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HARDY’S INEQUALITY AND EMBEDDINGS IN
HOLOMORPHIC TRIEBEL-LIZORKIN SPACES

JoAQUIN M. ORTEGA AND JOAN FABREGA

ABSTRACT. In this work we study some properties of the holomorphic Triebel-Lizorkin spaces H F/¢, 0 <
p,q <00, s € R, intheunitball B of C", motivated by some well-known properties of the Hardy-Sobolev
spaces H” = HFP?, 0 < p < o0.

We show that ano lanl/(n + 1) < Z 30 any Floo» which improves the classical Hardy’s in-
equality for holomorphic functions in the Hardy space H' in the disc. Moreover, we give a characterization
of the dual of H Fslq, which includes the classical result (H')* = BMOA. Finally, we prove some embed-

dings between holomorphic Triebel-Lizorkin and Besov spaces, and we apply them to obtain some trace
theorems.

1. Introduction

Let B denote the unit ball in C*, and § its boundary. Let R denote the radial
derivative and I the identity operator. We recall that if f(z) = )_, caz* is holo-
morphic on B and s € R, then the operator (I + R)* is defined by (I + R)* f(z) =
Y cal + o)’z

The holomorphic Triebel-Lizorkin space H FP 0 < p<00,0<qg<o0,sE€
R, is the space of holomorphic functions f on B such that || f|| y s < 00, where

1 . 4 N rlq
1l e = (f (/ \((1+ R)™! f) (r;)} (1 — 2y _")q_'dr) da(;))
N 0

for 0 < p,q < o0,

1 f e = ( fs (Osup]

and [s]* is the integer part of s + 1.

Observe that H F/? coincides with (I + R)™*H F{. Moreover, for g = 2 and
s = 0, the norm in H FO" 2 is the L (S)-norm of the Littlewood-Paley g-function,
and therefore H F/”” is the Hardy-Sobolev space HY. For p = q, the space HF/”

I/p

. . \7 1/p
(T+RY £) )| (1 =rD¥ --‘) da(;)) .
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coincides with the holomorphic Besov space H Bf”. These spaces are included in
HFP™.

In many situations, the properties of the Hardy-Sobolev and Besov spaces have
analogies in all the scale of the Triebel-Lizorkin spaces, which permits us to give an
unified treatment of the results. Therefore, it seems natural to consider the spaces
HFEP! by themselves. In this context we will study three classical problems.

The first one comes from the duality results (H Iy* = BMOA (with the non-
isotropic metric d(¢, n) = |1 —¢n|"/?) (IC-R-W]) and (H B}")* = Bloch [An-C-Po].
We would like to give an analogous result for all the scale H F, 1 <q < 0.

To solve this problem it is natural to introduce the following definition of H F;*7.

For¢ € Sandt > 0,letl,, = {n€ S;|1-¢n| < t}and I, = {z € B; |1 -{z| <
t}.

We define H F™? as the space of holomorphic functions on B such that, the norm
given by

/9
1 +_5)g—
"f"HF_f"" = sup (|I; | . I + R)[s]*rf(z)lq(] _ |Z|2)(M 5)q ldV(Z)) ,
Iy

forq < 00,

N flpee = SU£|(1 + R £@)1(1 — |2/HE 5, for g = oo, is finite.
Z€

Observe that if we denote by W! the space of non-isotropic Carleson measures on
B then || f ||y o is just || | (1 + R)ET £17(1 — |z|2) @7 =9-14V (2) Il'/" In particular,
we have H F§ 2 _ BMOA.

Our first result is the following.

THEOREM A. Let 1 < q < o0 and let q' be its conjugate exponent. Then the

dual of HF) is isomorphic to HF* .
The duality is given by the pairing

(f.8) = f (I + R f@UI + R 1 — [zH* "1 av ()
B
foranyk > s.

The second topic that we consider in this work is the well-known Hardy’s inequality

£ =]

n>0 n>0

for holomorphic functions on the unit disc.
To be precise we prove the following theorem, which is a consequence of the
one-dimensional case of Theorem A.
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THEOREM B. Let D be the unit disc of C, and let f(z) = Zkzo ayz* be a holo-
morphic function in H F®. Then

|a |
Do it A PES

k=0

The above resultimproves the classical Hardy’s inequality, because H! = H Fj* C
H F0'°°. As a consequence, we can obtain the following version for n > 1.

