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1. Introduction
A Banach algebra A is called weakly semi-completely continuous (w.s.c.c.),

if, for every element a e A, the mapping T" x --> axa (x e A) is a weakly
completely continuous operator on A, i.e., if T maps bounded sets into sets
which are relatively compact in the weak topology o(A, A’), where A is the
conjugate space of A. Ogasawara and Yoshinaga [8] have studied weakly
completely continuous (w.c.c.) Banach*-algebras and Alexander [1] developed
a theory of compact Banach algebras (which we call semi-completely con-
tinuous or briefly s.c.c, algebras). It is thus natural to have a look at w.s.c.c.
Banach algebras and to see ho they are related to s.c.c, and w.c.c. Banach
algebras. We confine our study of w.s.c.c. Banach algebras to A*-algebras
with the k-property, i.e. A*-algebras A for which there exists a constant ] such
that xy < y for ll x, y A.

In 4 we show that a w.s.c.c. A*-algebra with the k-property and an identity
element is finite dimensional. Using this fact we prove that an A*-algebra
with the k-property which contains non-zero w.s.c.c, elements contains mini-
mal idempotents. In 5 we study the relationship between s.c.c, and w.s.c.c.
A*-algebras with the E-property. A B*-algebra is s.c.c, if and only if it is
w.s.c.c. If A is an A*-algebra with the k-property and ?/is its completion
than A is w.s.c.c, if and only if is w.s.c.c. If A is a commutative A*-algebra
with the k-property then A is s.c.c, if and only if it is w.s.c.c.

Section 6 is devoted to the study of modular annihilator Banach algebras
from the point of view of s.c.c, and w.s.c.c. Banach algebras. For example we
show that if A is a semi-simple Banach algebra, then A is modular annihilator
if and only if for every maximal modular left (right) ideal M there exists a
right (left) identity u for A modulo M such that u is an s.c.c, element of A
(Theorem 6.2). Thus, in particular, every s.c.c. Banach algebra is modular
annihilator. If A is an A*-algebra with the k-property then A is modular
annihilator if and only if A is w.s.c.c. (Theorem 6.7). We also show that an
A*-algebra A is modular annihilator if and only if every maximal commutative
-subalgebra of A is modular annihilator.

2. Preliminaries

All algebras and vector spaces under consideration are over the complex
field C. A Banach algebra ith an involution x --) x* is called a Banach
-algebra. A Banach ,-algebra A is a B*-algebra if the norm and the involu-

tion satisfy the condition x*x ]! x ]], x e A. If A is a Banach ,-algebra

Received June 18, 1970.

653



B. . TOMIUK AND PAK-KEN WONG

on which there is defined a second norm [. which satisfies, in addition to
the multiplicative condition[ xy -> x [I Y [, the B*-algebra condition Ix *x
x 2, then Ais called an A *-algebra. The norm is called an auxiliary
norm on A, and _< for some constant > 0 [9; p. 187]. An ele-
ment x of an A*-algebra is called normal if x*x xx*.
Let A be an A*-algebra with the k-property. Than A has a unique auxiliary

norm topology [8; p. 18, Theorem 3] and hence can be embedded as a dense
subalgebra in a unique (up to .-isomorphism) B*-algebra . We refer to the
algebra 9.I as the completion of A. It follows that A is a dense two-sided ideal
of[8;p. 17, Lemma3]andllxyl[ <- ll]xll[ylforallxeA, yeg.I. Con-
versely, if A is an A*-algebra which is a dense two-sided ideal of the B*-algebra

then A has the k-property [8; p. 18, Lemma 4]. Thus the k-property charac-
terizes those A*-algebras which are dense two-sided ideals of B*-algebras.

Let A be a Banach algebra. An element a A is called completely con-
tinuous (c.c.) if the mappings x ---, ax and x ---, xa are completely continuous
operators on A. An element a e A is called semi-completely continuous
(s.c.c.) if the mapping x axa is a cornpletely continuous operator on A.
(In [1] such an element is called compact.) It is clear that if a is c.c. then it
is s.e.c., but the converse is not true as is shown in [1]. An element a e A is
called weakly completely continuous (w.e.e.) if the mappings x ---, ax and
x xa are weakly completely continuous operators on A. An element a e A
is called weakly semi-completely continuous (w.s.c.e.) if the mapping x ---. axa
is a weakly completely continuous operator on A. If every element of a
Banach algebra A is c.c. (resp. s.c.c., w.c.e, or w.s.c.c.) we say that A is a c.c.
(resp. s.c.e., w.c.c, or w.s.c.c.) algebra.

