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A CRITERION FOR DELOOPING THE FIBRE OF THE
SELF-MAP OF A SPHERE WITH DEGREE A POWER OF

A PRIME

BY

H. CEJTIN AND S. KLEINERMAN

Fix, once and for all, p to be an odd prime, and n and j to be strictly
positive integers. Let F be the homotopy fibre of the self-map of S2n-1 of
degree pJ (i.e.,

pJ
F S2n-1 S2n-1

is a fibration up to homotopy). Notice that F is its own localization at p. The
sphere S2n-1 itself, localized at p, deloops if and only if n divides p 1. In
[2], the second author showed that for certain values of p, n and j, the fibre F
deloops. The deloopings are of the form BG(Fq)-p) where G(Fq)is the
universal Chevalley group of some exceptional Lie type over the finite field Fq,
q a power of a prime different from p. Here "+" denotes Quillen’s "plus
construction" (see [6]) and (p) denotes localization at the prime p. In all these
cases n divides p- 1. The main result of this paper is the following more
general theorem:

TrIOedM I. F is a loop space if and only if n divides p 1.

We divide the paper into two, essentially separate, parts. In the first part,
when n divides p 1 we give two methods for constructing a delooping. One
of these deloopings is of the form (BG+)(p)where G is the special linear group
of a finite field. In the second part we show that if a delooping exists, then n
divides p- 1.
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Part I

LEMMA II. If n divides p 1 then F is a loop space.

Proof If n 1, then F consists of pJ discrete points, and hence is trivially
a loop space (e.g., F fB(Z/pJ)). Thus we may assume that n > 1. From
the argument in chapter 9 of [2], we see that if X is a space such that

(a) X is simply connected,
(b) H*(X; Z/p) A[u] (R) S[v] where lul 2n 1 and Iol 2n, and
(c) o,

then 2(Xp)) F. Here A denotes the exterior algebra, S denotes the sym-
metric algebra, denotes the cohomological dimension and flj denotes the
jth order Bockstein.

In [1] it is shown that spaces that satisfy conditions (b) and (c) always exist
whenever n divides p 1. Two constructions are used.
For the first construction, [4] shows that if rn and q are natural numbers

such that
(d) q is a power of a prime different from p,
(e) n is the order of q in (Z/p)*, the multiplicative group of units in Z/p,
(f) n_<m<2n, and
(g) ,p(qn 1) j (where ,p(s) sup(t: pls }),

then BGLm(Fq) will satisfy (b) and (c). Such m and q can always be found by
a classical theorem of Dirichlet. To obtain a space so that requirement (a) also
holds, we simply note that if we add the conditions

(h) GCD(q 1, rn) 1, and
(i) rn > 3,

to conditions (d), (e), (f) and (g), then BSLm(Fq) has the same cohomology as

BGLm(Fq) and SLm(Fq) is perfect. Thus (BSLm(Fq)) + will satisfy (a), (b) and
(c). It is easily seen that the same theorem of Dirichlet guarantees that rn and
q satisfying (d)-(i) exist.
The second construction comes from considering the semi-direct product

Z/p G r,

where r is a subgroup of (Z/pJ)*, the group of units in the ring Z/p, and
hence acts on Z/p:. We choose rr to be the subgroup generated by o, an
element of order n, such that if, its image in (Z/p)*, also has order n. This can
always be done since nip 1. The Serre spectral sequence for this extension
thus collapses to

H*(G; Z/p) H*(Z/.pJ; Z/p)

because the order of rr is prime to p. This shows that BG satisfies (b) and (c).
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To satisfy (a), consider the cofibre of the map

S U n e 2 L BG,

where f is chosen so that the normal subgroup of G generated by
fg(rq(StUne2)) is all of G. The cofibre satisfies condition (a) by the Seifert
Van-Kampen theorem and it satisfies (b) and (c) by the long exact sequence in
coho_rnology for a cofibration. It is easy to see that such an f exists because
ff 4:1 in Z/p (since n > 1).
Thus lemma II follows. Q.E.D.

