v: M(1 — 2)) = 0 for all <
since the support s(| fi|) of | f:| is contained in s(¢). This completes the
proof.

Lemma 2. Suppose that a sequence (f:) converges weakly to fo in My ;
then there is a normal finite trace t on M as follows: for arbitrary sequence (a,)
such that

lan|| €1 and ta%a) — 0 (n— =),
we have lim,,., fi(a,) = 0, uniformly for ¢ = 1,2, 3, -+ - .

Proof. By Lemma 1, there is a central projection z such that M, is count-
ably decomposable and f:(M(1 — 2)) = O0forz = 1,2, --- and so

fo(M(1 —2)) =0.

Let ¢ be a normal finite trace on M which is faithful on M, .

We shall define a norm || - [, on M, as follows: | al. = t(a*a)"* for
aeM,.

Let S be the unit sphere of M; then S, is the unit sphere of M,. We
define a metric d(z, y) on S, such that d(x,y) = ||z — ¥ ||z ; then this metric
defines a topology on S, equivalent to the s-topology; hence S, is a complete
metric space under the metric d(, ). The family {fi|7 =0, 1,2, ---} can
be considered as continuous functions on the metric space S, and

lim,. fi(a) = fo(a)
forallaeS,.

Put H; = {a||fi(a) — fo(a) | £ € for j = 7; a 8.} for arbitrary posi-
tive ¢ > 0; then S, = Uj-; H; ; by the theorem of Baire, there is a set Hj;, ,
which is of the second category; since Hj, is closed, it contains an open set;
hence there is an element a, of S, , a positive number 8(¢) such that

d(a, a) < 8(e) (aeS,) implies |fi(a) — fo(a)]| S ¢ forj = jo.

Now suppose that a sequence of self-adjoint elements (b,) in S, satisfies
lim, t(%) = 0. By the theorem of Segal [8, Cor. 13.1], there is a subsequence
(bs,) of (b,) which converges metrically nearly everywhere to 0—namely,
for every positive ¢ > 0 there exists a sequence P,,(¢') of projections in
M, such that P,,(¢') Tzasn,T o and || b,, Pr,(&) || < & (p=1,2,--).
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Therefore
(5 = f0) (ba,) | = | (fs — f0) (P, (&)bu, Pu,(€)) |
+ | (fi = fo) ((z2 = Pu,(€))bu, Pu,(€)) |
+ | (fi — fo) (P, (€)bn,(2 — Puy(€)) |
+ | (fi = fo) ((& = Pu,(&))bn,(z — Pny(€))) |
< 6 supozi<e || fi ll€/

+ [ (fi — fo(z = Pu(&))ba,(z — Pu(e)) ]
Now put

Bny = Puy(¢)00 Pay(€) + (2 = Puy(€))bay(z = Pay(€));
then z,, ¢ S, and
d(n, , @) = || (2 = Pay(€))ao Pu, (&) + Pn,(e)ao(z — Pn,(e))
+ (2 — Pu,(¢))ac(z — Pu,(€'))
— (2 = Pp,(&))ba, (2 — Puy(€)) |2
S 4z — Pu(e) 2.
Take po such that ||z — P, (¢') |l < 8(e)/4 for p = po; then
| (i = fo) (@) | = | (fi = fo) (Pu,(€)a0 Pu,(€"))
+ (fi = fo) ((z = P, (€))bn,(z — Pay(€))) |

=c¢
forp > poandj = jo. Moreover,
d(Py,(e")ao Pry(€), a0) = 3|z — Pu,(&') |l2 < 8(e)
for p = poand || Pa,(&')ao Pa,(e’) | £ 1, so that
| (fi = fo) (Pu,(€)a0 Pu,(e)) | = &

for p = poand j = jio ; therefore

| (fi = f) ((&2 = Puy(€)bu,(z — Pu,(€))) | S 2

forp = poand j = jo.
Hence
| (fi = f0)(ba,) | = 6 supogice || fi € + 2¢

forp = poandj = jo.

Put & = &/6 suposi<w || fill; then | (f; — fo) (ba,) | = 3¢ for p = po and
JZJo.

Since b,, — 0 (p — «) in the stopology, there is a positive integer p,
such that | (f; — fo) (ba,) | = 3e for p = pr and 1 = j = jo; hence

| (Fs — fo)(ba,) | < 3
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for p = max (po, p1) andj = 1,2, 3, - - -—namely, lim,., f;(bs,) = 0, uni-
formly forj = 1,2,38, --- .

Now we want to show that lim, f;(b,) = 0, uniformly forj =1,2,3, --- .

Suppose that this is false; then there is a positive number &, a subsequence
(brg) of (b,) and a subsequence (fj,) of (f;) such that | f;(bn,) | > € for
=123, ---.

On the other hand, by the above discussions, we can choose a subsequence
(bngr) of (bng) such that lim, fj(b,e) = 0, uniformly forj = 1,2, --- . This
is a contradiction; hence we have lim, f;(b,) = 0, uniformly for j = 1, 2,
3, ..

