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UPPER AND LOWER MULTIPLICITY FOR IRREDUCIBLE
REPRESENTATIONS OF SIN-GROUPS

ROBERT J. ARCHBOLD AND EBERHARD KANIUTH

ABSTRACT. The main purpose of the paper is to establish formulae for both the upper and the lower
multiplicity of an irreducible representation of a Moore group. Moreover, we show that for a group with
small invariant neighbourhoods of the identity, the set of irreducible representations with finite upper
multiplicity coincides with the dual of a quotient group.

Motivated by examples in group C*-algebras, Archbold defined the upper and
lower multiplicities My (zr) and ML (zr) for an arbitrary irreducible representation
of a C*-algebra A. Similarly, one can define upper and lower multiplicities for r
relative to a net g2 in the dual space A of A: My(re, f2) and Mt(zr, f2) [2]. Since
My (zr) if and only if r satisfies Fell’s condition 1, Theorem 4.1 ], multiplicities
may be regarded as a measure of the extent to which Fell’s condition may fail for

Using the main result Of 11 ], it has been shown in [3, Corollary 2.9] that if G is
a simply connected nilpotent Lie group and zr G, then My (zr) < cx if and only
if the Kirillov orbit associated to zr has maximal dimension. Furthermore, Ludwig
10] has found non-trivial finite multiplicity in an explicit example for which it can
be shown that Mv(zr) 2. On the other hand, in the case of the discrete space
group G p4gm, Raeburn 16] has described C*(G) in a way that enables one to
compute multiplicities: there are three irreducible representations zr with My (7r) 2
and M(rr) 1, whereas Mv(zr) for all other zr. We shall see below that
this example fits into a general framework in which multiplicities may be computed
without recourse to a description of the group C*-algebra.,.

In this paper we study Mv(zr) and M(zr) for zr Gr, the reduced dual of a
SIN-group G. To begin with, in Sections 2 and 3, we concentrate on Moore groups
(groups with finite dimensional irreducible representations). In this case, My (rr) (and
hence M(rr)) is finite and we obtain formulae for both Mv(rr) and M(rr) in terms
of the multiplicity of rr in certain induced representations (Theorems 2.1 and 3.6).
Furthermore, the condition My (zr) is characterized by an equation involving the
dimension of zr. This emphasis on Moore groups is explained by Theorem 4.3 where
we show that if My (zr) < o for at least one zr in the reduced dual of a SIN-group
G, then G contains a compact normal subgroup K such that G/K is a Moore group
and

G/- {p : My(p) < oo {p : Mt(p) < oo}.
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1. Preliminaries

The formal definitions of multiplicity involve pure states and describe situations
in which several nets of orthogonal equivalent pure states converge to a common
pure limit [3, Lemma 5.2]. The following result from [3], which is a key tool in the
subsequent work of this paper, reflects the relation between orthogonal vector states
and the trace of an operator on Hilbert space.

THEOREM 1.1 ([3, Theorem 4.1 ]). Let A be a C*-algebra, let f2 (zru)a be a net
in A and let F be a nonempty subset of A. Suppose that there exist positive integers
mr (zr F) and a dense self-adjoint subalgebra B ofA such that

limtr(zr,(a)) m. tr(zr(a)) < oo
zrEF

for all a B+. Then

(i) Q is convergent to every element of F and every cluster point of f2 belongs
to F,

(ii) the relative topology on F is discrete,
(iii) mr Mu(zr, f2) Mt (zr, 2) for all zr F.

In such situations where Mv(zr, f2) ML(zr, f2), we write M(zr, f2) for the
common value. In the context ofTheorem 1.1 we may say informally that f2 converges
m, times to each zr 6 F.

Before applying Theorem 1.1 in Section 2, we need to show that Mv(zr)an be
attained by approximating zr by a net lying in a prescribed dense subset of A. This
fact is expected to have wider applications and so we organize the proof to show that
a sequence can be used if A is separable.

