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1. Introduction

A Banach algebra A is called weakly semi-completely continuous (w.s.c.c.),
if, for every element a ¢ A, the mapping 7, : £ — aza (z € A) is a weakly
completely continuous operator on A4, i.e., if T, maps bounded sets into sets
which are relatively compact in the weak topology o(4, 47), where A’ is the
conjugate space of A. Ogasawara and Yoshinaga [8] have studied weakly
completely continuous (w.c.c.) Banach™-algebras and Alexander [1] developed
a theory of compact Banach algebras (which we call semi-completely con-
tinuous or briefly s.c.c. algebras). It is thus natural to have a look at w.s.c.c.
Banach algebras and to see how they are related to s.c.c. and w.c.c. Banach
algebras. We confine our study of w.s.c.c. Banach algebras to A*-algebras
with the k-property, i.e. A*-algebras A for which there exists a constant & such
that |zy || < k|| x| |y | forallz, y e A.

In §4 we show that a w.s.c.c. A*-algebra with the k-property and an identity
element is finite dimensional. Using this fact we prove that an A*-algebra
with the k-property which contains non-zero w.s.c.c. elements contains mini-
mal idempotents. In §5 we study the relationship between s.c.c. and w.s.c.c.
A*-algebras with the k-property. A B*-algebra is s.c.c. if and only if it is
w.s.c.e. If A is an A*algebra with the k-property and ¥ is its completion
than 4 is w.s.c.c. if and only if % is w.s.c.c. If 4 is a commutative 4*-algebra
with the k-property then A is s.c.c. if and only if it is w.s.c.c.

Section 6 is devoted to the study of modular annihilator Banach algebras
from the point of view of s.c.c. and w.s.c.c. Banach algebras. For example we
show that if A is a semi-simple Banach algebra, then A4 is modular annihilator
if and only if for every maximal modular left (right) ideal M there exists a
right (left) identity w for A modulo M such that u is an s.c.c. element of 4
(Theorem 6.2). Thus, in particular, every s.c.c. Banach algebra is modular
annihilator. If A is an A™-algebra with the k-property then A is modular
annihilator if and only if 4 is w.s.c.c. (Theorem 6.7). We also show that an
A*.algebra A is modular annihilator if and only if every maximal commutative
*-gubalgebra of A is modular annihilator.

2. Preliminaries

All algebras and vector spaces under consideration are over the complex
field C. A Banach algebra with an involution z — z* is called a Banach
x-algebra. A Banach x-algebra 4 is a B*-algebra if the norm and the involu-
tion satisfy the condition || #*2 || = ||z ||, z ¢ A. If A is a Banach *-algebra
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on which there is defined a second norm | - | which satisfies, in addition to
the multiplicative condition | zy | = | z|| ¥ |, the B*-algebra condition |z *z | =
| z >, then Ais called an A *-algebra. The norm | - | is called an auxiliary
norm on 4, and | - | < B - || for some constant 8 > 0 [9; p. 187]. An ele-
ment  of an A*-algebra is called normal if z*z = zz*.

Let A be an A*-algebra with the k-property. Than A has a unique auxiliary
norm topology [8; p. 18, Theorem 3] and hence can be embedded as a dense
subalgebra in a unique (up to *-isomorphism) B*-algebra 9. We refer to the
algebra U as the completion of A. It follows that 4 is a dense two-sided ideal
of A [8; p. 17, Lemma 3] and || zy || < k|2 | |y|forallzed, ye¥. Con-
versely, if A is an A*-algebra which is a dense two-sided ideal of the B*-algebra
A then A has the k-property [8; p. 18, Lemma 4]. Thus the k-property charac-
terizes those A*-algebras which are dense two-sided ideals of B*-algebras.