Part II

In this part of the paper we present a series of lemmas, which prove the
converse of lemma II. This is trivial if n < 2. We thus assume, from now on,
that n is at least 3, and that F is a loop space. The last assumption is
equivalent to being a topological group up to homotopy.

L,MMA III. H*(F; Z/pt) F[x] (R) A[y] where Ixl 2n 2, lyl-
2n 1 and < j. (Here F denotes the divided polynomial algebra and A the
exterior algebra.) Also, flj(x)= y, for 1.

Proof. Z/p coefficients are suppressed throughout the proof. The Serre
spectral sequence in cohomology for the fibration,

pJ
F s2n- _. s2n- 1,

degenerates to the Wang long exact sequence

a
Hi_(E, i+l(s2n_l)Hi(SE’-t) Hi(F) E)(F) H

Here d acts as a derivation with respect to the cup product on H*(F). This
shows that

Hi(F)

is an isomorphism for > 2n 1. The low end of the sequence is

H2n-2(S2n-l) -- Hg-"-E(F) L H(F) - H2n-l(s2n-1)

H"-(F) LH(F).
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From the long exact sequence in homotopy for the fibration, we have

r,(F) {0Z/p if, <2n-2
if 2n- 2.

Thus, by the Hurewicz theorem and the universal coefficient theorem, the end
of the sequence becomes

0 --+ [Z/p= H2-2(F)] L [Z/p H(F)]

---, Z/p n2"-X(F) L [0 H(F)].

Thus,

HE"-2(F) L H(F)

is an isomorphism and H2n-I(F) Zipt. This shows that

Z/pH*(F)
0

if* >0,
otherwise

4=land, =0orlmod2n-2

and that

d" Hi(F) --+ ni-(2n-2)(F)

is an isomorphism for 4= 2n 1, > 2n 2. The multiplicative structure of
H*(F) is now seen to be as stated from the fact that d is a derivation. Finally,
the fact that r2n_2(F) Z/pJ implies that flj(x) =y when 1. Q.E.D.

Since F is a topological group, H,(F; Z/p) is a Hopf algebra with Pontrja-
gin product, and coproduct dual to the cup product. The essential idea,
suggested by M. Hopkins, is that the coproduct severely limits the possibilities
for the product. For the rest of the paper, Z/p coefficients are understood.

LEMMA IV. Under the Pontrjagin product

S[a’ al’ a2’ (R)A[b]H,(F) < (aPi _,iai+l). =0,1,... >

where lail =Pi(2n -2), Ibl- 2n- 1, Xi= 0 or 1 and each a and b is

primitive, lfj 4= 1 then all the Xi 1 (so that H,(F) S[a0] (R) A[b]).
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Proof From lemma III we know that as a Z/p-vector space H,(F) has a
basis ( ;, 37 } dual to { x til, xtily ). Also, the coproduct is

( ).t (R) .i-tA(,)
t=O

and

(i)(. (R)i t+t(R)’i-t)
t=0

If we can show that 370 0, ’mY0 Ym Y0)m and, for c =/= p 1, .m.pi
’m+p’, where the p-adic expansion for m is co + clp + + CkP, then the
first part of the lemma will be proven by letting a gp, and b )70. The first
of these follows since H2(2n_l)(F ) 0. For the second, note that )m0 kYm
for some ) Z/p. Applying A to both sides and comparing the coefficient of
the 5,, (R) .170 term we have 2 1. Similarly 7 3707m. For the last we again
know that mpi m+pi for some h Z/p. Comparing the m (R) .pi terms
after applying A we obtain

m (R) pi nt- pi ,m-pi,p (R),p, (m+p)m (R) pi.
p’

Recall that if s e0 + elP + + ekp
p-adic expansions, then

and t-- fo + flP +"" +fP are

eo el ek

Thus

pi c and
pi Ci + 1.

So for c 0 it is immediate that h 1, and for c =/= 0 we have 2 I because
m--pip "m by induction.

Finally, if j 1 we consider the ring map H,(F; Z/p2) --+ H,(F). Using
the same name for elements in both tings we will show that

p’p[p- 1] =- "p+ mod p,

for Z/p2 coefficients and so the final statement in the lemma will follow.
Again, for some , in Z/p, p,gp,(p-1) .p,+l. Applying A and comparing
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coefficients of the p (R) p,(p-1) term, we get

Since

X mod p2.
pi pi

and
P’

=p-1 mod

we have , 1 mod p. Q.E.D.

