THE VOLUME OF A TUBE IN COMPLEX PROJECTIVE SPACE

BY
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1. Introduction

The relationship between the volume of a tube around a submanifold and
integral invariants of the submanifold has interested geometers for years.
Steiner considered the problem as long ago as 1840 [10].

Many results on the subject appear in the 1940’s but Hermann Weyl’s
work in 1939 [11] yields the definitive answer for tubes around submanifolds
in the model spaces of Riemannian geometry (euclidean, spherical, or hyper-
bolic space). In fact, Weyl’s results are so powerful that the first general
Gauss-Bonnet theorem, proved by Allendoerfer [1] and Allendoerfer-Weil
[2], used Weyl’s formula in a fundamental manner. Of course, all of this took
place before Chern provided us with his intrinsic proof of the general Gauss-
Bonnet theorem [3].

In this paper we compute the volume of a tube around a compact sub-
domain, with smooth boundary, of a holomorphic submanifold of complex
projective space. Essentially, we identify certain extrinsically defined
functions as intrinsic scalar densities. The computation appears in Sec-
tion 4.

A very crude estimate of the sum of the Betti numbers of the path space
of a submanifold of a pinched manifold appears in work of Flaherty and
Grossman [6]. In fact, in the present paper, we prove that the sum of the
first A Betti numbers of the path space of a compact holomorphic submanifold
of complex projective space is dominated by a linear polynomial in A,

Sections 2 and 3 serve as background for the main theorems, found in
Sections 4 and 5. Section 2 recalls basic ideas and fixes notation for complex
projective space necessary to the calculations in Section 4 while Section 3
reviews the local geometry of holomorphic submanifolds of Kaehler mani-
folds, on which the remainder of the paper rests.

We plan in the future to investigate the relation of this formula to equidis-
tribution theory of holomorphic curves [13].

2. Complex projective space

We devote this section to the geometry of complex projective space, the
ambient space for our submanifolds.

Let C™** be the space of (n 4+ 1)-tuples of complex numbers and ¢ - - - e,
a frame field on C™*; then

des = D pesws (0<B<n) and dus = D cws Aws (0LC <n).
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Let P,.(C) be complex projective space and
" — (0) — P.(C)

the canonical fibering. A frame ¢ - - - ¢, in C*™" is said to be adapted to
P,(C) if ¢ is tangent to the fiber. Thus

dr = 2 ewb + D diae (1 <i<n).

If we suppose e « - - e, unitary then the hermitian structure on P,(C) is
given by

s =22 whay (1<j<n).
In homogeneous coordinates
ds" = (2/(2,2)") (2, 2) (de, d2) — (2, de)(dz, 2)).
The Kaehlerian connection on P,(C) is given by
7= — 8wy (1L4,5< ).
and the curvature form (%) is given by
Q=06 A6 +58;2,6 A0
All of the details of these calculations may be found in [8].

3. Holomorphic submanifolds of Kaehler manifolds

Let Y, be a Kaehler manifold, for a unitary coframe field 6" - - - 6" locally
defined on Y the Kaehler form ¢ is given by

(3.1) o=+/—-12,0 A8 (1<j<n)

and the hermitian volume is given by ¢"/n! .
Let 6' - - - 6" be a local unitary coframe field and (#;) the connection form
matrix of the Kaehlerian connection then

(3.2) o' + D im A =0 (1<j<n).

Let X,, be a holomorphic submanifold of Y, then we may choose the 6’s
so that ¢' --- 6" is a unitary coframe field on X, moreover (m5), 1 < a,
B < m, is the connection form matrix of the Kaehlerian connection on X.

Since " = Oon X forr = m + 1, -- -, n, it follows from (3.2) that

DT A =0 1< a<m).
As a result
(3.3) =D 580 (1<B<m) with Shs= Sha.

To complete the discussion of the local gometry of holomorphic submani-
folds, let us recall that if (Q5) is the curvature form matrix of (w§) and (5)
the curvature form of (;) then
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(34) O = =D s 2 Shs S5, 6" A 6 + QF

4. Volume of a tube in P,(C)

First we will compute the volume element of a tube around a holomorphic
submanifold of C". By a tube of radius ¢ around a submanifold we mean the
image of the normal o-disc bundle under the exponential map. The calcula-
tion is simpler than the case of P,(C) but necessary for the final formula.
The added assumption of holomorphicity here is artificial as may be seen in
[11].