Let A be a Banach algebra. An element a ¢ A is called completely con-
tinuous (c.c.) if the mappings £ — ax and & — za are completely continuous
operators on A. An element a e A is called semi-completely continuous
(s.c.c.) if the mapping ¢ — axa is a completely continuous operator on A.
(In [1] such an element is called compact.) It is clear that if a is c.c. then it
is s.c.c., but the converse is not true as is shown in [1]. An element a € 4 is
called weakly completely continuous (w.c.c.) if the mappings # — ax and
x — xa are weakly completely continuous operatorson A. An element a ¢ A
is called weakly semi-completely continuous (w.s.c.c.) if the mapping z — aza
is a weakly completely continuous operator on A. If every element of a
Banach algebra A is c.c. (resp. s.c.c., w.c.c. or w.s.c.c.) we say that 4 is a c.c.
(resp. s.c.c., w.c.C. or w.s.c.c.) algebra.

Since every norm-closed subspace of a Banach space is weakly closed [7;
p. 422, Theorem 13], it follows that every closed left (right) ideal of a Banach
algebra is weakly closed.

For any subset S of an algebra A, let 1,(S) and r4(S) be respectively the
left and right annihilators of S in A. An algebra A is modular annihilator if
avery maximal modular left (right) ideal of A has a non-zero right (left)
annihilator. A Banach algebra A4 is an annihilator algebra if for every closed
left ideal J and for every closed right ideal R we have r4(J) = (0) if and only
if J = A and I,(R) = (0) if and only if R = A. It is a dual
algebra if 1,(r4(J)) = J and r4(l4(R) = R for every closed left ideal J and
for every closed right ideal R of 4.

If S is a subset of a Banach algebra A, ¢l,(S) will denote the closure of S
in A. TFor all other concepts used in this paper see [9].

3. Some lemmas

LemMma 3.1. Let A be a w.s.c.c. Banach algebra. Then every closed subalgebra
B of A is w.s.c.e. If I is a closed two-sided ideal of A, then A/I is a w.s.c.c.
Banach algebra.
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Proof. Let x ¢ B and let {x,} be a bounded sequence in B. Since z is a
w.s.c.c. element of A, there exists a subsequence {2,,} of {x,} and an element
y € A such that {zz,, 2} converges weakly to y. But B is weakly closed and
every continuous linear functional on B has a continuous linear extension to 4.
Hence y ¢ B, and so B is w.s.c.c.

Now let I be a closed two-sided ideal of 4, [x] an element of A/I and {[z.}}
a bounded sequencein A/I,say || [z.] || L k(n =1,2, ---). We can clearly
choose a representative element 2, of [z.] such that || z. || < 2k (n = 1,2, -+ ).
Let z be any representative of [z]. Since z is w.s.c.c., there exists a sub-
sequence {z,,} of {z,} such that {xx., 2} converges weakly to an element y in 4.
Since the conjugate space of A/I is isometrically isomorphic to

I’ = {fed' :f(x) =0 forall zel},
{[x][n,][x]} converges weakly to [y]in A/I. Hence 4/ is w.s.c.c.

Levma 3.2. Let A be a semi-simple Banach algebra. Then every element of
the socle of A 7s w.s.c.c. In particular, if A has dense socle, then A is a w.s.c.c.
algebra.

Proof. Since every s.c.c. element of 4 is w.s.c.c., it follows from [1; p. 14,
Theorem 7.2] that the socle S; of A consists of w.s.c.c. elements.
If cl4(84) = A, then 4 is s.c.c. by [1; p. 15, Theorem 7.3] and so w.s.c.c.

4, Existence of minimal idempotents

Lemma 4.1. Let A be an A*-algebra with the k-property. Then every closed
left (right) ideal of A which contains a non-zero w.s.c.c. element contains a w.s.c.c.
idempotent.

Proof. Let J be a closed left ideal of A which contains a non-zero w.s.c.c.
element. Then J clearly contains a self-adjoint w.s.c.c. element, say a, such
that |a| = 1. Then

la® | < k||| | <k (n=12"-).