Let o be a pure state associated with an irreducible representation zr of a C*-
algebra A, and let A/" be the weak*-neighbourhood base at zero in the Banach dual
A* consisting of all open sets of the form

N { A*" IP(a)l < , < < n},

where e > 0 and a an A. We define

V(qg, N) {a : (or(.) O, O) o + N for some 0 7%, II011 1}.
Let P(A) denote the set of pure states of A. Then V(qg, N) is the image of (q9 + N) fq

P(A) under the canonical map from P(A) to A and hence is an open neighbourhood
of zr in A. For a V (o, N) let

Vec(a, o, N) {r/ 7%" Ilrtll 1, (cr(.)r/, r/) o + N},

and let d(a, o, N) be the supremum in 11 tA {oo} of the cardinalities of finite orthonor-
mal subsets of Vec(a, o, N).
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LEMMA 1.2. Let A be a C*-algebra, let S be a dense subset of and let rr .
Then there exists a net f2 in S which converges to rr and satisfies Mv(rr) M(zr, ).
IfA is separable, then the net 2 can be chosen to be a sequence.

Proof Let q) be a pure state of A associated with rr. By [1, Proposition 3.4],

Mu(zr) inf sup{d(cr, p, N): o" 6 V(cp, N) (q S}.
NA/"

()

Let R {k 6 N: k < Mu (zr)} and let A N" R with the product order. For each
(N, k) 6 A, equation (1) enables us to choose Cr(N,k) V (q), N) C3 S such that

d(Cr(N,k ), 99, N) > k. (2)

Let 2 (O’N,k))(N,k)EA. For No 6 N" and ko 6 R, by definition and by (2), we then
have

ML (99, No, f2) lim infd(<Y<N.k), <p, No)
(N,k)

> liminf d(<u,k), <P, N) >_ ko.
(N,k)>(No,ko)

Since k0 is arbitrary in R, ML(q), No, f2) > Mu(rr). Taking the infimum over No 6

AF, we obtain

Mu(sr) <_ ML(rr, ) < Mu(rr, ) <_ Mu(rr)

and hence Mu (re) M(re, ).
To show that is convergent to zr, let U be a neighbourhood of zr in ’. Since

the canonical map from P(A) to A is continuous, there exists No 6 N" such that
V(o, No) _. U. For (N, k) >_ (No, 1)we then have

O’(N.k V(q), N) c_C_ V(g),.No)

_
U.

Finally, suppose that A is separable. Then there exists a decreasing sequence (Nj)j>_
inN" such that {(q) + Nj) C’l P(A)" j > is a neighbourhood base for o in P(A). For
n > 1, let or, Cr(N.k) where N N,, and k min{n, Mu(zr)}. Then the sequence
(or,), has the required properties. I--I

We now have to introduce some notation and basic facts from representation theory.
As is customary, we shall use the same letter, for example zr, to denote a unitary
representation of a locally compact group G and the associated ,-representation of
the group C*-algebra C*(G). Then kerzr will denote the C*-kernel of zr. If R and
S are sets of unitary representations of G, then R is weakly contained in S (R -< S)
if NpER ker p

_
["],es ker or, and R and S are weakly equivalent (R S) if R -< S

and S -< R. Let p and cr be finite dimensional representations. Then p -< cr if and
only if every irreducible subrepresentation co of p is a subrepresentation of or" co <
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If, in addition, p is irreducible, then m(p, r) will denote the multiplicity of/9 as a
subrepresentation of

For a closed subgroup H of G and a representation r of H, indn r is the repre-
sentation of G induced by r. We shall frequently use the following version of the
Frobenius reciprocity theorem. Suppose that H has finite index in G ([G HI <
and let zr and r be finite dimensional irreducible representations of G and H, respec-
tively. Then m(zr, indn r) re(r, zr H) (see [13] and [15, p. 135]).

Our second basic tool is the so-called Mackey machine. Let N be a normal
subgroup of finite index in G and suppose that all the irreducible representations
of G are finite dimensional. G acts on the dual N of N by (a, r) -- cra, where
(7 (n) (7 (a- na) (n N). For cr 6

, let G (or) denote the orbit under this action
and S, the stabilizer of r. Let r S" such that tiN >_ (r; then ind,. r and

(indsGr)lN G (or). Conversely, given zr 6 with zrlN > r, there exists a unique
r 6 S, such that tiN > r and :r indsGo r. For all this see [12] (the separability
hypothesis is not required when N is of finite index and all irreducible representations
are finite dimensional).