COROLLARY B. Let f be a holomorphic function in HF)®°(B) and let f(z) =
k=0 fi(2) be its homogeneous expansion at 0. Then

il — Nl
< < -
; k+ 1" Ng k+1 ~||f||Hp0'

We point out that, for the Hardy space H' this result was obtained in [C-W] and
[A-Br].

The third problem that we consider is related to a classical theorem due to Privalov.
It is known that a holomorphic function f on the unit disc has continuous extension
to the closed unit disc with absolutely continuous boundary values if and only if f is
in H/'. Itis also well known that for any n and t = s — n/p > 0, the Hardy-Sobolev
space Hy is a subspace of the Lipschitz space A,. In the extreme case s —n/p =0,
HY is a subspace of the space of continuous functions on B if and only if 0 < p < 1.
Moreover, the restriction of f € an/ p P = 1 on smooth curves y of S is absolutely
continuous [A-Br], [B2], [Bul.

A more precise result in all the scale of holomorphic Triebel-Lizorkin spaces is
given by the following theorem.

THEOREM C. For0 < p,q <ooandt =s—n/p > 0, the space HFP(B)isa
subspace of the holomorphic Lipschitz space H F°*. In the extreme case s =n/p,
the space H FP? is a subspace of C(B) if and only if0 < p < 1.

Moreover, forn > 1and0 < p < 1, the traceof f € H F,f’/‘; on a smooth simple

curve y on S is in the Besov space Bl”(y). In particular, it is absolutely continuous
ony.

We obtain this result by methods different from those of the ones used in [A-Br],
[B2] and [Bu] for HY. Our proof will be a direct consequence of some embedding
results that are of interest by themselves.

The paper is organized as follows. In Section 2, we start recalling some properties
of the tent spaces introduced by R. R. Coifman, Y. Meyer and E. M. Stein [C-M-S] and
the relations between these spaces and the spaces H FP9_ These relations permit us to
prove Theorem A. In Section 3 we use the results of Section 2 to prove Theorem B.
In Section 4, we prove some embeddings between holomorphic Triebel-Lizorkin
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and holomorphic Besov spaces which give Theorem C. Moreover, we complete the
section showing that, for 0 < p,q < o0, the space of holomorphic functions in a
neighbourhood of B is dense in H F"? and that H F/* is not separable.

We use the notation || f1|,, to denote the norm of f in L”(S) with the Lebesgue
measure. Moreover, we use f < g if f < cg for some constant indenendent of f
andg,and frgif f Sg < f.

2. The spaces HF

In this section we state some duality properties of the holomorphic Triebel-Lizorkin
spaces H FP? with special attention to the case p = 1.

We will start recalling some results about tent spaces introduced by R. R. Coifman,
Y. Meyer and E. M. Stein [C-M-S]. We point out that these results were obtained in
the half-space in R"*!, but the same arguments show that they remain true for the
unit ball B of C" with the usual non-isotropic metric.

Fori € §,letTo(f) = {z € B; |1 -8z <a(l -1z}, I, ={n € S; |1 =¢nl <
tyand I, = {z € B; |1 = £z| < t}.

For a measurable function f on B, let

dv 7
As(NHE©) = (fr © If(z)l"(——(?)——) , q < oo,

1— |Z|2)n+l

Axo()(€) = sup{[f(2)]; z € Ta({)},

1 dv g
Cy(H©) = Slrlp(l_lcj : |f(Z)|q1_(|Zz) :

For 0 < p, g < oo, we consider the spaces

FPI(B) = {f € L°B); | fllrre = I1Ag ()l < 00}, 0<p,g=oo,
TP (B) = F’, 0O<p,g<oo or p=g=o00,
T*(B) = {f € L°"B); | fllr=s = IC(f)lloo < 00}, g <00,

where L(B) denotes the space of Lebesgue measurable functions on B.

Note that, for 0 < p < oo, the tent space TP* is not included in the above
definitions. Following [C-M-S], this space could be defined as the closure in FP* of
the subspace of continuous functions on B.

Moreover, observe that if we denote by W' the space of (non-isotropic) Carleson
measures on B, then || fllzes = || £17/(1 — |21) dV (D)l 1

Next we state two theorems that we will use later.

THEOREM 2.1. [C-M-S). Let | < g < o0, and let q’ be its conjugate exponent.
Then

dV(2)
1—z|?

