
COMPOSITION SERIES FOR SIMPLEX SPACES

BY

general theory of composition series was iven in [S]. It was there
applied te the case o separable simplex spaces. The authers characterized
the sepable C-spaces and paially
spaces. We shall, here, eneralize and extend those resuRs.
The netations and definRions are those used in [1], [2], [S], []. will

always denote a simplex space. For a set P(F), we let er - be
the weak* close of and +=
EP(V) +. For q P(V), we shall denote by the unique maximal prob-
abity measure with resultant q. If V is separable, then is supported by
EP(V).
Let X be any topological space and p any topological propey. If a sub-

set G X has propey p, we ite G X and say that G is a p-subse$ of X.
(For a fl account, see [3, 3].) A propey p is inductive if for each non-
empty closed set F and each open G in X we have" G
F F. We say property p is srongly inductive if (1) p is inductive and,
given G, G open, F closed in X, we also have’

(2) G G X and G X imply G G.
(3) G G X implies G X.
(4) G F XimpliesG X.

For X max V, we shall consider the following properties:

(C) G c max V means tha elements of V restrict to continuous func-
tions on G.

(M) G max V if each net in G which converges to a point of G con-
verges to no other point of max V.

(n) (for n 2) G m V if each sequence in G which converges to
point of G converges to at most n points in max V.
Pgooswo 1. The properties (C), (M) a (n) are strongly inductive.

Proof. That (C) and (M) are strongly inductive is shown in [3, Prop"
4.3]. That (n) is strongly inductive is obvious.

If J a closed ideal in V, we let P(J) be the positivestates of J and EP(J)
be the pe states of J when we consider J as a simplex space in its own right.
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V* J*The restriction map p --* restricts to a continuous affine map of PI(V)
onto PI(J) [1, Thin. 4.4]. This, in turn, restricts to a continuous one-to-one
map of EP(V) J’- onto EP(J)+. With these maps, we may consider
P(J) and EP(J) + to be subsets of PI(V) and EPI(V) J, respectively.
As such EP(J) considered as a subset of EPI(V) with the structure topology
induced from EP(V) is homeomorphic to max (J) [1, Thin. 4.4]. It is,
therefore, structurally open in EPI(V). Furthermore, we may consider
EP(V) to be the union of EP(J) with EPI(V) n J.

In order to find structure closed sets, we use the following Proposition, cf.
[4, Prop. 1.1]. First, a set D P(V) is dilated if for each q e D, we have supp
zq GD.
PROPOSITION 2. (A) Let D

_
P(V) be dilated and weak* closed. Then

the weak* closed convex hull of D o {0} is a face of P(V) and D n E+ is struc-
turally closed.

(B) Let D

_
E+. Then the following are equivalent"

1. D is structure closed.
2. D is weak* closed in E+ and D t {0} is dilated.

(C) Let q e Z and suppose is supported by E+. Then

supp q (supp q n E+)
Proof. (A) The first conclusion is [2, Thm. 3.3] while the second follows

easily from the Milman Theorem [5, p. 9].
(B) (1) --, (2). Obviously D is weak* closed in E+. Let K be the closed

face containing zero such that K n E+ D. Let q / u {0}. Then q K
and so supp q

_
K. Hence supp q (K n EP,(V))- [5, p. 30.]. As the

latter set is/) u {0}, the implication is clear.
(2) --, (1) follows easily from (A).
(C) is [4, Prop. 1.1 (A)].

We let R,PI(V) be the lateral n-skeleton of P(V), i.e.

RoPe(V) EPI V)

R,,P( V) _, kp, peE+, ), >_ O, ’.. X <_ 1} for n > 0.

In terms of R,P(V), we may recast properties (C), (M), and (n).

PROPOSITION 3. Let J be a closed ideal in V.
(1) max J

_
e max V if and only if

Then"

Z

_
EP(V) u J" RoPI(V) u J’.

(2) max J M max V if and only if
Z

_
RPI(V) u J’.

(3) Suppose V is separable. Then max J __. max V if and only if
Z R,,P(V) u J’.
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Proo]. (1) and (2) are contained in [3, Thm. 2.2] and [3, Thm. 2.5],
respectively.

(3) Suppose maxJmaxV. Letq eZ E+. Then there is ase-
quence {p} E* such that p --* q. Let F be the structure closure of supp
r n E+. Then {p} converges structurally to each element of F and to no
others [4, Cor. 1.5]. Suppose there is a z EPI(J) F. As EPI(J) is struc-
turally open, p EPI(J) eventually. Therefore cardinality (F) _< n and
so q R,PI(V). Suppose, on the other hand, that EP(J) F .
Then F E+ a J and so Prop. 2(C) yields supp

___
J’. Thus q e J.

Therefore

Z E+ R,,P(V) t J’.

Since E+ EP(J) + t (E+ J), we have Z R,,P(V) t J.
Conversely, suppose Z R,P( V) t J and let {p}

___
EPI( J)

pEPI(J) be such that {p} converges structurally to p. Since Z is a compact
metric space, going to a subsequence and re-indexing, there is a point qeZ such
that p -- q. Let F be the structure closure of supp E+. Then {p}
converges to each point of F and to no others [4, Cor. 1.5]. Hence, peF.
Suppose qJ. Then supp r n E+

___
J’a E+. As the latter is structure

closed, p e F

_
J" a E+. This contradicts p e EP(J) and so q R,,P(V).

Hence F has at most n points and the poposition has been proven.