2. Upper multiplicity for Moore groups

In this section we shall establish a simple formula as well as some applications
of it for the upper multiplicity of an irreducible representation of a locally compact
group all of whose irreducible representations are finite dimensional. Such groups
have been completely characterized by Moore [14] and are therefore usually re-
ferred to as Moore groups. By 14, Theorem 2 and Theorem 3] a locally compact
group G is a Moore group if and only if G is a projective limit of groups each of
which is a finite extension of a group with cocompact centre. As a result we have
the following structural properties. Let GF denote the subgroup of G consisting
of all elements with relatively compact conjugacy classes. Then GF is an open
subgroup of finite index in G, and the commutator subgroup of GF is relatively
compact.

Ford I1, letGd {p G" dp d}. The topology on Gd is the weakest
topology for which all the functions zr -- trzr(f), f 6 C*(G), are continuous [4,
Proposition 3.6.4]. Now on the set p (G) of all normalized continuous positive
definite functions on G the weak*-topology r(L(G), L I(G)) coincides with the
topology of uniform convergence on compact subsets of G [4, Th6orme 13.5.2].

d, it follows that tr zr, (x) ---> tr :r (x) uniformly onSince tr p s P (G) for all p
compact subsets of G whenever rr --> zr in Gd.

THEOREM 2.1. Let G be a Moore group and let 7r be an irreducible representation
of G. Then,for every irreducible subrepresentation cr ofzrlG F,

Mu (:r rn (n, ind or).
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Proof. Let ]3 denote the set of all r Ge such that St, the stability subgroup of
r in G, equals Ge. By [9, Lemma 2], E is dense in e. For every
is irreducible, and hence the set of all representations indo r, r E, is dense in G.
By Lemma 1.2 there exists a net (a,), in E such that, with zr indo

zr --+ zr in G and Mu(rr)= M(rr, (zr,)).

Notice that 7ralGF -’-> 7r]GF and (indge Z’)IGF G(r)for every r e F. Thus,
repcing each a by a suitable member of its G-orbit, we can assume that
in GF.

Let C be the closure of the commutator subgroup of GF. Then C is compact, and
since GF is type I,

a (R) G/C a (R) X" ; G/C

is open in G [7, Theorem 2]. Thus era e a (R) Ge/C eventually, and therefore we
can assume that d d, for all or. By what we have said above about the topology
of Gd,,, it follows that

traa(x) --> tra(x)

uniformly on compact subsets of GF. The formula for the trace of an induced
representation now shows that

tr zr (x) --+ tr (ind or) (x)

uniformly on compact subsets of G. On the other hand,

indue cr + m (p, indue or). p,

where the finite direct sum extends over all irreducible subrepresentations of ind
Thus, uniformly on compact subsets of G,

tr zr (x) -+ m (p, ind or)tr p(x).
p

Theorem 1.1, with B Co(G), now shows that m(p, indue or) M(p, (zru)a) for
each such p. In particular, by the choice of the net (zr,)a,

m (zr, indo a) Mu (r). I-’1

We continue with two consequences of Theorem 2.1. As before, G will denote a
Moore group.

COROLLARY 2.2. My (zr) dr for every zr GGF C_ G.
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Proof. This follows immediately from Theorem 2.1 since r occurs with multi-
plicity drr in indr F, the pull-back to G of the left regular representation of G/GF.

COROLLARY 2.3. Mu ()2 < [G GF for every

Proof Choose an irreducible subrepresentation a of zrlGF. Since the dimension
of ind cr equals do [G GF], Theorem 2.1 and Frobenius reciprocity show that

do[G" GF] > d, m (re, indue or) > do m(a, zrIGF) Mv(zr) do Mv(zr)2,

whence Mv(rr)2 < [G" GF]. ff]

In particular, it follows from Corollary 2.3 and [3, Theorem 2.6] that, for a Moore
group G, C* (G) has bounded trace. Not surprisingly, however, this has been known
before. The most comprehensive results about locally compact groups with C*-
algebras of bounded trace can be found in 18]..