Let X, — C" be a holomorphic submanifold, represented over a small
neighborhood V by a holomorphic function z. Further let ¢, --- e, be an
adapted (1, O)-unitary frame field; thus e :-- e, is tangent to X and
ém1 ** € is normal to X. If ¢' --- ¢" is the dual coframe field to €; - - - e
then since z is holomorphic and hence type-preserving

de =2 0eal®+ D abab® (1<a<m).
A typical normal vector is of the form
(41) w=z+ d,at/vV2+ 2.65/v2 (m+1<r<a),

We observe the following convention on indices from hereon 1 < @, 8, - -+ <
m,m—+1<rs - <n. Differentiating (4.1),

dw = dz + (1/'\/2)(27' dey tr + Zr e dt, + Zr de, Zr + Zr ér dt—r)
= Za €a 0" -+ Za € 6* + (1/'\/2)(21' (Za €a w: + Zs €s w:)tr
+Zrerdtr+"‘)-

Since the normal bundle is trivial over U we may choose a field of frames so
that w, and &, vanish on U. As a result

dw = Daea(0" + 2 w7 t/v/2) + Lalal0® + 2,77 5//2)
+ X edth/v2 + 2.6 dl/A/2.
If we restrict the Kaehler form ¢ to the tube
o= V=1 2a (04 2wl b/v/2) A (0% + 2, 77 B/v2) + § 2rdty A di
which by (3.3) yields
0= V=12 a6 A0+ 3§ 2. (X8 (2F 8p)d” A
+32.dl, A dE
= \/—I(Za,ﬁ (6as — % Z'y Zr & Szv Zr t- S%)0% A 6°
+ 3>, dt A dL).

Thus, the volume element for the tube is
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(V=1)"det (s — § 22y (200 tr Say) (22r & Sp)
“Aa (6% A 6%) A(dlte A dE)).

TaeEOREM. If X 48 a holomorphic submanifold of C*, D a compact sub-
domain of X with smooth boundary and v,(D), the tube of radius o around D then

vol »,(D) = f AV =16 A B* det <6ap -
D «a

ti ot
> (z t,SZy)<Z z,s;p)) NV=1dt & d

where vol is the hermitian measure on C".

To compute the volume element for a tube around a holohorphic submani-
fold X of P,(C), observe that a typical point normal to X will be of the form
oxp, (t, ) where (¢, {) is a complex normal vector. Since the canonical
fibering C"** — (0) — P,(C) is an hermitian submersion, the following dia-
gram commutes

™,

T, —*, T.P,.(C)

exp exp.

Cc" — (0) —— P.(C)
where 7(p) = 2.
Let ¢ - - - € be a unitary frame field on C*** adapted to PaC so that m.e; ,
.-+, meem are tangent to X and mey = 2 where 2 is a local submanifold map of
X. If follows from the diagram above that =(w) = exp.(¢, {) where

w=etot+ et/ V2t Db b/V2
Since the frame is adapted, the derivative of w is
dw = eodto + todeo + d( 2o & tr/v/2 + 22, & 5//2)
eo(dto + to o) + to(Bo@s + Da a8 + Dala )
+ d( X eat/vV2+ 2 ah/v2).

As in the case of a tube in C" we may assume that =, and #; vanish locally.
It follows then that

dw = e(dto + tows) + to(80 @0 + Daa b+ X ababd”)
+ Dara® te/ V2 + Larla® b/ V2
+ Zredi/vV2+ 28 di/vV2.
The Kaehler form ¢ for P,(C) in the Fubini-Study metric of Section 2 is
(v =1/ (w, w)*) ((w, w) (dw, dw) — (dw, w) A (w, dw))
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where (4 ® o, v ® 8) = (4, v)a A B is the pairing used for vector-valued
forms with u, v vectors and «, 8 forms.