Let S = {d*, a®, @', - - -} and let G(a) be the set of all weak adherent points
of S, i.e., the set of points z such that every weak neighborhood of each 2
contains some a” for arbitrarily large n. Since S is contained in the set
{axza iz eA and ||z || < k} whose weak closure is compact, by [7; p. 430,
Theorem 1], G(a) is not empty and every subsequence of S contains a sub-
sequence which converges weakly to an element of G(a). Moreover, it is
easy to see that, for every z ¢ G(a), there is a subsequence of S which converges
weakly to z. (See the proof of [10, Lemma 3.1].) We show now that G(a)
contains non-zero elements. Let B be the closed *-subalgebra of A generated
by a and let B be the completion of B in the norm | - |. It is clear that B
is a commutative B*-algebra and that B is dense in 8. Since |a| = 1, it is
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easy to see that there exists a multiplicative linear functional f on B such that
|f(a) | = 1. Letf = f| B, the restriction of f to B. Then f’ is a multiplica-
tive linear functional on B and hence continuous. Let g ¢ A’ be an extension
off'toallof Awith | g| = | 7 |. Then|g(a™) | = 1foralln=0,1,2,---.
Thus G(a) contains non-zero elements. By the argument given in the proof
of [5; p. 180, Theorem 4], G(a) is a group. Let « be the identity of G(a).
Then u # 0, v’ = u, and since a* = a, u* = w. Since J is weakly closed,
ued.

TuEOREM 4.2 Let A be an A*-algebra with the k-property and an identity
element. If A is w.s.c.c. then A 1s finite dimensional.

Proof. Let B be a maximal commutative »-subalgebra of A. By Lemma
3.2, B is w.s.c.c. Let M be a maximal closed ideal of B and let {u.} be a
maximal orthogonal family of non-zero self-adjoint idempotents in M; {u.}
is not empty by Lemma 4.1. Let @ be the set of all elements u ¢ B which are
finite sums of elements from {u.}. Let e denote the identity of A4; clearly
¢ ¢ B. Since eu, = u, for all o, we have

s + <o At | STl el |ser + -+ + Uer | S E ]l

Thus Q is bounded and since ¢ is w.s.c.c., @ has a weak adherent point, saygq.
It is easy to see that g is the only weak adherent pointof @, ¢ # 0, ¢° = ¢ and
g e M. Moreover, uq ¢ = u, for all @ sothatu.(e — ¢) = 0forall a. Since
e¢M, e — qis a non-zero self-adjoint idempotent which is orthogonal to all
Uq . We claim that M n B(e — ¢q) = (0). Infact,let I = M n B(e — q)
and suppose that I 5 (0). Then, by Lemma 4.1, I contains a non-zero self-
adjoint idempotent, say ». Since v = v(e — ¢q), we have vu. = 0 for all a.
As v ¢ M, this shows that {u,} is not a maximal orthogonal family of self-
adjoint idempotents in M ; a contradiction. Hence I = (0) and consequently
¢ — ¢is a minimal idempotent of B. Since B(¢ — ¢) + Bqg = Band Bq C M,
we have

M = Bq = {x — xz(e — q) : x eB}.

Thus every maximal closed ideal M of B is an annihilator ideal and conse-
quently the carrier space @ of B is discrete. Since B has an identity element,
© is compact and therefore a finite set. Hence B is finite dimensional. Let
{e1, ex, - -+, es} be the set of all self-adjoint minimal idempotents in B. It is
easy to see that {e1, e, - - -, €,} is a maximal orthogonal family of self-adjoint
minimal idempotents in 4 ande =e¢;+ --- +e,. Henced = Dot Ae;
and, since e; Ae; is one dimensional for all 4,7 = 1,2, - -+ , n [1; p. 13, Lemma
7.1], it follows that A is finite dimensional.

COROLLARY 4.3. A w.s.c.c. B*-algebra with identity is finite dimensional.