Recall that if A is a C*-algebra and zr 6 A, then zr is said to be a Fell point if
it satisfies Fell’s condition (that is, there exist a neighbourhood V of zr in A and a
positive element a in A such that p(a) is a projection of rank for all p 6 V). It has
been shown in 1, Theorem 4.6] that zr is a Fell point if and only if My (rr) 1. It is
therefore of interest to deduce from Theorem 2.1 a necessary and sufficient condition
for zr 6 G to have upper multiplicity 1.

COROLLARY 2.4.
rr GF >_ t7 Then

Let G be a Moore group and zr . G. Let a . GF be such that

Mv(:rr) >
do[G So]"

Furthermore, My (zr) ifand only dr do [G Si ].

Proof. By Mackey’s theory there exists r 6 So such that rlGF is a multiple of
a and zr inds, r. Then, by Theorem 2.1 and Frobenius reciprocity,

Mv(zr) m (zr, indue a) m (ind r, inds (indF a))
> m (r, inda)=m(a, rlGF).

Since dr dr[G So] and dr m(a, rlGv)do, we get

d
Mv(rr) >

do[G So]

In particular, if My (zr) 1, then dr do and hence d,r do [G So ].
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Conversely, suppose that d,r d, [G S, ]. Then r is an extension of r and with

1" S,, / GF it follows that

Now, by Mackey’s theory again, all the representations ind,. (r (R) F), F F, are
irreducible and pairwise inequivalent (see [12] and [15, Lemma 2]). It follows that

Mu (r) m (indsG r, indG (r) 1.

COROLLARY..2.5. Let G be a Moore group. Then C*(G) is a Fell algebra (the.at
is, every zr G is a Fell point) if and only ifGGF is abelian and every cr GF
extends to some representation of its stability group.

Proofi Suppose that Mv(r) for all r G. Then the dimension formula
of Corollary 2.2 shows that d for all n" G/GF, which implieshat G/GF is
abelian. Also, as we have seen in the proof of Corollary 2.4, if r So is such that
r indf, r and rigF is a multiple of, then rigF provided that My (r) 1.

Conversely, let G/GF be abelian and suppose that every r GF extends to some
r e . Then every r i’ is of the form r indf (r (R) X) for some e F and

X S/GF. Since X is 1-dimensional, we get

dr dr(R)x[G S,] d[G S].

Corollary 2.4 now shows that Mu (zr) for all zr

We conclude this section with two remarks illustrating the usefulness of Corollar-
ies 2.2 and 2.5.

Remark 2.6. Every natural number arise as the upper multiplicity of some irre-
ducible representation of a Moore group.

To see this, let m N and let Sm be the group ofpermutations of m }. Let A
be any non-compact locally compact abelian group and form the semi-direct product
G Sm < Am where Sm acts on Am by permuting the components. Then G is a Moore
group with GF Am. By Corollary 2.2, Mv(zr) dr for every zr 6 G/GF Sm.
Now, Sm has an irreducible representation of dimension m 1. In fact, the so-called
Specht module associated to the partition (m l, l) ofm is irreducible of dimension
m (see, for instance, [5, Theorem 4.12 and Example 5.1]).
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Remark 2.7. Suppose that G is a semi-direct product G H < N where H is
finite, N is abelian and N Ge. Then C* (G) is a Fell algebra if and only if H is
abelian. This follows from Corollary 2.5 once we have shown that if H is abelian,
then every cr N extends to a character of its stability subgroup. However, this
is guaranteed by the fact that this stability group is of the form H, < N for some
subgroup H, of H and that H, is abelian.

3. Lower multiplicity for Moore groups

Let G be a non-compact Moore group and zr G. Notice that since G is non-
compact, zr cannot be open in G and thus ML (zr) is defined. The purpose of this
section is to show that, like Mu (zr), the lower multiplicity Mt (zr) can be realized as
the multiplicity of zr in a certain induced representation indn r. Here H is a subgroup
of G containing Ge and r is an irreducible representation of H. However, although
there are only finitely many possibilities, there seems to be no canonical choice of
the pair (H, r).