To compute ¢ on the tube, we normalize the ¢’s (homogeneous coordinates)
and substitute:

(V=1)00(20a (6% + 2rmr te/lav/2) A (8% + D2 v G/t v/2)
+ (1/28) (2, dte A A — (2or b dte)(Dr te dBe))).

Hence the volume element for the tube is
o"/nl = (v — 1)"" det (8as — ¥ 2oy (200t Ser) (22 & S39))
/\aoa A 0“ /\r%dtr A d‘t’r.

Tueorem. If X is a holomorphic submanifold of P*(C), D s a compact
subdomain of X with smooth boundary then the volume of the tube v,(D) s

[ () s v-vr a7

: ft (e det (aap - %(;‘ <Z trS%)(Z z,s;,))) AHV/=1) dty A ..

Proof. Consider the substitution 7, = ¢/t in the fiber coordinates and use
the fact that
f(l4+1) =1
where ff = Y ,t.7,. Note that f, is the distance from 2 to w.

Remarks. 1. We have assumed here that the (holomorphic) curvature
of P,(C)is 1.
2. An analogous theorem holds in H,(C), the hyperbolic model space.

The remainder of this section will deal with the evaluation of the volume
of the tubular neighborhood.

TaeorEM. If X is a holomorphic submanifold of C* and D is a compact
subdomain of X with smooth boundary then the volume of the tube v,(D) around
D is given by

Ch 0'2(k+1)
volbeDl =5 2 K Y

where k = n — m s the codimension of X, c ©s the volume of the unil sphere in
C* and K, are constants depending only on the curvature of X.

Proof. For the sake of simplicity the indices r, s, --- will vary in the
codimension range thatis,1 < r,s, --- < k. Let

‘P(tri—) = ¢(t1’ te ’tk){ly v 7{’6)
and denote the average of ¢(¢, ) on the unit sphere ) & & = 1 by (o(4, 1)).
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Since the average value of a monomial
... il L g

plus its conjugate vanishes on S** unless £ = & for all r, one need only com-
pute the average of monomials of the form

AR v LR i
Let ¢, = pt, where Z ¢ & = 1, further let = g
|[¢]| =&+ -+ & and & =& - &!

the usual multiindex notation for £ = (&, ++-, &), and consider
(43) Lo 1ar o (a Adv/=1) do a b

which using the polar coordinates introduced above and Fubini’s theorem
may be written

/ PRt g f 58
0 82k—1

where dv; is the volume element of $*~*in C*, One may also apply Fubini’s
theorem directly to (4.3) yielding

IT [ i) }((v/=1) dts A di..
1<r<k

Using polar coordinates in the (¢ , Z.) plane this integral is equal to

11 f e N dp A dy
r

which in turn, from the definition of the gamma function, may be written as
I1. (1/2)(2m)T (& + 1).
In summary we have
fw e—p2p215|+2k-1 dp f g‘f‘ dv, = 7 H £l = 7rk£! .
0 S2k—1 1<r<k
Solving for the integral over $** one finds that

. kgl %3
tt gy = —— "¢ = = .
5 ./;-zk—l ¢ du 2'4 e..,,zpzlsl-l-zk—x dp (¢ | + k)

Ifty =0= -+ = & then ¢, = 7°/3T(k). For the average value of #* on
8% we obtain

f £ du gl r(k) _ !

<ﬁ£>=7—— TT(ET+R A kD GE[E]-D
Uk
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Now
det (8as + § 200 (= 20 b Sar) (s & S9))
may be expanded in the form 1 + 7, + -+ 4+ 73, Where
My(ty 1) = Dppprmay A 1T
Define the scalar invariants S, on X by
Sy =k(k+ 1) - (k+ v — 1)(m(t D).
It is easy to see then that

Sy = Dprpmay Eldpe .
And as a result

7 '\/—1 T CkS,,
R VR e

1 1Sy 2(y+h)
k(e + 10 (B + )

? 2(y+k)—1
fo o dp =

It wolet Ky = [ S, Au (v = 1)6* A 0 then
D

02 (y+k)

Cr
vol (Vo(D)) = 5 os%m K'Y k(k + 1) .. (]c + 'Y)

where Ky = 1

TaeorEM. If X is a holomorphic submanifold of P,(C) and D is a compact
subdomain of X with smooth boundary then the volume of the tube v,(D), o the
radius of the tube around D, is given by the formula

vol (3(D)) = ¢ 2 o<vsm Ky Jo(a)

where the K., are as in the previous theorem and
a
Jy(a) = fo (sin b)2"* (cos b)) b

where tan a = o.