COROLLARY 4.4. Let A be an A*-algebra with the k-property. Then every
closed left (right) ideal of A which contains a non-zero w.s.c.c. element contains a
minimal idempotent (which is w.s.c.c.).
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Proof. Let J be a closed left ideal of A which contains a non-zero w.s.c.c.
element. Then, by Lemma 4.1, J contains a w.s.c.c. self-adjoint idempotent
u # 0. Since B = udu is a w.s.c.c. A*-algebra with k-property and an iden-
tity element u, by Theorem 4.2, B contains a self-adjoint minimal idempotent,
say e. Since ede = euAue = eBe, e is also a minimal idempotent of
A. Clearly e e J. A similar proof holds for a closed right ideal of A which
contains a non-zero w.s.c.c. element.

5. ws.c.c. A*-algebras

LemMa 5.1.  Let A be an A*-algebra with the k-property and let M be a mazs-
mal modular left ideal of A. Then ra(M) # (0) if and only if there exists a
right identity u for A modulo M which is a normal w.s.c.c. element of A.

Proof. Suppose that u is a normal w.s.c.c. right identity modulo M. Let
B be a maximal commutative *-subalgebra of A containing 4. Since B has
the k-property and  is a w.s.c.c. element of B, by Corollary 4.4, B contains
self-adjoint minimal idempotents. We claim that there exists a self-adjoint
minimal idempotent in B which does not belong to M. Suppose that this
is not true. Then B n M is a non-zero modular ideal of B. Let M’ be a
maximal modular ideal of B containing M n B. Then M’ contains all the
self-adjoint minimal idempotents of B. Let {e,} be a maximal orthogonal
family of self-adjoint minimal idempotents in M’, and let @ be the set of all
elements of B which are finite sums of elements from {e,}. Then uQu is a
bounded net and, since u is w.s.c.c., u’Qu’ converges weakly to a unique ele-
ment ¢/, say. Let v = u*. It is clear that v is an identity modulo M’ and
that » — o' £ 0 since v ¢ M’ and v’ ¢ M’. Moreover, it is easy to see that
(v — v)e. = O for all a. Let J be the closure of B(v — ¢') in B. Then
Jeo = (0) for all . Hence if J n M’ 5 (0) then there would exist a self-
adjoint minimal idempotent in J n M’ which would be orthogonal to all e,
contradicting the maximality of the family {e.} in M’. Thus J n M’ = (0)
and, since J # (0), this shows that there exists a self-adjoint minimal idempo-
tent e in B which does not belong to M’ and consequently does not belong to M.
Since ¢ is also a minimal idempotent of A, we have M n de = (0) and, since
M is a maximal left ideal of A, we see that M + Ae = A. It now follows that
M={x—2xe:zxeA} andrs(M) = eA. (Seethe proof of [12; p. 38, Lemma
3.3].)

Now suppose that M is a maximal modular left ideal for which r,(M) # (0),
and let R = r,(M). Then R* n M = (0); for if z ¢ R* n M, then z* ¢ R
and zz* = 0 which implies that = 0. Since M is maximal, we have M + R*
= A. Thus R* is a minimal left ideal and therefore of the form Ae,
where e is a self-adjoint minimal idempotent. Thus B = ed and
M = {x — xe : x ¢ A}, where ¢ is a normal w.s.c.c. element of 4.

TuEOREM 5.2. Let A be a B*-algebra. Then A is w.s.c.c. if and only if A
is dual.

Proof. Suppose A is w.s.c.c. Let M be a maximal modular left ideal of 4
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and u a right identity for A modulo M. Since u + w*(1 — ) is also a right
identity for A modulo M [9; p. 42] which is self-adjoint and w.s.c.c., by Lemma,
5.1, ra(M) = (0). Applying the continuity of the involution, we see that A
is modular annihilator and therefore, by [12; p. 42, Theorem 4.1}, 4 is dual.
(Duality of A also follows from [6; p. 48, Théoréme (2.9.5)] since every maxi-
mal modular left (right) ideal of A is an annihilator ideal.) Conversely, if
A is dual then it has dense socle and therefore is w.s.c.c. by Lemma, 3.2.