LEMMA 3.1. Let G be a Moore group and N a closed normal subgroup ofG such
that GIN is abelian. Let rt G and

If (pa)a is a net in Gv,r converging to some p GN,r, then tr p(x) ---> tr p(x)
uniformly on compact subsets of G.

Proof. By the remark.preceding Theorem 2.1, it suffices to show that GN,r

___
Ga. To that end, fix p Gv,r. Then, since G/N is abelian,

p -< ind,(piN) ind(n’lN) :rr (R) ind lv rr (R) G.
Thus there is a net (X) in G/N such that r (R) X -- P in G. It follows that dR
Similarly, n" -< ,o (R) G/N, and as before this yields that dr < do, as required.

Let G be any locally compact group and H an open subgroup of G. Let r be a
unitary representation of H and zr ind r. In the course of the proof of the next
lemma we shall use the fact that if zr(C*(G)) is finite dimensional, then H must have
finite index in G. This conclusion is not surprising and has been shown to be true in
[9, Lemma 3] whenever H is a closed (notnecessarily open) normal subgroup of G.
Since the proof is very short and much less technical in the case of an open subgroup,
we include it for convenience.

Let zr(C*(G)) be of dimension d, and suppose that H has at least d + different
left cosets in G, say aoH adH. Fix some v 7-/r and f Co(H) cc_ C.(G)
such that r(f)v - 0anddefine 6 7-(r by (h) r(h-l)v forh 6 H and
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(x) 0 for x G \ H. Next, observe that for a and x in G, 7r(Laf)(x) 0 if
x q all, while rc(Laf)(a) r(f)v. Now there exist L0 .d C such that
.__,=jd__0 .j 7r(Laj f) 0 and Lk 0 for at least one value of k. It follows that

d

0 )j 7r(La.,f)(ak) Xk r(f)v,
j=0

a contradiction.

LEMMA 3.2. Let H be a Moore group and define subsets S ofHF and T ofH by

S {tr F: S H} and T {r : rlHF trforsome cr S}.
Suppose that (ra)a is a net in T converging to some r T, then tr ra(X) -- tr r(x)
uniformly on compact subsets of H.

Proof. Let N HF and let C denote the closure of the commutator subgroup of
N. Then C is compact and hence to (R) N/C is open in N for every to N.
Now let tra, cr S be such that raiN ra and tiN tr. Since tra cr in

N, we have tra cr (R) N!C eventually. Thus we can assume that for every c there
exists ,ka N/C such that tra cr (R) .a. By hypothesis, cr and tra are H-invariant.
However, ,ka need not be H-invariant.

Consider any to N and X N/C such that to and to (R) X belong to S. Then, for
every a H,

to(R)) (to(R) )a toa (R) a to(R) a,
so that(a)(R)w w. Now, letX,o {/z N/C" o(R)/x w}. Then
is a closed subgroup of N/C and hence of the form X,o N/M for some closed
subgroup M of N (containing C). By definition of X,o, to indt(tolM). Moreover,
tr w (x) =/x(x) tr o (x) for all x N and # N/M. This implies that tr w (x) 0
for every x 6 N \ M, and this in turn implies that M is open in N. By the remark
preceding the lemma we conclude that M has finite index in N and hence in H. Let
L be the largest normal subgroup of H contained in M. Then L is of finite index in
H and if/z N/C is such that to (R)/z to, then #IL t.
We now apply this to to or. Thus there exists a normal subgroup L of finite

index in H with the property that (alL xIL for all a H whenever X e N/C is
such that cr (R) , S. Since era tr (R) ,a S, we have ,a IL .a IL for every a and
every a H. That is, all the )alL are H-invariant.

Let K {x e L" ka (x) f all c }. Then K is normal in H since all )a L are
H-invariant. Furthermore, since the set of all characters ka L separates the points of
L/K, it follows that L/K is contained in the centre of H/K. Thus H/K has a centre
of finite index and hence a finite commutator subgroup. Let E denote its pull-back
to H. Then E/K is finite and H/E is abelian.
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By definition of K, for all ct we have,

rlK rlK (rlK (R) LIK (rlK rlK.