Proof. We proceed as in the previous theorem, using (4.2), the formula
for the volume element of the tube

D V=1 . Sy
j;ig,ﬂ(l T AN dir A d: kk+1) - F+y—1)
(4 p27+2k—1
. LA —
fo a+om®
The notation is identical to that used in the last theorem. If we substitute
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tan b = p the integral becomes

CkS»,
BE+ 1D - B+ —

where tana = o. Let

TS ]o‘ (sin b)*** (cos b))+ dp

/om (sin b)27+2k—1 (COS b)2m—27+ldb
k(k+1) - (bk+~v—1)
Then the volume of the tube is

a2 Ky Jy(a).

The only remaining detail at this stage is to determine the nature of the
scalar functions S,. More precisely, we wish to show that the S, are local
representations of globally defined scalar invariants on X.

Now 8, is a polynominal in S4s , Shs with the properties that S, is invariant
under the unitary groups U(m), U(k) in the sense that if S4s is transformed

J"(a) =

into
Zp Urp Sgﬂ
where (U,,) € U(k) or if S4s is transformed into
Z‘Y Ua’r S;ﬂ

where (Uqy) € U(m), S, does not change. In fact, 72, is & sum of principal
minors of order v from the matrix

- Ee (Zr tr Sze) ( Zr .t-r S:ﬁ)

and as a result S, is a sum of averages of principal minors from the same
matrix. Thus by Weyl’s theory of vector invariants [12] the S, are poly-
nomial in the hermitian forms

Zr S:ze S‘Eﬁ .
<det (—% Ze (Er ty Sze)(zr Zr S:ﬁ)»

is a constant multiple of

E 6(i11:::i17)8(§i:::'{;)Sal)‘lﬂll‘l vt Sa'y)‘ayﬁ'ylby

Thus,

where B
Sa)\ﬂu = Er Srtu S;ﬁ

a(5E)
is the generalized Kronecker symbol: equal to the sign of the permutation if

Bi, - ,Byis arearrangement of a4, - -+ , a, Or equal to zero otherwise. The
summation extends over all y-tuples selected from 1, 2, - -+, m.

and
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For a submanifold of C", Sag, is easily seen to be the hermitian curvature
tensor. It follows from (3.4) that for a submanifold of P,(C)

Saprs = % (305 O + 35 0er) — Bapa

where R.g, is the hermitian curvature of the induced structure: namely if
R is the curvature operator then by (3.4),

Raﬂ)‘u = (R(e)\ ) éu)eﬁ) ) = Qg(e)\ ) éﬂ)'

The constant in question may be determined by specializing the formula to
a simple geometric figure of codimension 1 and with Sus = 845. As a result:

<det (— 2 (s s:a>)> !

T oylk(k + 1) - bkt — 1)

Sa(B T EYs(n )
oy, Moo My S“l)‘lﬁlll! S“-y’wﬂ'yl‘v

Rewriting the formula for the volume of the tube and calling the integral of
the expression inside the summation W, we obtain

i B W, 2(y-+k)
(€) vl D) =a 2 s T G F

(Po(©)) Vol (D) = & 3, & Wado(a).
Osysm N

5. Topology of compact holomorphic submanifolds of P.(C)

Let X be a compact holomorphic submanifold of P,(C) and let p be a point
not in X. Denote the space of paths from p to X with the compact-open
topology by @(p, X); denote the jth Betti number of Q(p, X) by b;{Q(p, X)].
It follows from the Morse inequalities that the number of geodesics normal to
X initially and terminating at p of index at most \ is greater than or equal to
> ibif(p, X)1,0 < j < \. A brief summary of the relevant Morse Theory
may be found in [5].

