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1. Introduction

In this article we shall prove the following:

MAIN THEOREM. Suppose that G is a finite abelian group and X is a finite
CW-complex, the homotopy type of (sEn)k. Assume further that G acts freely
and cellularly on X. Then G = I-I’f__,Z2 and k >_ Y’.=,26-1.

This theorem generalizes the main theorem of [3].
Theorems of this type (restrictions on finite groups that can act freely on

products of spheres) have been investigated by Conner [2] and Carlsson [1].
Their results are concerned primarily with elementary abelian p-group actions
on products of spheres and use the Serre spectral sequence for the fibration
X X/G BG as a tool. The methods of this paper are completely differ-
ent. We exploit the fact that for even dimensional spheres the Euler character-
istic, x(X), is not zero. Using this and the Lefshetz fixed point theorem we
can reduce the proof of the theorem to a problem in representation theory
which we then solve.
The main theorem is sharp in the following sense. An action of Z2m on

($2")m is given by

T(X1,... Xm) (X2,... Xm, --X1).

This action is free if, and only if, m is a power of 2 [4]. ’In this way we may
build up a free action of 1-I2%Z2 on ($2)g if k Y’.2%26-x.
The auther would like to thank G. Carlsson for a timely conversation.

2. Preliminaries

We assume throughout the rest of the paper that X is a finite complex with
the homotopy type of ($2) k.
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PROPOSITION. If G is a finite group acting freely and cellularly on X then G
is a 2-group and there is a faithful representation of G in GL(k, F) for any field
F whose characteristic is not 2.

The main theorem will follow from"

THEOREM. If G = I-I"..1Z2j admits a faithful representation in GL(k, Q)
then k > E=12e- 1.

We will prove this theorem in the next section.

Proof of the proposition. The Euler characteristic of X is x(X) 2k. The
first conclusion follows from the equation x(X/G). IGI x(X).

Let g be an element of G. If the induced map

g*: H2"(X; F) H2"(X; F)
is the identity map then g* is the identity on H*(X; F) and the Lefshetz
number L(g*) x(X) 2k is nonzero if the characteristic of F is not 2. So,
by the Lefshetz fixed point theorem, the G-module HEn(x; F) is a faithful
k-dimensional representation. Q.E.D.

We will use the following lemma in the proof of the above theorem:

LEMMA. If G is a finite abelian 2-group, G Z2 X G1, and 2 is the
maximal order among cyclic subgroups of G then the kernel of any epimorphism
G --, Z2 is isomorphic to G1.

Proof. Let p: G --, Z2g be the epimorphism and let T denote a generator
of Z2’. Since 2e was the maximal order in G every element of p-t(T) has
order 2e. Choose one such element g p-l(T). Define a splitting s: Z2’--, G
by s(T) g. This will give us a direct product decomposition G --- Z2’ K,
where K ker(p). By the structure theorem for finite abelian groups we may
conclude that K -= G1. Q.E.D.

3. Proof of the theorem

Assume G is a finite abelian 2-group and p: G--, GL(k,Q) is a faithful
representation. Let 2e be the maximal order among the cyclic subgroups of G.
We may write G =- Z2’ G1. If we extend Q to Q(’), where " is a primitive
2e-th root of unity, the representation space, V, splits as a direct sum of
1-dimensional representations"

k

Q(’) (R) V =
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Let Ct denote a cyclic subgroup of G, of order 2e. One of the W:.’s must be a
faithful Crmodule. We may suppose this is W. Since

dimowl dimoQ(’ ) 2e- 1,

we may regard W as a 2e- 1-dimensional rational G-representation given by a
homomorphism

Pl" G GL (2e-1 Q)

and the map V ---, W given by the composition

k
V---, Q(’)(R) V W:.W

is an epimorphic G-map. Since is faithful on Ct, its image is isomorphic to
Z2d. Let K denote the kernel of Pl. By the above lemma we may conclude
that K = G1. Let W1+/- be a G-complimentary subspace to W1 in V. The action
of K on W is trivial, so K must act faithfully on W#. Furthermore
dimQW1+/- k 2e- 1. Now proceed inductively on the faithful representation
G =- K ---, GL(k 2e- 1, Q). Q.E.D.
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