Choose an irreducible subrepresentation ?’ of tiE. Since rlE ---> r lE, for each
there is an irreducible subrepresentation , of r E such that ,a ---> ?’ in E. Let
J ker(ind(rlK)) and A C*(E)/J. Then A is a finite dimensional C*-algebra
since r is finite dimensional and E/K is finite. Moreover, since r K r IK,

kery kerr ker (ind.(rlK))= J.

Thus ?’ ---> , in A and hence y,a ?, eventually. It follows that

talE G(y) G(y) tiE

eventually. Therefore we may assume that riE r lE, that is, r He,, for all
ct. An application of Lemma 3.1 now shows that tr r(x) ---> tr r(x) uniformly on
compact subsets of H. El

Let G be a Moore group and cr GF. A subgroup H of G containing GF is
called admissiblefor cr if there exists a net (tr) in GF with the following properties:
cr, -, or, tr G(tr) and S. H for all t. Then clearly H c_ S, since GF is a
Hausdorff space.

LEMMA 3.3. Let G be a non-compactMoore group and let tr G F. Let H be
an admissible subgroupfor r and let r . H such that r GF is a multiple of. Then

Mt (r) _< m (r, ind r)

for every irreducible subrepresentation r ofindt r.

Proof. Let r be an irreducible subrepresentation of ind r. Since r is an irre-
ducible subrepresentation of indg cr and indn (r. ---> indg or, there exist r.
such that r. GF tr. and r --> r in . Let rr. ind r.; then zr and
r. ---> ind r, and hence r. ---> zr in . Moreover, zr. r for every ( since
zrlGF G(a), rr.IGF G(cr.) and G(tr.) tq G(cr) 0 by hypothesis.

An application ofLemma 3.2 shows that tr ra (x) ---> tr r (x) uniformly on compact
subsets of H. This implies that

trzr,(x) tr (ind r.)(x) --> tr (ind r)(x)
uniformly on compact subsets of G. Now

tr (indn r) Zm (p, ind r)tr p,
p
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where the sum extends over all irreducible subrepresentations p of indt r. It follows
from Theorem I. that m (p, ind r) M(p, (zr,),). In particular,

M(rr) _< M(r, (zr)) m (zr, indn r).

COROLLARY 3.4. Let G be a non-compact Moore group, let (7 G F and suppose
that S, itself is admissible for (7. Then ML (r for every irreducible subrepre-
sentation ofindF

(7.

Proof. Given such a r, there exists r 6 ’S_ so that 7r indso r and r IGF is a

multiple of (7 Now Lemma3.3 with H S, gives that Mt(:r) < m(r, indso r) 1.

The following example is a typical application of Corollary 3.4.

Example 3.5. Let G =Sm < A’" be as in Remark 2.6. Then, for each (7 6 A’",
the stability grou.p of (7 is.admissible for (7. This can be seen as follows. If (7

((7 (7,,,) A"’ (.i A) and 0 Sin, then 0 belongs to the stability group of (7

if and only if (7o.il .<i for al! j m. Now, since A has no isolated points,
there exists a net ((7)) in A’" converging to (7 such that (7() - (7 for all and

(Tj
() (7i(t) if and only if a.i (7i for each ot and all i, j 6 m }. Corollary 3.4

shows that ML (r) for every r G.

Now we are ready to combine Lemmas 3.2 and 3.3 with Theorem 1.1 and results
from [2] to obtain the formula for lower multiplicity alluded to at the beginning of
this section.

THEOREM 3.6. Let G be a non-compact Moore group and let r G and (7 G F
such that (7 < r G F. Then

ML (zr) min m (zr, indn r),
(H.r)

where H, r) runs through all pairs consisting of an admissible subgroup H for (7

and an irreducible representation r ofH such that :r < ind r and riG F (7.

Proqf. In view of Lemma 3.3 it suffices to show that m (zr, ind r) < Mt (rr) for
some pair (H, r).