Since every norm-closed subspace of a Banach space is weakly closed [7;
p. 422, Theorem 13], it follows that every dosed left (right) ideal of a Banach
algebra is weakly closed.
For any subset S of an algebra A, let/a(S) and ra(S) be respectively the

left and right annihilators of S in A. An algebra A is modular annihilator if
avery maximal modular left (right) ideal of A has a non-zero fight (left)
annihilator. A Banach algebra A is an annihilator algebra if for every dosed
left ideal J and for every closed right ideal R we have ra(J) (0) if and only
if J A and lt(R) (0) if and only if R A. It is a dual
algebra if la (ra(J) J and ra (la(R) R for every closed left ideal J and
for every closed right ideal R of A.

If S is a subset of a Banach algebra A, cla(S) will denote the closure of S
in A. For all other concepts used in this paper see [9].

3. Some lemmas
LEMMA 3.1. Let A be a w.s.c.c. Banach algebra. Then every closed subalgebra

B of A is w.s.c.c. If I is a closed two-sided ideal of A, then A/I is a w.s.c.c.
Banach algebra.
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Proof. Let x e B and let {x} be a bounded sequence in B. Since x is a
w.s.c.c, element of A, there exists a subsequence Ixn} of {x} and an element
y e A such that {xx,, x} converges weakly to y. But B is weakly closed and
every continuous linear functional on B has a continuous linear extension to A.
Hence y e B, and so B is w.s.c.c.

low let I be a closed two-sided ideal of A, [x] an element of A/I and {[x]}
a bounded sequence in A/I, say il [x] -< k (n 1, 2, ). We can clearly
choose a representative element x of [x] such that x ]] _< 2k (n 1, 2, ).
Let x be any representative of Ix]. Since x is w.s.c.c., there exists a sub-
sequence {x} of {x} such that {xx,, x} converges weakly to an element y in A.
Since the conjugate space of A/I is isometrically isomorphic to

I {]A’:](x) 0 for all xI},

{[x][x][x]} converges weakly to [y] in A/I. Hence A/I is w.s.c.c.

LEMMA 3.2. Let A be a semi-simple Banach algebra. Then every element
the socle of A is w.s.c.c. In particular, if A has dense socle, then A is a w.s.c.c.
algebra.

Proof. Since every s.c.c, element of A is w.s.c.c., it follows from [1; p. 14,
Theorem 7.2] that the socle S of A consists of w.s.c.c, elements.
If cla(S.) A, then A is s.c.c, by [1; p. 15, Theorem 7.3] and so w.s.c.c.

4. Existence of minimal idempotents

LEMII. 4.1. Let A be an A*-algebra with the k-property. Then every closed
left (right) ideal ofA which contains a non-zero w.s.c.c, element contains a w.s.c.c.
idempotent.

Proof. Let J be a closed left ideal of A which contains a non-zero w.s.c.c.
element. Then J clearly contains a self-adjoint w.s.c.c, element, say a, such
that ai 1. Then

II a il -< k a Illa-’l -< k a (n 1, 2, ...).

Let S {a, as, a, and let G(a) be the set of all weak adherent points
of S, i.e., the set of points z such that every weak neighborhood of each z
contains some a for arbitrarily large n. Since S is contained in the set
{axa x e A and ]1 x I! -< k} whose weak closure is compact, by [7; p. 430,
Theorem 1], G(a) is not empty and every subsequence of S contains a sub-
sequence which converges weakly to an element of G(a). Moreover, it is
easy to see that, for every z e G(a), there is a subsequence of S which converges
weakly to z. (See the proof of [10, Lemma 3.1].) We show now that G(a)
contains non-zero elements. Let B be the closed .-subalgebra of A generated
by a and let be the completion of B in the norm I. It is clear that
is a commutative B*-algebra and that B is dense in . Since a] 1, it is
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easy to see that there exists a multiplicative linear functional f on ! such that
If(a) 1. Let f’ f B, the restriction of f to B. Then f’ is a multiplica-
tive linear functional on B and hence continuous. Let g e A’ be an extension
of/’ to all of A with il g f’ II. Then g(a) 1 for all n 0, 1, 2,....
Thus G(a) contains non-zero elements. By the argument given in the proof
of [5; p. 180, Theorem 4], G(a) is a group. Let u be the identity of G(a).
Then u 0, u u, and since a* a, u* u. Since J is weakly closed,
uJ.