COROLLARY 5.3. A B*-algebra A is s.c.c. if and only if it is w.s.c.c.

Proof. Clearly if A is s.c.c. then it is w.s.c.c. The converse follows from
Theorem 5.2 and the fact that a dual B*-algebra is s.c.c.

Let A be an A*-algebra with the k-property and % the completion of A; A
is a dense two-sided ideal of . Foreach zed and feA’,let zofand feox
be the linear functionals on ¥ defined by (z o f)y = f(yz) and (fo z)y = f(zy)
forally e A. Since | zy|| < k| z]| |y|forallz e A and y ¢ U, they are con-
tinuous linear functionals on . Similarly, for z ¢ A and F ¢ A’, we define
zo F and F o x, which are clearly continuous linear functionals on . Their
restrictions (x o F), and (Fox), to A are also continuous linear functionals
on A. In fact, if y € 4, then

| (Fea)ayl=|F(ay) | <|Fllay| <BIF| oyl <kBIF||2|]yll

where | F | denotes the bound of F in %. Similarly we can show that (z o F) 4
is continuous on A with respect to the norm || - ||.

TuEOREM 5.4. Let A be an A*-algebra with the k-property and ¥ the comple-
tion of A. Then A is w.s.c.c. if and only if U s w.s.c.c.

Proof. Suppose that A is w.s.c.c. Let {x,} be a bounded sequence in ¥
andlet z e A. Since || 2z, || < k|| 2 || | 2 |, {xz4} is & bounded sequence in 4
and, since 4 is w.s.c.c., there exists a subsequence {n,} of {x.} and an element
z ¢ A such that, for all fe A/,

F(@n, 2) — f(2).
Since (zo F), e A’, for all F ¢ A’, we have
F(2', @) = (20 F) a(2’@n, ) = (20 F)4(2) = F(2z).

Thus #* is a w.s.c.c. element of 9. Now every self-adjoint element of ¥ is the
limit of a sequence of self-adjoint elements of A. Since every positive element
a of A is of the form a = b*, where b is a self-adjoint element of 9, it follows
that every positive element of ¥ is w.s.c.c. In fact, let @ be a posi-
tive element of A, {a.} a sequence of positive elements in A such that
|an—a|—0,T, : z—azxaand T,, : £ — a, 2a, (x e A). Then the operator
bound
[ To = To,| < la—an|[lan| + |a]];

so that T., — T, . Since each a, is a w.s.c.c. element of 4, it follows from
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[7; p. 483, Corollary 4] that a is w.s.c.c. Now let It be a maximal modular
left ideal of A and let u be a right identity for % modulo . We may assume
that v* = u; otherwise we take u + 4*(1 — w) for a right identity modulo 9.
Then «’ is positive and a right identity modulo M. Since v’ is w.s.c.c., by
Lemma 5.1, r4(M) 5 (0). Thus ¥ is modular annihilator and hence dual.
Therefore, by Theorem 5.2, ¥ is w.s.c.c.

Conversely, suppose that A is w.s.c.c. By Theorem 5.2, % is dual and hence
w.c.c. [8; 21 Theorem 6]. Let x ¢ A and let {x,} be a bounded sequence in A.
Then {z,} is also a bounded sequence in U and hence, since A is w.c.c., there
exists a subsequence {z.,} of {z.} and an element z ¢ % such that F(z,., z) —
F(z) for all F e9'. Now, forall fe A’, fox e U and so

f(@zn, ©) = (fo2)(@n, ) = (for)(2) = flaz),

for all feA’. Since e A, zze¢ A so that {zz,, x} converges weakly to an
element in A. Thus 4 is w.s.c.c.

THEOREM 5.5. Let A be a w.s.c.c. A*-algebra with the k-property. If, for
every x € A, x belongs to the closure of Ax, then A is dual.