/ f(@2)g()
B

<c fs A (HQ)Cy(8)@) do (©).
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THEOREM 2.2. Let1 < p,q < ooandlet p' and q' be their conjugate exponents.
Then, with the pairing

dav
hon= [ @z,
we have
(1) (FM*=Fred, 1<p<ool<qg<oo
() (Fl9y* =T, 1<g<oo

() T c (F'™)*.

Proof. The proof of these results for the half-space in R"*! can be found in [C-
M-S], [H-T-V] and [L]. These proofs can be adapted to our case. For instance, the
proof of (1) for the unit ball can be found in [O-F2]. O

The next theorem gives a characterization of the holomorphic Triebel-Lizorkin
spaces in terms of the above spaces. Analogous results for the real case and p < oo
can be found for instance in [T2].

THEOREM 2.3. For(Q < p,q < 00, s € R and any integer k > s, we have

(1) HF"(B) ={f € HB); Iy fllrm <00},  if 0<p <oo,
Q) HF?(B) = (f € H(B); |L¥ fllr=s <00}, if 0<gq <oo,

where LK f(z) = (1 — |z21)* (I + R)* £ (2).

Proof. A direct proof of (1) for the non-isotropic case can be found in [O-F2].
Part (2) can be obtained from the representation formula

2\M
QDU+R"f@)=cul + R)'""‘/(I + R f(u )————————_ |u|+)l+M dv(u),
— az)"
with M large enough, and the equivalence
a- IwIZ)N
~ - -~ d s
lellwe :}2;;/3 T ©(2) o

for a fixed positive N.

Remark. 1In [O-F2] it is shown that in the above characterization (1) of H F/?,
we can replace the differential operator L¥ by a sum of differential operators of type
(1=1z»)*T = (1= |z/*)¥T; - - - T, where m < 2k, and the operators 7; are complex
tangential vector fields. The analogous result holds for the case p = oc. For instance,
for f € HFy"! we have

(lfl"+ >

I<i<j<n

l/q

Wl

Zi——

of ") oy _ et
52, Zj a2, )(1 |z]%) dv(z)

w!
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Remark. S. Krantz [K] proved that the space BMOA with the Euclidean metric,
which we denote by BMOA,, does not coincide with the space BMOA with the
non-isotropic metric defined above. In [U], D.C. Ullrich shows that the function
f@ = f@z1,22) = Y, 2" is in BMOA(C?) but it is not in BMOA,(C?).

The same function provides an example of a function which is in HF;™?, 0 <
q < o0o,ie., |(I + R)f(@)|7(1 — |z|>)7~'dV (z) is a Carleson measure, and that the
above measure is not a Carleson measure in the Euclidean sense. We only give the
scheme used to obtain this result.

Letdu(z) = | X5, (1 + 10/)z1%19(1 — 121397 'dV (z). We have

v/l‘[,

Then u € W',
To show that u is not a Carleson measure in the Euclidean sense, it is sufficient to
show that if

q

A= py-lave < [ 4D

(141071 S
Z iL\I (] - Izllz)q

izl

av(z) St

Q,={z‘=(zl,zz)€B;122|<t,zl=rei9,1—t<r<l—2t2,—-t<9<t},

then
3 1
du(z) 2 1 log -
Q t

forall 0 <t < ty small.
Note that for z € €, we have 1 — |z|2 & 1 — |z,|?, and that for small ¢ > 0 and
1—(14+8)107* < |zy] <1—(1—¢)107%,

Z(l +109)z1%| > 10,

]>l

q

Therefore, if ry = 1 — (1 —&)10* and r; = 1 — (1 + £)107*, then
S +10021”| (1 = |z2H7" dodr

fdu(z) f /
]ogl/t<k<2]0gl/t re Y=t ]zl

10’“1/ a-rHar

vV

log 1/t<k<2log 1/t
*log1/t. |

v

Before stating the next result we recall two technical lemmas.
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LEMMA24. For O<m<n+1,k>0, and A > 0,

1 1
D —
) ,/,; (A + |1 — wz|)r+!+k Vw3 (A+1—|z»)*

1 1
2 dV(w) S .
5 /B IT — wu|™|1 — wz|r+1+k ) S (1 — [z/)¥[1 — dz|m

The proof of this lemma is standard.