Let J be a closed ideal in V. We define the following simplex properties
(for a full account of such properties see [3, 4] )"

J is a C-ideal (or a O-ideal) if max J has property (C).
j is an M-ideal (or a 1-ideal) if max J has property (M).
J is an n-ideal if V is separable and max J has property (n).

For the simplex properties n >_ 0, a closed ideal J V is Gn in V if for all
closed ideals I, either J __. I or (J - I)/1 contains a non-zero closed n-ideal
in VII. If V is Gn in V we say that V is a Gn-space. We say that V is an
Nn-space if it contains no non-zero n-ideal. With this terminology we have
the following theorem [3, Lemma 4.1 and Proposition 4.2].

TEOREM 4. Let V be a simplex space, separable if n >_ 2. Then there is a
largest Gn-ideal J. If V J, then V/J is an Nn-space. There is a collection
of distinct closed ideals Jr indexed by ordinals 0 <_ " <_ "o such that"
() Jo {0}, Jo J.
(2) lf " < "o is a successor ordinal, then Jr is a proper subset of J+ and

J+/J is an n-ideal in V/J.
(3) lf. <_ "o is a limit ordinal, then Jr (u <J)-
Further, ideals and quotients of Gn-spaces are again Gn-spaces.

Such a sequence of closed ideals is called an n-composition series for V.
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To ease the notation, we let

Z,, Z R,,P( V) +.
Hence

Z. {z Z z "_ xp, 0 _< x _< 1, p, /+, z 0}, n > 0,

Z0 E+.
For any L _.c E+, let

k,,(L) ( {supp v, qe , Z})-
We let

e,(L) structure closure (k,(L) n E+).
We note the following.

PaOOSTON 5. Let L c_ E+ be structurally closed. Then:
(1) e,,(L) C_ L.
(2) ko(L) is closed and dilated.
(3) ko(L) n E+ co(L).

Proof. If q L, then supp q _c , u {01 by Prop. 2(B). Hence

k,,(L) c_. , t {0}.
Sok,(L) nE+_.C (,v{0})nE+ L. Thuse,(L) L which is (1). In
particular, ko(L)

_ , t {0}. Let q ko(L) u {0}. If q EP( V), then
supp , {q}

_
k0(L) {0}. If q EP(V), then q J L.

Hence supp v _c_ k0(L) and so (2) holds. Therefore k0(L) n E+ is already
structure closed by Prop. 2(A) which yields (3).

With these concepts we may now attack the problem of characterizing the
Gn spaces for n >_ 0.

PaOPOSTmN 6. Let V be a simplex space. We asme r is supported by
EP( V) for each q Z if n 1 and that V is separable if n >_ 2. Let F

_
E+

be a non-empty structure closed set. Let I be the closed ideal satisfying I n E+
F. Then the following are equivalent:

(1) There is a closed non-trival ideal J such that ( J + I)/1 is an n-ideal in
/.

(2) U F e(F) is non-empty.
In fact, there is a one-to-one correspondence between closed, non-trivial ideals J

such that J W 1)/1 is an n-ideal in V/I and non.empty sets W c_ U which are
structure-open relative to F.

Proof. Since I" is a closed face, the structure and weak* topologies for
(V/I)* coincide with the restrictions to I of the structure and weak* topoi-
ogies of V, respectively [1, Thin. 3.4]. Thus, it suffices to consider the case
hat F E+ and I {0}.
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(1) --, (2). Let J be a closed, non-trivial n-ideal. We know that

Z

_
J u RP(V)

adsoZ J’Z. IfZ-Z theaq Since is
containing ero, supp v J’. Hence

k(B+) E+ J" E+.
Because J" E+ is structurally closed, e(E+) J
E+ J, we hve W E+ e(E+) nd W is non-empty structurally
open set.

(2) (1). Let W be nomempty structurally open set such that

W E+ e(E+).
Let J be the closed ideal stfyiag J" E+ E+ W. Suppos q
Z. Thussupp k(E+). Ifn 0, theak0(E+)
drifted so its closed convex hull F face by Prop. 2(A).

F E+ k(E+) E+ e(E+) E+- W J" E+,
we must have F J’. Hence supp v J’. If n 1, then v supposed
by EP(V). So

supp (supp E+)- (k(E+) , E+)- (e(E+) )-_
(Jn E+)

_
In either case, supp

_
J=. Thus, q Therefore

and, coequently, J a non-trivial n-ideal.

COROllARY 7. Let J be the closedlin V safying

J" n E+ (U{supp [q Z E} )- n E+.
Then J is a C.la it nins every oher C.ideal.

Using Proposition 6 we easily get the following main result.

EOM 8. Suppose V is a simpx space. We asme that is sup-
pd by Pz(V) for each q Z if we are coideri the property (M); we
asme$ V separable if we are considering propery (n) n 2. Then V is
a GC-, GM-, or Gn-space if and only ], ]or ch non-empty tcture clo se F,
we have F eo(F) F e F) or F e(F) respectively.

COROLLARY 9. Suppose V is a simplex sce satisfyi the hypothesis o,

Theor 8.

cardinafity ({z z supp v for se q Z Z} <



then V is a GC-, GM-, or Gn-space for m O, m 1, or m n >_ 2, respec-
tively.

Proof. em(E+) is a finite set so Theorem 8 applies trivially.

COROLLARY 10. Suppose there is a qo Z such that qo supp q0. If rqo is
supported by EP1(V), then V is not a GC-space or a GM-space. Further, if V is
separable, then V is not a Gn-space for any n >_ 2.

Proof. We take F to be the structure closure of supp rq n E+. Thea F is
a non-empty structure closed set which satisfies F e.(F) for each n.
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