By [2, Proposition 2.2] there exists a net f2 in G \ {rr} converging to zr such that
Mt (zr) Mt (rr, f2 ). By Proposition 2.3 of [2], g2 possesses a subnet ’22 satisfying
M(n, g22) Mt(zr, f2). Since G/GF is finite and by successively choosing further
subnets, we find a subgroup H of G containing GF and a subnet f2 (rr), of "22
with the following properties:
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(1) zr [GF G (tra) for some tr, GF such that era -- tr in GF and S H for
all

(2) zra ind 3a where 3 / is such that 3[GF tra and 3a - 3 in for
some 3 H.

Of course, (1) and (2) imply that 3[GF tr. It follows from Lemma 3.2 that
tr 3 -- tr 3 uniformly on compact subsets of H and therefore, uniformly on compact
subsets of G,

trra(x)-- tr (ind 3)(x)= Z rn (p, ind 3)trp(x),
P

where the sum extends over all irreducible subrepresentations of ind 3. Since
converges to rr in G, (i) and (iii) ofTheorem 1.1 now show that zr is a subrepresentation
of ind tr and that

rn (zr, ind 3) M(rr,

Summarizing by the choice of f21, ’2 and f2 and since f2 is a subnet of "22, we get

rn (zr, indt 3) M(zr, f2) M(zr, 2) ML(yt, l) ML(Yr),

as required.

COROLLARY 3.7. Let zr G and tr GF be such that tr <_ 7rlGF. If the
representation indF cr is multiplicityfree, then ML (yr 1.

Pof. By Theorem 3.6 there are a subgroup H of S containing GF and some
3 H such that 31GF or, zr _< ind 3 and ML(zr) m(zr, ind 3). By hypothesis,

indL (r ind (ind

is multiplicity free and hence so is its subrepresentation ind 3 (notice that 3 <

indg or). Now, for every irreducible subrepresentation/9 of ind 3, ind,, p is irre-
ducible, and the mapping/9 - indso/9 is injective. Since r indso/9 for some such
/9, it follows that zr occurs only once in ind 3, as was to be shown.

The hypothesis of Corollary 3.7 that indF tr be multiplicity free is fulfilled, for
instance, if GF splits in G (that is, G is a semi-direct product of some finite group A
with GF) and GF and A f3 S, are abelian.

It is conceivable that ML (zr) mightbe equal to for every irreducible representation
r of a Moore group. However, we incline to the opposite view and hope that the
formula of Theorem 3.6 will be useful in the attempt to construct a Moore group G
and an irreducible representation r of G with ML (yr) > 1.
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4. Finite multiplicities for SIN-groups

In this final section we turn to SIN-groups. Recall that a locally compact group
G is said to have small invariant neighbourhoods if G has a neighbourhood basis of
the identity consisting of sets V such that x-Vx V for all x e G. In particular,
discrete groups are SIN-groups. The representation theory of SIN-groups, notably
the left regular representation, has been studied in [6] and 19]. Moore groups are
precisely those SIN-groups which are of type I.

For a SIN-group G, it is immediate from the definition that the subgroup GF of all
elements with relatively compact conjugacy classes is open in G. The reduced group
c.c..*-algebra C(G) is the image of C*(G) under the left r...egulaLrepresentation, and
Gr C_ G denotes the dual space of C*(G). Recall that Gr G if and only if G is
amenable.

LEMMA 4.1. Let G be a SIN-group and let I be a non-zero closed ideal ofC* (G).
If I is a type I C*-algebra, then G/GF is finite and the commutator subgroup ofGF
is relatively compact.

Proof. Let VN(G) be the von Neumann algebra generated by the left regular
representation of G. Since G is an SIN-group, VN(G) is a finite von Neumann algebra
[4, Proposition 13.10.5]. By hypothesis on I, the weak closure [ of I in VN(G) is
a type I von Neumann algebra. Thus there exists a non-zero central projection E
in VN(G) such that E(VN(G)) is type I, finite. The statement of the lemma now
follows from [6, Satz 2] (see also [19, Theorem 3]). I"1

In what follows, for zr e Gr, we denote by Mb(r) and Mu(zr) the upper multi-
plicity of zr viewed as a representation of Cr* (G) and of C* (G), respectively.