LEMMA 2.5. Let f be a holomorphic function on B.
(1) For0 < q < 1 and M such that (M +n + 1)g —n > 0,

2M 1 — |2[2)M-+n+Dg-n=1
(/ If @ __'Zlij,wdwz)) s[ rort S e ava,

Q) Forqg>1,6>0and M > —1/q,

1—IzI2)M 1= 1zI2)YMa(1 — 2y—¢q
(/ I e Ve )) s [ o i — AV Q.

Proof. Part (1) is shown in [B1]. Part (2) follows from Holder’s inequality and
the estimate (2) of Lemma 2.4 form =0. 0O

The next result is a duality theorem that we will use later and which includes
the well-known duality (H')* = (HF}?)* = HF{® = BMOA and (HF}")* =
H F§°* = Bloch.

THEOREM 2.6. Forl < p,q < 00, thedualof (HF/*)*is HF”? ,and HF*®' C
(H F!®)*. The duality pairing is

(f.8) = (Lif. Li®) = fB d+ R fQU +R*g@ (1~ 12)**71dV (o)
foranyk > s.
Remark. Note that for s = 0 the above pairing is similar to the Cauchy pairing
(fe) = lim [ £G0R00) do @)

This pairing identifies the dual of H F/? as HF P9’ (for instance, see [B-Bu] for Hardy
spaces). We consider the pairing ( f, g) because, in our case, it is technically simpler.
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Proof. The case | < p < oo was shown in [O-F2]. Let us consider the case

= 1. By Theorems 2.2 and 2.3, it is clear that H F;° 7 (HF!)*. Conversely, let
q > | and let d> be a continuous functional on H F;l" By the Hahn-Banach theorem
there is a function ¢ € T*9 such that

dv ()
= Iz’

By representation formula (2.1) and Fubini’s Theorem, we have

O(f) = (L¥f, 9)) = f L f (2 TR

- — 112)k=s—1
O(f) = ¢ f (I + R f(w)(1 — [w])2¢k=-1 f P@QU 12D 7 4y (avw)
B

B (1 - ﬂ)z)”+2(k_“)

> _ 2\k—s—1
= f LY f (w) ¥ ((1+R)"‘ f G A )) AV
B B

(] _ ﬂ)z)”+2(k“‘) |w12‘

Therefore, it remains to show that the operator

(1 _ |Z|2)k s—1

de(Z)

(2.2) T()(w) = +R)~* f @(2)

maps T4 to HF>™® q/, or equivalently that

1— 2\k—s—1
du(w) = ./ ()-(———I-Z—I—)————dV(z)

)n+2(k s)

’
(1 = [wH*=9-1 gV (w) e W',

ie.,

g2
sup/ (—lu—l)du(w) < 00.

ue Jp |1 — wul+!

For ¢ and k such that 1/q9’ < & < 1 < k — s, it follows from Holder’s inequality,
Fubini’s theorem and Lemma 2.4 that

(1= lul?

i mﬁdﬂ(“’)

2 _ 2\k—s—1 _ 2\(k—s—¢)q'—1
</B — |u]) /I ()'q |z]) - (1 —|w|?) , i AV @) dV (W)

I] — wu'n-H |l _ wz|n+k—s+(k—c—s)q

[ = S = qwyksoe
sa-ub) [ o ) .
B B |1 — wu'n “ — wzl"+ —s+(k—s—e)q’

, dv(2)
<1 - |uP? 7
S (1= lul )/B"”(Z)' 1= Zul™* (1 = [2)

S “prl"'/(l —1zPave|

"(p " T°°‘7’ )

dV(w)dV(z)

which proves the result for p = 1,9 > 1.
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The case p = g = 1 follows in the same way. In this case we have F!' =
L', F®® = L* and

HF>®® = {f € H(B); sup|L¥ f(2)| < 00}.
Z€B

Therefore, it is clear that H F®>® C (H F,")*. To obtain the converse it is sufficient to
show that the operator T defined in (2.2) maps L to H F°*°, which can be trivially
verified. O

3. Hardy’s inequality

The purpose of this section is to extent the well-known Hardy’s inequality for
holomorphic functions in the Hardy space on the unit disc H'!(D) to the context of
Triebel-Lizorkin spaces. Moreover, we give a version of this result in the unit ball of

c".
THEOREM 3.1.  Let D be the unit disc of C and f (z) = Y, . an2" in H Fj™(D).
Then
lan|
< .
2ong1 S WMl

To prove this result we need the following proposition.