TEOnEM 4.2 Let A be an A*-algebra with the k-property and an identity
element. If A is w.s.c.c, then A is finite dimensional.

Proof. Let B be a maximal commutative ,-subalgebra of A. By Lemma
3.2, B is w.s.c.c. Let M be a maximal closed ideal of B and let {u,} be a
maximal orthogonal family of non-zero self-adjoint idempotents in M; {u}
is not empty by Lemma 4.1. Let Q be the set of all elements u e B which are
finite sums of elements from {u,}. Let e denote the identity of A; clearly
e B. Since eu, u, for all a, we have

Thus Q is bounded and since e is w.s.c.c., Q has a weak adherent point, say q.
It is easy to see that q is the only weak adherent point of Q, q 0, q q and
q M. Moreover, u, q u, for all a so that u,(e q) 0 for all a. Since
e M, e q is a non-zero self-adjoint idempotent which is orthogonal to
u,. We claim thatMnB(e- q) (0). In fact, letI MnB(e- q)
and suppose that I (0). Then, by Lemma 4.1, I contains a non-zero self-
adjoint idempotent, say v. Since v v(e q), we have
As v M, this shows that {u,} is not a maximal orthogonal family of self-
adjoint idempotents in M; a contradiction. Hence I (0) and consequently
e q is a minimal idempotent of B. Since B(e q) - Bq B and Bq M,
we have

M Bq {x- x(e- q) "xeB}.

Thus every maximal closed ideal M of B is an annihilator ideal and conse-
quently the carrier space 2 of B is discrete. Since B has an identity element,
9 is compact and therefore a finite set. Hence B is finite dimensional. Let
{e, e, ..., e,} be the set of all self-adjoint minimal idempotents in B. It is
easy to see that {et, e, ..., e,} is a maximal orthogonal family of self-adjoint
minimal idempotents in A and e e -t- -t- e,. Hence A ".- e Ae
and, since e Ae is one dimensional for all i, j 1, 2, n [1; p. 13, Lemma
7.1], it follows that A is finite dimensional.

ConoAnY 4.3. A w.s.c.c. B*-algebra with identity is finite dimensional.

CooaY 4.4. Let A be an A*-algebra with the k-property. Then every
closed left (right) ideal of A which contains a non-zero w.s.c.c, element contains a
minimal idempotent (which is w.s.c.c.).
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Proof. Let J be a closed left ideal of A which contains a non-zero w.s.c.c.
element. Then, by Lemma 4.1, J contains a w.s.c.c, self-adjoint idempotent
u 0. Since B uAu is a w.s.c.c. A*-algebra with k-property and an iden-
tity element u, by Theorem 4.2, B contains a self-adjoint minimal idempotent,
say e. Since eAe euAue eBe, e is also a minimal idempotent of
A. Clearly e e J. A similar proof holds for a closed right ideal of A which
contains a non-zero w.s.c.c, element.

5. w.s.c.c. A*-algebras
LEMMA 5.1. Let A be an A*-algebra with the k-property and let M be a maxi-

mal modular left ideal of A. Then r.(M) (0) if and only if there exists a
right identity u for A modulo M which is a normal vo.s.c.c, element of A.

Proof. Suppose thut u is a normal w.s.c.c, right identity modulo M. Let
B be a maximal commutative .-subalgebra of A containing u. Since B has
the k-property and u is a w.s.c.c, element of B, by Corollary 4.4, B contains
self-adjoint minimal idempotents. We claim that there exists a self-adjoint
minimal idempotent in B which does not belong to M. Suppose that this
is not true. Then B n M is a non-zero modular ideal of B. Let M be a
maximal modular ideal of B containing M n B. Then M contains all the
self-adjoint minimal idempotents of B. Let {e,} be a maximal orthogonal
family of self-adjoint minimal idempotents in M’, and let Q be the set of all
elements of B which are finite sums of elements from {e}. Then uQu is a
bounded net and, since u is w.s.c.c., uQ converges weakly to a unique ele-
ment v’, say. Let v u. It is clear that v is an identity modulo M’ and
that v v # 0 since v M and v e M. Moreover, it is easy to see that
(v- v’)e, 0foralla. Let JbetheclosureofB(v v) inB. Then