Lemma V gives the basic argument which shows that n divides p- 1 in
almost all cases. The remainder of the paper disposes of the few exceptions not
covered by it.

LV.MMA V. Ifj q 1 then n divides p 1.

Proof. From Lemma IV we have H,(F)= S[a0] (R) h[b] with la0l
2n- 2, Ibl--2n- 1 and both a 0 and b primitive. From the Rothenberg-
Steenrod spectral sequence [5],

Ext.(F)(Z/p, Z/p) H*(BF ),

we have E2 A[u] (R) S[v], where u E1’2n-2 and v El’n-x. For dimen-
sional reasons (since dr: ErP’q --> Erp+r’q+l-r) U and v must be infinite cycles.
Thus, the fact that d is a derivation implies that the spectral sequence
collapses. Hence,

H*(BF) A[u] (R) S[v]

with lul 2n 1, Ivl-- 2n. It is shown in [1] that this implies n divides
p 1. The argument is that since fl acts trivially on H*(BF) (because j 4: 1)
and % vp 4= O, we must have 1 acting non-trivially (by considering
secondary operations of [3]). Since raises dimension by 2(p 1) it follows
that 2n divides 2(p 1). Q.E.D.

When j 1, two problems arise. The first is that H,(F) might not equal

S[ao](R)A[b].

The second is that since fl 4:0 the argument using secondary operations
breaks down. The latter problem is solved by Aguad6 who shows, in [1], that if

.H*(BF) A[u] (R) S[v]
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through dimension 2np, with lul 2n- 1, Iol- 2n and fl(u)= v, then n
divides p 1. To see this consider the Adem relation

(*) 91fl9n-l= (n 1)/3 + 9nfl

applied to u. The fight side becomes v p 4:0 so that [3n-l(u) of degree
2rip 2(p 1) is non-zero, so that its degree is also a multiple of 2n showing
that n p 1. Thus the only remaining case is when j 1 and

H*(BF) q: A[u] (R) S[v], for < 2np.

Now H,(F) S[a0] (R) A[b] for < p2(2n 2) provided that a : 0 and
then

H*(BF) Atul (R) sty] for * < 2rip.

We therefore need only prove the following:

LEMMA VI. Ifj 1 and a 0 in H,(F) then n divides p 1.

Proof From lemma IV we know that

H,(F) S[a’ all 2)(a’)
(R) A[bl for * < p2(2n-

Thus the Rothenberg-Steenrod spectral sequence has

:x[., w]. s[ z for total degree < p2(2n 2).

The bi-degrees of u, w, v and z are

(1,2n 2), (1, p(2n 2)), (1,2n 1) and (2, p(2n 2))

respectively. Again, u and v are clearly seen to be infinite cycles. A simple
arithmetic computation shows that if w is not an infinite cycle, then n divides
p 1. One can also see that z is an infinite cycle by noting that it must be the
image of w under a (possibly higher order) Bockstein. Thus, the spectral
sequence collapses in a range, and we have

H*(BF) A[u,w] (R) S[v,z] for, <p2(2n-2)- 1,

with the degrees of u, w, v, z being the total degrees listed above. The key
point is that we know H*(BF) for < 2np. Applying the Adem relation
above to u we get 9xflg"-X(u) v p 0 so that 9n-X(u) : 0. If n-(u)

uv for some m then it’s immediate that nip 1. Hence we may assume
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that in-l(u) W. Also fl(w) z. Now consider the Serre spectral sequence,
in cohomology, for the fibration

(F aBF) --, ( PF) BF.

Here x and y transgress to u and o respectively under d2n_ and d2n. Since
transgression, z, and the Steenrod algebra commute, we have n-l(x)=
"-(u) w. But "-(x) xp 0, so that w must be hit before the
transgression gets a chance. A simple arithmetic calculation shows that all
candidates to hit w are zero by E2,. Thus, we have a contradiction. Q.E.D.
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