PROPOSITION 3.2. Let f(z) = ano a,z" be a holomorphic function on the unit
disc, such that sup, |a,| = M < 0o. Then || | f(2)|dV (2) w1 S M.
In particular,

<M.

~

HF!

_ an
"(1+R) lf"HFOool= Zn+lz

n>0

Proof. LetS,q ={z=re’; 1—e<r <l,0—¢ <6 <a+s}. We want to
prove that

sup l/ If@)1dV(2) S M.
Sea

£>0,—n<a<mw
Given ¢ > 0, we write f as f = h + u, where h(z) = }_,,/, a.2", and we
consider the measures du = |h|dV (z), dv = |u|dV (2).

We prove that the measures of S, , with respect to  and v are bounded by cMe.
For 1, we have

1 a+e 1-— (1 _ 8)"+2
/ dusMZf f r"+‘dedr52MaZ————5Ms.
Se.a 1-e Ja—¢

n<lje n<l/s n+2
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To show that v satisfies the condition, observe that for 0 < § < 1, the set

" 1! , 1/2 |
- ’ h n=\z t"(1 —1)°dt N —
ICn Lzo where @ (2 fo ( ) ) (n + DHU+d/2

is an orthonormal set in the Hilbert space L2 (D, (1 — |z|?)®dV (z)) with the inner
product

1
(f8)= 5= / F@g@)(1 —z)? dV (2).
T Jp

Therefore, if we let dVs(z) = (1 — |z1%)%dV (z), we have

_ @
dv = 3 arer f o w@I =y @

Sea n>1/e
" u
f 50y
Se

1/2
1
S'M(Em) (Z o @I = 2PP

n>1/e n>l/e

2 ) 1/2
Now, by Bessel’s inequality, we have
1/2
f dv < M&? ( f (1 —1z»7° dV(z)) < Me. O

Proof of Theorem 3.1. Observe that

|an| _ 1/2.n _&L 1 —n
Z—n+l = nL(Zan(n+l) Z )( Z Ianl—_(n+1)'/2z ) dV(z)

n>0 n>0 n>0,a,#0
= n((L'2f,L'?g))

where g(2) = 3, .0 24 M_Hz
Therefore, by duailty Theorem 2.6 and Proposition 3.2,

|@nl
> SUflare=lglnre S 1 lgre,

n20n+1

which ends the proof. O

Versions of Hardy’s inequality in the unit ball were given in.[C-W] and [A-Br]
applying the unidimensional result to slices. The same arguments give:

COROLLARY 3.3. Let f be a holomorphic function in HF!®(B) and let f(z) =
2 k0 Jx(2) be its homogeneous expansion at 0. Then

1 filloo [ £illy
kZ(H 0 NZ et S M llare.
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Proof. 'The first inequality follows from Lemma 2.2 of [A-Br]. The second
inequality follows from the integration by slices formula [Ru]

1 T .
1Ry = Er—/sf sup |(I + R)f(re®t)1d6 da(?),

w 0<r<l1

and Theorem 3.1 applied to the function f,(A) = f(A¢), Al < 1. O

Remark. QObserve that the above theorem shows that if f € H F,,‘°°(B), then

U+ R)"f@) =) (1+k)"fiz) € HF;™(B),

k>0

and therefore

D i filloo SNFllapyee-
k>0
Hence, H F!* is a subspace of the ball algebra HC (B).
In the next section, we improve this result using other techniques.

4. Embedding theorems

The purpose of this section consists to give some embeddings between holomor-
phic Triebel-Lizorkin and Besov spaces, which in particular will permit us to obtain
analogous results to the Privalov’s theorem forn > 1.

We recall that the holomorphic Besov space HBY?(B), 0 < p,q < 00, s € R,
is the subspace of holomorphic functions on B such that the norm

1 " q/p . 1/q
NN eapre = ( f ( f |(I + R)! f(rc)l"da(c)) (1 — rHE=q-1 dr)
0 S

is finite, with the usual conventions for p = oo or ¢ = oco.

It is known that if we replace [s]* by k > s, we obtain equivalent norms.

The next results give some embeddings between these spaces. For r < oo, parts
(1), (2), (3), (4) and (6) of the following theorem can be found in [B-Bu] for p = g
or g = 2, or in [O-F1] and [O-F2]. We include them for completeness.