M’Je (0) for all a. Hence if J n (0) then there would exist a self-
adjoint minimal idempotent in J M’ which would be orthogonal to all e,,
contradicting the maximality of the family {e,} in M’. Thus J n M’ (0)
and, since J (0), this shows that there exists a self-adjoint minimal idempo-
tent e in B which does not belong to M’ and consequently does not belong to M.
Since e is also a minimal idempotent of A, we have M Ae (0) and, since
M is a maximal left ideal of A, we see that M Ae A. It now follows that
M x xe x e A} and r.(M) cA. (See the proof of [12; p. 38, Lemma
3.3].)
Now suppose thatM is a maximal modular left ideal for which ra(M) (0),

R* x*and let R r.(M) Then R* n M (0); for if x e n M, then e R
and xx* 0 which implies that x 0. Since M is maximal, we haveM - R*

A. Thus R* is a minimal left ideal and therefore of the form Ae,
where e is a self-adjoint minimal idempotent. Thus R eA and
M {x xe x e A}, where e is a normal w.s.c.c, element of A.

THEOREM 5.2. Let A be a B*-algebra. Then A is w.s.c.c, if and only if A
is dual.

Proof. Suppose A is w.s.c.c. Let M be a maximal modular left ideal of A
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and u a fight identity for A modulo M. Since u + u*(1 u) is also a fight
identity for A modulo M [9; p. 42] which is self-adjoint and w.s.c.c., by Lemma
5.1, r(M) (0). Applying the continuity of the involution, we see that A
is modular annihilator and therefore, by [12; p. 42, Theorem 4.1], A is dual.
(Duality of A also follows from [6; p. 48, Thorme (2.9.5)] since every maxi-
mal modular left (fight) ideal of A is an annihilator ideal.) Conversely, if
A is dual then it has dense socle and therefore is w.s.c.c, by Lemma 3.2.

COROLLARY 5.3. A B*-algebra A is s.c.c, if and only if it is w.s.c.c.

Proof. Clearly if A is s.c.c, then it is w.s.c.c. The converse follows from
Theorem 5.2 and the fact that a dual B*-algebra is s.c.c.

Let A be an A*-algebra with the k-property and H the completion of A; A
is a dense two-sided ideal of I. For each x A and f A’, let x o f and ] o x
be the linear functionals on defined by (x o f) y f(yx) and (.f o x) y f(xy)
for all y I. Since II xy II < k x Yi for all x A and y I, they are con-
tinuous linear functionals on I. Similarly, for x I and F e Ip, we define
x o F and F o x, which are clearly continuous linear functionals on H. Their
restrictions (x o F) and (F o x)a to A are also continuous linear functionals
on A. In fact, if y e A, then

where F denotes the bound of F in I. Similarly we can show that (x o F)
is continuous on A with respect to the norm ]1 ]1.
THEORE 5.4. Let A be an A*-algebra with the k-property and [ the comple-

tion of A. Then A is w.s.c.c, if and only if I is w.s.c.c.

Proof. Suppose that A is w.s.c.c. Let {x} be a bounded sequence in I
and let x A. Since xx, ]! <- k x x !, {xx,} is a bounded sequence in A
and, since A is w.s.c.c., there exists a subsequence {x} of {x} and an element
z A such that, for all f A’,

-,/(z).

Since (x o F)a e A’, for all F I’, we have

F(xx, x2) (x o F).(xx,, x) ---. (x o F) a(z) F(zx).

Thus x is a w.s.c.c, element of I. Now every self-adjoint element of I is the
limit of a sequence of self-adjoint elements of A. Since eve positive element
a of is of the form a b, where b is a self-adjoint element of , it follows
that every positive element of is w.s.c.c. In fact, let a be a posi-
tive element of H, {a.} a sequence of positive elements in A such that
a a O, T x axa and T. x a xa (x A). Then the operator
bod

so that Ta.-- Ta. Since each am is a w.s.c.c, dement of A, it follows from
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[7; p. 483, Corollary 4] that a is w.s.c.c, low let be a maximal modular
left ideal of I and let u be a right identity for [ modulo . We may assume
that u* u; otherwise we take u -b u*( 1 u) for a right identity modulo
Then u is positive and a right identity modulo . Since u is w.s.c.c., by
Lemma 5.1, r()) (0). Thus ?I is modular annihilator and hence dual.
Therefore, by Theorem 5.2, I is w.s.c.c.