Proof. Let U be the completion of A. Then, by Theorems 5.2 and 5.4, A
is dual. Since 4 is a dense two-sided ideal of ¥, [8; p. 28, Lemma 8] shows
that A4 is dual.

TuroreM 5.6. Let A be a commutative A*-algebra with the k-property. Then
A 18 s.c.c. if and only if A is w.s.c.c.

Proof. If A is s.c.c. then it is clearly w.s.c.c. So suppose now that 4 is
w.s.c.c. Then the completion ¥ of A is a dual commutative B*-algebra and
hence c.c. Let {x.} be a bounded sequence in A and let z ¢ A. Since {x.} is
bounded in the norm | - | and since ¥ is c.c., there exists a subsequence {n,}
of {x,} such that {xz,} converges to an element y € % in the norm | - |. But
yx ¢ A and so, by the k-property, {zz,x} converges to yz in the norm || - |.
Hence A is s.c.c.

6. Modular annihilator Banach algebras

LemMA 6.1. Let A be a semi-simple Banach algebra. Then every idempotent
which is an s.c.c. element of A belongs to the socle of A.

Proof. Let e be an idempotent which is s.c.c. Then B = ede is a finite-
dimensional Banach algebra with identity e. Since A is semi-simple, B is
also semi-simple (see [1; p. 6, Lemma 4.5]). Hence e = e; 4+ -+ 4+ e,,
where e; are minimal idempotents of B (¢ = 1,2, ---, n). Since e¢; de; =
e;edee; = e; Be; = Ce,;, each e; also a minimal idempotent of A. Hence ¢
belongs to the socle of 4.

THEOREM 6.2. Let A be a semi-simple Banach algebra. Then A is a modular
annihilator algebra if and only if, for every maximal modular left (right) ideal



660 B. J. TOMIUK AND PAK-KEN WONG

M of A, there is a right (left) identity for A modulo M which is an s.c.c. element
of A.

Proof. 1If A is a modular annihilator algebra, then every maximal modular
left ideal M of A is of the form M = {z — ze : z € A}, where ¢ is a minimal
idempotent. By [1; p. 14, Theorem 7.4], eis s.c.c. A similar statement holds
for maximal modular right ideals of A. To prove the converse, let M be a
maximal modular left ideal and let u be a right identity modulo M which is
s.c.c. Let B be the closed subalgebra of A generated by 4. That is, B is the
closure of the algebra of all polynomials of the form a;y u + azu® + -+ - an u”,
where n is an arbitrary positive integer. B is a non-radical s.c.c. Banach
algebra. Now M n B is a modular ideal of B and so can be extended to a
maximal modular ideal M’ of B with u being an identity for B modulo M’.
Since the carrier space of B is discrete [1; p. 10, Theorem 6.6], there exists an
idempotent e ¢ B such that e ¢ M’ [9; p. 168, Theorem (3.6.3)], and hence
e¢M. But e is an s.c.c. element of A. Therefore, by Lemma 6.1, there
exists a minimal idempotent ¢; in A such that e; ¢ M. The argument in the
proof of Lemma 5.1 now shows that r4(M) 5 (0). A similar proof holds for
a maximal modular right ideal of A. Thus 4 is modular annihilator.

TuEOREM 6.3. Let A be an A*-algebra. Then A is a modular annihilator
algebra if and only if every maximal communtative x-subalgebra of A is a modular
annshilator algebra.