THEOREM 4.1. For0 < p,q <ooands € R,

() HF CHF!™, 0<gq<m<oo,
2) HB? c HBI™, 0<qg<m<oo,
3) HF!? c HB, 0<p<gq<oo,
(4 HB! Cc HFM, 0<qg<p<oo,
(5) HF/"Cc HF™, O<p<r<oo,s—n/p=t—njr
(6) HB! c HB/’, O<p<r<oo,s—n/p=t—njr
() HF Cc HB/, O<p<r<oo,s—n/p=t—n/r
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Proof. First, we consider the case p < oo.
To show (5), we will prove that

@ N S W Nrr, O<m<p

s—n/p ™

®) I fllarm S AN el £ —’l{f , O<m<p<r<oo,l=m(-p/r).
HF! HF®,

Then (5) follows from (1), (a) and (b). To obtain (a), observe that for £k > s and
N >0,

S 5 oo

s—=n/p
i m (1 — )Y dv@)
N sup/ IL, —n/Pf( 2| — Zw|"™N 1 — |z|2

_ 2\N (1 _ 2\nm/p—n-—1
Ssun)ffr ILi‘f(z)l"‘ i) (l- lzI1) dV(z)do (¢)
(&)

weB Js 1 —zwlrtN

1 - 2\N 1— 2\nm/p—n—1
S sup [ An(LETD" ) /r )( i) ( —lz) V() do (z).
o (¢

weB Js 11— ZwjrtN

Forz € Iy, we have |1 — 2zl S (1 —|z]) < |1 — Zw|, so Lemma 2.4 gives
1 — 2ynm/p—n—1 1— 2\nm/p—n—1
/ (Ul ot / ( = laPyme- v
ra@ 1 —zw** B (11— Cw| 4|1 —Zw|"+VN

< — 1 .
~ l] _ ;w|n+N—nm/p

A

Using this estimate, Holder’s inequality and Lemma 2.4, we obtain

(1= JwPH

11— Ew|n+N—-nm/p o (%)

U pon < sup f Aw(ILEF" (@)

s=nip weB JS
S W lapr.

To prove (b), we have

rim
I W pm ( f ( / |Lff(z)|'"(T:’—,Z-,§%n) da(;))
N Fa ()
= sup f f L} f @I B o0 do (2)
el rymy =1 e ()

m/r

=  sup fILff(z)|'”fs)(ra(o(Z)lfp(C)lda({)(Tf—l‘z'-,%%T-

llell¢/my=1JB

Observe that
ILEF@I™ = ILEF@I™ILE, , f @I
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and that forn € §,

] f
su xr.)@le©)ldo () S Mu-L(e)) (),
et (L= 2Py Jg M@ oLt
where My _1 (Jg|) denotes the Hardy-Littlewood maximal function

1
My_.(f)(n) = sup
t>0 Iln,tl

/, 1Ol do©).
Thus, by Theorem 2.1,

el r/my =1

1F Wi S~ sup fs AL F D™ Mu-L(eD ) do DI f Iy s -

Clearly, (b) follows from Holder’s inequality and the fact that the Hardy-Littlewood
maximal operator is continuous from L4 (S) to L4(S) ford > 1.

Now we prove (6) for r = oo. Let m < min(p, g, 1). By the representation
formula (2.1) and Lemma 2.5, we have

11w

s=n/p

1
~ / sup [(1 + R f(xD)I9(1 — x)k=s+n/Pa=1 gy
0 ¢eS

! ! . (1 — y2yWntm=n=t q/m
S (f f'(’”) o2 ¥ da(n)d)
/(; {eg 0o Js fom |1 — yqxg|nt1+Nm y

x (1 — x?)k=stn/ma=t g x,

For N large enough, two applications of Holder’s inequality, give

1 1 m/p
1% S f (f (/ I(I+R)"‘f(yn)l”d0(n))
s=n/p 0 0 s

/
L (L ymsimonct bt Ny
1 — y+ 1-— xl(n+l+N)m—n(p—m)/p y y 1 —x

S NN

Now we prove (7). By (1) and (6) it is clear that it is sufficient to obtain the result

forr < oo and g = oo. Using the duality between L' (L"/?) mixed-norm spaces (see
[Be-P]), we have

! p/r p/r
"f"ll;’rp ~ (/(; (/S | + R)kf(xC)lr dO’({)) a _x2)(k—t)p—lx2n—ldx)

1
= Supf f|(1+R)"f(xC)|”d6(§)(1 —x)* PNy (e X dx
v Jo Js
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where the supremum is taken over all the functions y satisfying

, e /py
sup (f ¥ (x0)|“/P dd(s“)) =1
N

O<x<l

Therefore,

£ G < sup fB ILE £ @)1P (1 = 12"y (2)] AV (2)

S sup /S A (ILEFIENP L = 12" 1y )(@) do (©).