Conversely, suppose that /is w.s.c.c. By Theorem 5.2, H is dual and hence
w.c.c. [8; 21 Theorem 6]. Let x e A and let {x} be a bounded sequence in A.
Then {x} is also a bounded sequence in H and hence, since is w.c.c., there
exists a subsequence {x} of {x.} and an element z e H such that F(x, x) --.
F(z) for all F ’. Now, for all f A’, f o x ’ and so

f(xx ) (f o ) (x ) --, (f o ) (z) =/(z),

for all f A’. Since x A, xz e A so that {xx,,, x} converges weakly to an
element in A. Thus A is w.s.c.c.

THr.OR 5.5. Let A be a w.s.c.c. A*-atgebra with the k-property. If, for
every x A, x belongs to the closure of Ax, then A is dual.

Proof. Let H be the completion of A. Then, by Theorems 5.2 and 5.4,
is dual. Since A is a dense two-sided ideal of H, [8; p. 28, Lemma 8] shows
that A is dual.

THEOREM 5.6. Let A be a commutative A*-algebra with the k.property. Then
A is s.c.c, if and only if A is w.s.c.c.

Proof. If A is s.c.c, then it is clearly w.s.c.c. So suppose now that A is
w.s.c.c. Then the completion [ of A is a dual commutative B*-algebra and
hence c.c. Let {x,} be a bounded sequence in A and let x, A. Since {x} is
bounded in the norm and since [ is c.c., there exists a subsequence
of {x,} such that {xx} converges to an element y e in the norm I. But
yx A and so, by the ]-property, xx,x} converges to yx in the norm ][.
Hence A is s.c.c.

6. Modular annihilator Banach algebras
LEyIt 6.1. Let A 5e a semi-simple Banach ageSra. Then every idempotent

which is an s.c.c, element of A belongs to the socle of A.

Proof. Let e be an idempotent which is s.c.c. Then B eAe is a finite-
dimensional Banach algebra with identity e. Since A is semi-simple, B is
also semi-simple (see [1; p. 6, Lemma 4.5]). Hence e e -t- -l-
where e are minimal idempotents of B (i 1, 2, n). Since e, Ae
e eAee e Be Ce, each e, also a minimal idempotent of A. Hence e
belongs to the socle of A.

THEOR 6.2. Let A be a semi-simple Banach algebra. Then A is a modular
annihilator algebra if and only if, for every maximal modular left (right) ideal
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M of A, there is a right (left) identity for A modulo M which is an s.e.e, element
of A.

Proof. If A is a modular annihilator algebra, then every maximal modular
left ideal M of A is of the form M {x xe x A}, where e is a minimal
idempotent. By [1; p. 14, Theorem 7.4], e is s.c.c. A similar statement holds
for maximal modular right ideals of A. To prove the converse, let M be a
maximal modular left ideal and let u be a right identity modulo M which is
s.c.c. Let B be the closed subalgebra of A generated by u. That is, B is the
closure of the algebra of all polynomials of the form al u + as u + an u,
where n is an arbitrary positive integer. B is a non-radical s.c.c. Banach
algebra. Now M n B is a modular ideal of B and so can be extended to a
maximal modular ideal M’ of B with u being an identity for B modulo M’.
Since the cartier space of B is discrete [1; p. 10, Theorem 6.6], there exists an
idempotent e e B such that e M’ [9; p. 168, Theorem (3.6.3)], and hence
e M. But e is an s.c.c, element of A. Therefore, by Lemma 6.1, there
exists a minimal idempotent el in A such that el M. The argument in the
proof of Lemma 5.1 now shows that r.(M) (0). A similar proof holds for
a maximal modular fight ideal of A. Thus A is modular annihilator.

THEORE 6.3. Let A be an A*-algebra. Then A is a modular annihilator
algebra if and only if every maximal communtative ,-subalgebra of A is a modular
annihilator algebra.