THEOREM 4.2.
are equivalent.

For a non-compact SIN-group .G the following three conditions

(i) There exist :r Gr such that Mb(r) <
(ii) There exists a non-empty open subset V ofGr such that Mr (p) < xfor all

peV.
(iii) G hasfinite index in G and a relatively compact commutator subgroup.

Proof Suppose that_(i) holds. Then the set of all p Gr with Mj(p) < oo is
non-empty and open in Gr by [1, Proposition 2.3]. Thus (i) implies (ii.

Let V be as in (ii) and let I be the closed ideal of C(G) with I = V. Since
M[(p) is defined for every p 6 V, no singleton {p}, p e V, can be open in Gr. It
follows from Theorem 4.4 of that p(C*r(G))

_
1C(7-[p) and hence p(1)

_
1C(7-[p)

for every p 6 I. Thus I is a type I C*-algebra by the Glimm-Sakai theorem and then
(iii) is a consequence of Lemma 4.1.
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Finally, let (iii) be satisfied and denote by C the closure ofthe commutator subgroup
of GF. Then G/C is almost abelian and hence every p G/C has finite upper
multiplicity relative to C*(G/C) (see Theorem 2.1). However, since C is compact,
C*(G/C) is an ideal of C*(G) and hence that multiplicity coincides with the upper
multiplicity of p relative to C* (G) (see [3, Lemma 2.7]). This proves (i). I-’1

In particular, since groups as in (iii) of the preceding theorem are amenable, this
shows that if G is a non-amenable SIN-grou.l then Mv(r) x for all zr Gr.
In this case there may or may not exist p G with My(p) < c. For ex...ample, if
G IF2, the free group on two generators, then My (p) cx for all p G because
C*(F2) is antiliminal, whereas if G has Kazhdan’s property (T) then My(16) 1.

As an additional example consider an arbitrary non-compact nilpotent SIN-group
G. For such G, it has recently been shown in [8] that ML (zr) cx for each infinite
dimensional zr G. This implies that Mv(r) x for every zr G. On the other
hand, ML (zr) for every finite dimensional r G [8].
We conclude this section with a precise description (in the situation ofTheorem 4.2)

of the set of all irreducible representations with finite upper (respectively, lower)
multiplicity.

THEOREM 4.3. Let G be a non-compact SIN-group and suppose that G satisfies
one (and hence all) of the conditions of Theorem 4.2. Then there exists a compact
normal subgroup K ofG such that

G/ {rr : Mu(rr) < oo}= {zr j: ML(Zr) < oo}={zr " dr < oo}.

Proof. We know that G/GF is finite and C, the closure of the commutator sub-
group of G F, is compact. We define a normal subgroup K of G by

K {x e G" p(x) for all p e G such that d

Then K

_
C since G/C is a Moore group. By definition of K, GF/K is a maximally

almost periodic group with relatively compactcommutator subgroup. As such, GF /K
is a Moore group [17] and hence so is G/K. Thus

<

From Theorem 2. we know that Mu (zr) < oo for every rr e G/K. Note that, as
in the proof of Theorem 4.2, Mu(rr) is the same relative to C*(G/K) as relative to
C*(G). To com.plete th_.....e proof of the theorem it remains to show that ML(Yr) O0

for every r e G \G/K.
Suppose zr G is such that M(zr) < cx. Notice that {zr} cannot be open in

G since G is non-compact. It follows that r(C*(G))

___
K:(7-/rr). Now, G being a

finite extension of a group with relatively compact commutator subgroup, C* (G) has
a T primitive ideal space [7], [15]. Hence zr(C*(G)) is simple, whence zr(C*(G))
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/C(7-(). Since G is a SIN-group, L(G) (and hence C*(G)) has a central approximate
identity F. Thus, for every f e F, zr(f) is compact and zr(f) e C. since r is
irreducible. This forces zr to be finite dimensional, so that r 6 G/K. rl
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