Now let (a,) be a sequence of elements in S such that t(ak a,) — 0. Put
@, = hy + ik, (ha, k, self-adjoint); then t(ak a,) = t(h2) + t(k%); hence

t((ha2)?) = t(h%) >0 and t((k,2)?) = t(k%) — 0,

so that lim, f;(h,2) = lim, f;(h,) = 0, uniformly for 7 =1, 2, --- and
lim, f;(k.2) = lim, f;(k,) = 0, uniformly for j = 1, 2, --- and so

lim, f;(a.) = 0,
uniformly forj = 1,2, 3, --- . This completes the proof.

LemmA 3. Let K be a relatively o(M s , M )-compact sel in M  ; then there is a
normal finite trace t on M as follows: for arbitrary directed set (a.) such that
laall £ 1 and lim, t(ak a.) = 0, we have lim, f(a.) = 0, uniformly for
feK.

Proof. We shall show that for any positive ¢, there is a positive §(¢) and a
finite set {f1, fo, -+, fo} & K such that if | f; |(a¥a) < 8(¢e) for ¢ = 1, 2,

-, pand aeS, then |f(a) | < e for fe K. Suppose that this is false for
some ¢. Let f; e K be arbitrary; then there is an a; ¢ S and an f; ¢ K such
that | f1|(af @) < 27" and | fo(as) | > . By induction, construct sequences
{f§ € K and {a} C S such that |f:|(afa;) <277 for 1 7<) < o,
and | fim(a;) | = eforl £ < .,

Since K is relatively o(M«, M )-compact, there is a subsequence (f:,) of
(fi) which converges weakly in M. Put o = D 51 |f;,|/2%, and let
s(¢) be the support of ¢.

o(afa;) = 2 5= | fi,] (afa;)/2°
2wz | iy | (0505) /27 4+ 3 s 1o, 11/2°

1— 1209 L 1/209"
3__/__T__.21+ / — - supsex || |
1-3 1—-3

lIA

I\

where p(j) is the greatest p such that 4, < j. Therefore limj., ¢(aja;) = 0
and so the sequence {a; s(¢)} is s-convergent to 0 (cf. [2, Prop. 4, Chap. 1,
$4]).

Let z be the central envelope of s(¢), t a normal finite trace on M which is



240 SHOICHIRO SAKAI

faithful on Mz; then
t((a;s(»))*(a;8(¢))) =0 (G— =),

so that by Lemma 2, lim;. fi,(a; s(¢)) = 0, uniformly for p = 1, 2, 3,
Since s(|f,, ) = s<¢>, f.p(aj 50)) = f,(a5); hemoe limyon fo(as) =
uniforraly for p = 1, 2, . This contradicts |fi+i1(a;) | = € for all j
Therefore there is a sequence of elements (g,) in K such that | g, |(a*a) = 0
for all n implies f(a) = O for all f e K. Put

1 |gal
v ‘,;2'» (7. 10D

and let 2z, be the central envelope of the support s(¢) of ¥; then
lgn [((M(1 — 2)) =0

for all n, so that f(M (1 — 2)) = 0 for all fe K. Let ¢ be a normal finite
trace on M which is faithful on Mz,. Let (a.) bea directed set of elements in
S such that #(a% as) — 0; then lim, f(a,) = O uniformly for f ¢ K—in fact,
suppose that this is false; then there is a subsequence (a.,) of (a.), a subse-
quence (f,) of K, a positive number & such that t(a%, a,,) — 0 and

Ifn(aan) l = ¢

This contradicts Lemma 2. This completes the proof.

Remark 1. The proof of Lemma 3 is a modification of the discussions of
Bartle-Dunford-Schwartz [1].

Now we shall show the following,.

TurorREM. Let M be a finite W*-algebra; then the r-topology s equivalent
to the s-topology on bounded spheres.

Proof. Suppose that a directed set of elements (z,) in S is s-convergent
to 0. Let K be arbitrary relatively o(M s , M )-compact set in My ; then by
Lemma 3 there is a finite normal trace ¢ such that lim:(}e,-0as s1 f(@a) = 0,
uniformly for f ¢ K; since t(x% z,) — 0, we have lim, f(z.) = 0, uniformly
for f e K, so that {a.} is 7-convergent to 0. This completes the proof.

CoROLLARY 1. Let p be a o-continuous linear mapping of a finile W*-al-
gebra into another W*-algebra; then p is s-continuous on bounded spheres.

Proof. By the general theory of locally convex spaces, p is 7-continuous.
By the above theorem, the r-topology coincides with the s-topology on
bounded spheres of finite W*-algebras, so that p is s-continuous on bounded
spheres.

Remark 2. This corollary can not be extended to general W*-algebras—
in fact, let M be a W*-algebra; then we can construct a W*-algebra N such
that there is an anti-x-isomorphism p of M onto N (cf. [3], [7]); p is always
o-bicontinuous (cf. [7]); however, if M is not finite, p is always s-discontinu-
ous on bounded spheres (ef. [5], [7]).
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COROLLARY 2. Let® be a normal positive mapping of a finite W*-algebra
into another W*-algebra; then it is s-continuous on bounded spheres.

Proof. Since a normal positive mapping is o-continuous, by Corollary 1
it is s-continuous on bounded spheres.
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