Proof. If A is modular annihilator then, by [3; p. 517, Corollary], every
maximal commutative ,-subalgebra B of A is modular annihilator. Another
proof of this fact can be given as follows" Let I be the completion of A in an
auxiliary norm. (In [11] it is shown that I is unique up to ,-isomorphism.)
Since .i has dense socle [2; p. 287, Lemma 2.6], I is dual. Let ! be the closure
of B in ; is a dual ,-subalgebra of . For any x e B, let Spa(x), Sp,(x)
and Spa(x) denote the spectrum of x in A, B and [ respectively. Since B is
maximal in A, Sp,(x) Spa(x) and hence, since is a Q-norm on A, it is
also a Q-norm on B. (See [2; p. 285, Lemma 1.2].) Thus if M is a maximal
modular ideal of B then M is closed with respect to in B. Let u be an
identity for B modulo M. Than u can be written in the form u
where {e,} is the maximal orthogonal family of self-adjoint minimal idempo-
tents in !; , . e, converges to u in the norm I. (See the proof of [8;
p. 21, Theorem 6].) But A is a modular annihilator ,-subalgebra of I and
Spa(u)

_
Sp(u). Hence, by [2; p. 287, Lemma 2.5], every e, e A and so

every e. e A n ! B; moreover every e, is a minimal idempotent of A. Since
u e M and M is closed in I, it follows that there exists at least one e, M.
Hence 1.(M) r(M) (0) and consequently B is modular annihilator.
To prove the converse, let M be a maximal modular left ideal of A and u

a right identity modulo M. We may assume that u* u; otherwise we take
u - u*(1 u). Let B be a maximal commutative ,-subalgebra of A con-
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raining u. Since M n B is a modular ideal of B and B is a modular annihilator
algebra, there exists a minimal idempotent e in B such that e M n B. But,
this means that e is a minimal idempotent of A and e M. Hence r(M)
(0). The continuity of the involution now completes the proof.

COROLLARY 6.4. Let A be a modular annihilalor A$-algebra. Then every
normal element x A can be written in the form x e, where {e} is an
orthogonal family of self-adjoint minimal idempotents in A and {k} is a ]amily
of scalars. The sum e, converges o x in the auxiliary norm o] A.

Proof. Let B be a maximal commutative .-subalgebra of A containing x.
By the first paragraph of the proof of Theorem 6.3, B contains such a family
{e.}.

COROLLXRY 6.5. Le A be an A*-algebra. Then A is modular annihilator
if and only if A has the spectral expansion property.

Proof. For the definition of the spectral expansion property see [2; p. 288].
If A is modular annihilator then, by Corollary 6.4, A has the spectral expansion
property. Conversely suppose A has the spectral expansion property. Then

is a Q-norm on A [2; p. 284] so that if M is a maximal modular left ideal
of A then M is closed with respect to ]. Let u be a right identity modulo
M; we may clearly assume that u* u. Then u e, where {e} is
an orthogonal family of self-adjoint idempotents in the socle S of A. Since
u M, there is at least one e M. As every e e S, this means that there
exists a self-adjoint minimal idempotent e M. It follows now that
ra(M) (0) and that A is modular annihilator.

THEOREM 6.6. Let A be an A*-algebra wih the k-propery and I he comple-
$ion of A. Then A is modular annihila$or if and only if I is modular annihila-
tor.

Proof. If A is modular annihilator then I is modular annihilator since
is dual. The converse follows from [12; p. 40, Theorem 3.7]. However we
can give a direct proof of this. In fact, since A has the k-property, it is easy
to see that if M is a maximal modular left ideal of A then ) cl(M) is a
modular left ideal of I. Hence r() (0). Since A is a dense two-sided
ideal of I and I is semi-simple A r() (0). This shows that r(M)
(0) and applying the continuity of the involution completes the proof.

Combining Theorems 5.2, 5.4, and 6.6 we obtain the following"

THEORE 6.7. Le A be an A*-algebra with the l-propery and let I be the
compleion of A. Then the following statements are equivalent:

(i) A is a modular annihilator algebra.
(ii) A is a w.s.c.c, algebra.
(iii) t is a modular annihilator algebra.
(iv) I is a w.s.c.c, algebra.
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