By Holder’s inequality, we have
1

Cl(<1—IzI2>”‘””/’I¢I)(;)58,“?’""f, /u . WOmido (1) dx
(X t J1=¢nl<t

1
< sup /T (1 =x)""/rlgx < ¢ < 00,
O<t<l1 1-t
which concludes the proof of (7).
To finish the proof of the theorem we consider the case p = oc.
To prove part (1), first we show that HF;> ¢ HF®®.Forg > 1and0 < ¢ <
1/q, the representation formula (2.1) and part (2) of Lemma 2.5 give

N f ke ~ Sug(l — 1z 1T+ R )
zZ€

IN

(1= w)Ne(1 — [z[2) 4= v
|1 - wz|n+l+(N—s)q dV(w))

sup ( f I + B f(w))?
B

z€B
S NA + B fF@1P(0 = [z 9! dV(z)II%‘.’
| fllgpe

The case 0 < g < 1 follows in the same way.

Observe that the above result shows that if f is in HF; 7, then the function
[(I + R)* £ (2)|(1 —|z|?)*~* is bounded. The case g < m < oo follows trivially from
this result.

An analogous argument shows that H B;°? C H F>®*. Therefore, if f € HB;"?,
then |(I + R)* f(2)|(1 — |z|*)*¥~* is bounded. Clearly, (2) follows from this fact.

Part (3) is trivial. Finally (4) follows from

1 — lwl?
IS pose sug[B (T + R F) (1 — [z|2) )11 (1 —=1wl®) v

|1 — Zw|r+!

1
= f Sup (1 + R FGIF (1 =[x )=~ e,
0 ¢e

which concludes the proof of the theorem. O
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From this theorem, we generalize a result of P. Ahern and J. Bruna [A-Br],and
F. Beatrous [B2] and J. Burbea [Bu], about the boundary continuity of the functions
f in Hf(B), for the extreme cases s = n/p, 0 < p < 1. These authors showed
that the Hardy-Sobolev space H,,l (B) is a subspace of C (B) and that the trace of the
H!(B) on a smooth curve y C § is a subspace of the space of absolutely continuous
functions on y, which we will denote by AC(y). The next theorems show that for
n>1and0 < p < 1, HF]} is a subspace of the ball algebra, and that for n > 1
the trace H F,!* on smooth curves y C § is absolutely continuous.

THEOREM 4.2.  The space H B! is a subspace of C (B).

Proof. We will prove thatif f € HB(‘)>01 and f;(z) = f(tz),then || fi— flloo > O
whent — 1.

By the representation formula,
— lwH¥ a—|wH»
— ti)tz)""'N (] — 1;)Z)n+N
(1= — lwHY
|1 —wez| |1 — wz|*tN

1
1f = flloo < sup /B I(I+R)f(w)|l(§ 4V (w)

Z€B

< sup f (I + R fw)| 4V (w)
B

z€B

! 11—t
< | suplU+R ——dx,
Nfo cggl( WO 7%

which tends to zero by the Lebesgue dominated convergence theorem. O

Remark. The above result fails if we replace ¢ = 1 by ¢ > 1. For instance, for
n=1and0 <t < 1— 1/q, the function f(z) = log’ TEE isin HB3°q, and it is not
bounded.

THEOREM 4.3.  The space H FF? (B) is a subspace of C(B) ifand only ifs—n/p >
Oors—n/p=0and0 < p < 1.

Forn > 1 and p, s satisfying the above conditions, the restriction of HF?? on
smooth curves y of S is a subspace of Bl' (y) and therefore of the space of absolutely
continuous functions on y.

Proof. Ift =s—n/p > Othen HF}? is a subspace of the holomorphic Lipschitz
space H F°*, and therefore, the result is obvious.

Ifs=n/p,0<p<land0<t<1—1/p, then HF{* C HF!® Cc HB{' C
C(B).

For p > 1 and s = n/p, the function f;(z) = log' = isin HF/?, and it is not
bounded.