Following the same plan as in Proposition of Section 3 of [5] we now esti-
mate the location of focal points in a Kaehler manifold. The Kaehlerian
sectional curvature of a Kaehler manifold is defined at any tangent plane to be
the riemannian sectional curvature of the tangent plane divided by
1 (1 + 3 cos’ @) where « is the angle between the tangent plane and its cor-
responding holomorphic tangent plane. Denote the Kaehler curvature by K.
Note that the Kaehler curvature of P,(C) is the holomorphic curvature and
hence constant.

ProposiTiOoN. Let Y be a Kaehler manifold with Kaehler curvature re-
stricted to [h, 1], h > 0. Let X be a Kaehler submanifold of Y and suppose
that the proper values of all of the second fundamental forms of X lie in the
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wnterval [—Db, b], b > 0. Then a normal geodesic to X with length at least
(2/+/h) arc cot — 2b/+/h
has a focal point. M oreover, if the length of the geodesic is at least
A + (2/+/h) arc cot — 2b/+/h
then there are at least 2\ focal points.

Proof. Consider Jacobi fields on P,(C) with holomorphic curvature &

given by
2y . Vh Vh >
(%SlnTt + yCOS—2—‘t U(t)
where U is a parallel vector field along the geodesic with initial vector a unit
proper vector of the proper value o and where y # 0 and ay = —y’. This

Jacobi field vanishes for

t = (2/+/h) arc cot (+2a/+/h).

Using the canonical complex structure there is another Jacobi field vanishing
for

t = (2/+/h) arc cot (—2a/+/h).
Thus it follows from the Morse index theorem that for
t > (2/+/h) arc cot (2b/+/h)

there are at least two focal points, that is, the focal points occur in pairs.
The latter part of the proposition is clear.

ProrosiTiON. Let X be a compact holomorphic submanifold of P,(C) with
proper values of all second fundamental forms in the interval [—b, b]. Let
o = 2 bjep, X)), 0<j<2\ and o = Nr -+ 2arccot — 2b;
then
o < vol ve(X)/vol P,(C).
Proof. By the above proposition each normal geodesic to X of length at
least 2 arc cot — 2b has index at least 2\ + 2. Thus any geodesic index of

most 2\ has length at most ¢. By a similar argument as in Proposition 3.4
of [7] our proposition follows.

TuroreM. If X 4s a compact holomorphic submanifold of P,.(C) with
proper values of the second fundamental forms restricted to [—b, b, b > 0 then
the sum of the first 2\ Betti numbers of Qp, X) is no larger than

(M 4+ 2 are cot (—2b)) 7" ¢, vol (X) oA
n! 0<m X

where the A, are constants.
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Since we are interested in estimating

C S ' p2‘7+2k-—1
(5.1) fk(k +1) - k(lc +yvy—Dh 1+ p2)n+1
A (V= 1) A §*

let us first estimate the integral from 0 to ¢. Now

2‘Y+2k—1
[ e o < oortn, )

where p,(n, k) denot‘:es the max of the integrand.
Recall that the (S5s) are the coefficients of the second fundamental forms
in the normal directions, that is,

S-ZB = (Deg €, er)

where D is the associated covariant derivative and e; --- e, is an adapted
frame field. If L(w, w) is the complex second fundamental form and S(u, )
is the real second fundamental form then an elementary calculation reveals
that

Lpy(Pu, Pu) = (1/4/2)(8s(u, u) + (v — 1)85(u, w))

where P is the type (1, 0) projection.

Hence

l va(Pu, Pu) |2 S I S"(u’ u) |2'
As a result
|8y < €y

where C, is a constant.

Since the volume of P,(C), in the Fubini-Study metric is #"/n!, the integral
(5.1) is bounded above by

(M 4 2 arce cot (—2b))7"c; vol (X) > AR
v

n! 0<y<m

where A, incorporates all of the constants.
In other words, the sum of the first 2\ Betti numbers of Q(p, X) grows like
a first degree polynominal in .

Added in proof. A similar formula for the volume of a tube in P,(C) has
been found, using different techniques, by R. A. Wolf in his Berkeley thesis,
1968.
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