Proof. If A is modular annihilator then, by [3; p. 517, Corollary], every
maximal commutative *-subalgebra B of A is modular annihilator. Another
proof of this fact can be given as follows: Let U be the completion of 4 in an
auxiliary norm. (In [11] it is shown that ¥ is unique up to *-isomorphism.)
Since A has dense socle [2; p. 287, Lemma 2.6], A is dual. Let B be the closure
of Bin ¥; B is a dual »-subalgebra of . For any z € B, let Sp.(x), Sps(z)
and Spu(z) denote the spectrum of z in 4, B and ¥ respectively. Since B is
maximal in A, Spz(z) = Spa(x) and hence, since | - | is a @-norm on A4, it is
also a @-norm on B. (See [2; p. 285, Lemma 1.2].) Thus if M is a maximal
modular ideal of B then M is closed with respect to | - | in B. Let u be an
identity for B modulo M. Than u can be written in the form u = 2 a Ay €a,
where {e.} is the maximal orthogonal family of self-adjoint minimal idempo-
tents in B; D« \a €a converges to % in the norm | - |.  (See the proof of [8;
p- 21, Theorem 6].) But A is a modular annihilator #-subalgebra of U and
Spu(u) € Spa(u). Hence, by [2; p. 287, Lemma 2.5], every e, ¢ A and so
every e, ¢ A n 8 = B;moreover every e, is a minimal idempotent of A. Since
u ¢ M and M is closed in | - |, it follows that there exists at least one e, ¢ M.
Hence Iz(M) = rs(M) 5 (0) and consequently B is modular annihilator.

To prove the converse, let M be a maximal modular left ideal of A and »
a right identity modulo M. We may assume that «* = u; otherwise we take
u + u*(1 — w). Let B be a maximal commutative *-subalgebra of A con-
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taining . Since M n B is a modular ideal of B and B is a modular annihilator
algebra, there exists a minimal idempotent ¢ in B such that e ¢ M n B. But
this means that e is a minimal idempotent of A and e ¢ M. Hence r,(M) #
(0). The continuity of the involution now completes the proof.

COROLLARY 6.4. Let A be a modular annihilalor A*-algebra. Then every
normal element € A can be wrilten in the form & = 4 Aa €a , Where (€.} s an
orthogonal family of self-adjoint minimal idempotents in A and {\.} is a family
of scalars. The sum o \a o converges to & in the auxiliary norm of A.

Proof. Let B be a maximal commutative *-subalgebra of A containing x.
By the first paragraph of the proof of Theorem 6.3, B contains such a family
{ea}.

COROLLARY 6.5. Let A be an A*-algebra. Then A is modular annihilator
if and only if A has the spectral expansion property.

Proof. For the definition of the spectral expansion property see [2; p. 288].
If A is modular annihilator then, by Corollary 6.4, A has the spectral expansion
property. Conversely suppose 4 has the spectral expansion property. Then
| - |is a @-norm on A [2; p. 284] so that if M is a maximal modular left ideal
of A then M is closed with respect to | - |. Let u be a right identity modulo
M; we may clearly assume that 4* = u. Thenu = Y, \aea, Where {e,} is
an orthogonal family of self-adjoint idempotents in the socle S, of A. Since
u ¢ M, there is at least one e, ¢ M. As every e, ¢ S, this means that there
exists a self-adjoint minimal idempotent e ¢ M. It follows now that
r4(M) $# (0) and that A is modular annihilator.

THEOREM 6.6. Let A be an A*-algebra with the k-property and U the comple-
tion of A. Then A s modular annihilator if and only if U is modular annihila-
tor.

Proof. If A is modular annihilator then ¥ is modular annihilator since oA
is dual. The converse follows from [12; p. 40, Theorem 3.7]. However we
can give a direct proof of this. In fact, since A has the k-property, it is easy
to see that if M is a maximal modular left ideal of A then I = cly(M) is a
modular left ideal of %. Hence rq(IM) £ (0). Since A4 is a dense two-sided
ideal of % and U is semi-simple 4 nr4 (M) # (0). This shows that r (M) #
(0) and applying the continuity of the involution completes the proof.

Combining Theorems 5.2, 5.4, and 6.6 we obtain the following:

TueoreM 6.7. Let A be an A*-algebra with the k-property and let % be the
completion of A. Then the following statements are equivalent:
(i) A is a modular annihilator algebra.
(i) A s a w.s.c.c. algebra.
(iii) A s @ modular annihilalor algebra.
(iv) ¥ s a w.s.c.c. algebra.
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