The fact that the restriction of HF!® on y be absolutely continuous follows
from HF)®(B)|, C B|'(y) C Ll(y) = AC(y). The first embedding is proved in
Section 3 of [Br-O]. 0O
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Remark. In some sense the above result is sharp. If y is a complex-tangential

curve (i.e., y (t)y'(t) = 0 for all 1,) then the trace of HF,!™® on y is exactly B}!(y)
(see Section 3 of [Br-O]).

Observe that, as a consequence of the above results, if f € H Fn'°°, then the
functions f;(z) = f(¢tz) converge uniformly to f(z). The next theorem extends this
result for f in HF/? and p, q < oo.

PROPOSITION 4.4.  For 0 < p,q < 00, s € R, the space of holomorphic func-
tions on a neighbourhood of B is dense in H FPa,

Proof. Since HF!? is isomorphic to HF/?, we can assume that —sq — 1 > 0.

We prove that the functions f;(z) = f(tz) satisfy || fy — fllgpre — O, whent — 1,
ie.,

1 rlq
f(f If(trC)—f(rs“)l"(l'—r)""’"'dr) do(¢() >0, t—1.
s \Jo
Let

1 rlq
e () = (fo If(trC)—f(rs“)I"(l—r)““’"dr) .

We want to prove that for 1/2 <t < 1,

1 prla
@ @) S ( fo If(rs“)l"(l—r)““’"dr) e L'(S),
b) p:(¢) = 0ifr > 1.

Clearly, (a), (b) and the Lebesgue dominated convergence theorem prove the propo-
sition.
Now, we prove (a). Note that

1 rla 1 rlq
mc),s(fo |f(tr¢)|q<1—r)~sq*'dr) +(f0 If(ré')l"(l—r)""’"dr) .

By the change of variables tr = u in the first integral, we obtain

! t
/ |Farolf —n=""dr = t""/ Lf @O — )" du
0 0

IA

1
2759 f F@OP( — w0 du,
0

which proves (a).
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To prove (b), we recall that, as a consequence of Egorov’s theorem, if 0 < m < oo,
u is a positive measure, ||A;|lz»@yy = IAllLm@w and hi(x) — h(x), p-ae., then
ks — AllLm@wy — 0. Therefore (b) follows from the fact that f;(r¢) — f(r¢) for
0<r<l1,and

! 1
/ Ifarold —r)y= = dr — f LFrO —r)~ 9 dr
0 0

whentr — 1. O

The result of Proposition 4.4 for H F/* is false. To show this, we prove that the
space H F{* on the unit disc is not separable. For the Bloch space H F$°>, this
result is shown in [Ca-Ci-P].

PROPOSITION 4.5. Let D be the unit disc. Then H F¥™ (D) is not separable.

Proof. 1t is sufficient to obtain the result for s = 0. Consider the set

]:={Zakzzk: ak=0’1],

k Zko

for some ko which we will later.

Observe that F is not enumerable. Therefore, to show that H Fy ° is not separable,
itis sufficient to prove that ¥ C HF, * andthat || f —g| 4 Frezc> O,forf,geF
and f # g.

It is clear that

I+ R Z akzzk

k>ko

sup(1 — |z|%)

zeD

< sup(l — [z") Y (1 +29Iz/* < oo,
zeD k>0

Therefore, 7 C HF{®® C HFJ™.
To prove that || f — gll,,ponoo > ¢ > 0, we have

" k
&+ Z a2

k>m

> sup ((1 +2myr?" — Z(l + 2’<)r2‘) (1 =r).
HFOWO O<r<lI k>m

Clearly, it is sufficient to show that for m > ko,

sup ((1 +2MrF =Y+ 2’<)r2*) (1-=r)>c>0.
O<r<l1

k>m
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Observe that for0 < x < 1,

1
Sy =) 2x% <+ + ) x4 55
I>1 1>5

and thus S(x) < 2x% + 4x* + 2x%/(1 — x).
Therefore, for x = 2", we have

A+2m" =Y a+259* ) a-r)

k>m

> (14+2™) (x - Z 2"“’”x2*‘”') a-=r)

k>m

25
2(1+2’")(x-—2x2—4x4— lfx)(l—r).

To conclude the proof, note that forr =1 — 27",

5 -4

>0. O

2
lim (142™) (x—2x2—4x4— ad
m—00 1

x) (1-r)=e'—2e72 474~ 2

e—1

COROLLARY 4.6. The space of holomorphic functions on a neighbourhood of D
is not dense in HFF™.
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