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A BGG TYPE RESOLUTION OF HOLOMORPHIC
VERMA MODULES

FLOYD WILLIAMS

ABSTRACT. For a Hermitian symmetric space X = G/K of non-compact type let 6 denote the Cartan
involution of the semisimple Lie group G with respect to the maximal compact subgroup K of G, and let
q denote a 0-stable parabolic subalgebra of the complexified Lie algebra g of G with corresponding Levi
subgroup L of G. Given a finite-dimensional irreducible L module Fi, we find Bernstein-Gelfand-Gelfand
type resolutions of the induced (g, L N K) module U(g) ®yq) F1 and its Hermitian dual, the produced
module Homu(q—, (U(g), FL)LNK —finite» Where U (+) is the universal enveloping algebra functor and g is the
complex conjugate of g. The results coupled with a Grothendick spectral sequence provide for application

to certain (g, K') modules obtained by cohomological parabolic induction, and they extend results obtained
initially by Stanke.

1. Introduction

Let X = G/K be a Hermitian symmetric space of non-compact type where G is
a non-compact connected semisimple Lie group with finite centerand K C G is a
maximal compact subgroup. If g, k denote the complexifications of the Lie algebras
80, ko of G, K and kg C ky is a maximal abelian subalgebra of kg, then hy is a Cartan
subalgebra of gy and we denote by A the set of non-zero roots of (g, h) where h = hg
is the complexification of hy. The G-invariant complex structure on X corresponds
to a choice Q C A of a positive system of roots such that the spaces p* and p~
of holomorphic and antiholomorphic tangent vectors, respectively, at 0 = 1K are

given by
pE= ) gt (1.1)
aeQNA,
for g, C g the root space of « € A and for A, the set of non-compact roots of A. For

p=p*®p, g =k pisaCartan decomposition. Denote by 6 the corresponding
Cartan involution of g: 6 = 1onk and & = —1 on p.

Fix a 0-stable parabolic subalgebra g = g, = £ + u of g. That is,

£=h+ Z 8o U = Z 8 (1.2)

a(x)=0,0eA a(x)>0,aeA
for some x € i ho; i> = —1. We assume that the structure of g is compatible with
the G-invariant complex structure on X, i.e., for
A(u) &f e Ala(x) >0}, A®@) d;f{oe € A|lax)=0}, (1.3)
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we have

Aw) = Q — AL) 1.3y

We will check below that if by = h + ZaEQ 8o is the Borel subalgebra of g defined
by Q then

(1.3) holds <= ¢ D bg. (1.3)"

We will also denote A(£) by r(£). Conjugation of g with respect to go will be
denoted by an overbar.
Let

L=L,={aeG|Ad@a)x =x} (1.4)

be the Levi subgroup of G with Lie algebra £, where £ = Zbc (since = €); £y = go.NL
and L is connected.
In this paper, given a finite-dimensional irreducible L module F; we finda (g, LN
K) resolution of the produced module
Prof /" F1 = Homy (U (8), FL) k- finie (1.5)
where U (-) is the universal enveloping algebra functor and # acts trivially on F;. The

resolution is in the spirit of Bernstein, Gelfand, and Gelfand [1], [6], [7] since it has
the form

00— Prog'g Fph—>Vgy—V—. .. — Vdim(iﬂp"’) —> 0 (1.6)

for B =L N K, where

— 8B
V= ;«, ®Profl . Fp(w) (1.7)

length w=j

is a sum over a certain subset W' (£) of the Weyl group of (¢, k) and w € W'(£) indexes
a particular finite-dimensional irreducible B module Fg(w). See Theorem 4.23,
which is a dualization of the resolution of the induced module U(g) ®u(q) Fr by a
direct sum of generalized Verma modules givenin Theorem 4.18. Theorems 4.18,4.23
and applications to (g, K) modules obtained by cohomological parabolic induction
(see Section 5) extend to the general Hermitian symmetric space setting results of
R. Stanke obtained for the case X = SU @, m)/S(U(n) x U(m)). Compare with
Proposition 4.22 of [8], for example, where for the choice of g there the sum in (1.7)
here reduces to a single summand.

For the sake of completeness we verify statement (1.3)”. Clearly if condition
(1.3) holds then g D bg. Assume conversely thatq D bg. Let @ € A(u). We have
ax) > 0= (—)(x) <0= g, Cu. If -« € Qtheng_o Cbg C g =
g-o C uNg = {0}, whichis acontradiction. Thatis, —« € —Qora € Q—A{) =
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Aw) COQ—AW). Ifa e Q—A()theng, Cbg Cganda ¢ A(f) = a(x) >0
of a(x) < 0. Butfor a(x) <0, g C U = g, C uNgq = {0}, which again is
a contradiction. Thatis, x(x) > 0 = a € A(u) = Q0 — A{) C A(u) =
Q0 — A(®) = A(u), which is (1.3)" as desired.

2. Some structural preliminaries

In this section some structure results needed for later applications will be dealt
with and further notation will be established. Guided by Section 4 of [8] we construct
a certain parabolic subalgebra pg of the semisimple part £*° = [£, £] of £ whose role
will be of pivotal importance.

The G-invariant almost complex structure on X and the semisimplicity of G pro-
vide for the existence of an element z in the center of ko which satisfies [z, x] = +ix
for x € p*. Since hy C ko is maximal abelian, z € Ay and one has:

a(z) €{0, £i}Va € Awitha(z) =0 e a € A, DA -4,

2.1
(the set of compact roots), a(z) =+ i & g, C p*. @1

Equation (1.1) can be written as

Pr= ) 2.2

a(z)==% i,a€A

Consider the element x (z) L izei ho and the corresponding 6-stable parabolic
qxz) = £, + u, itdefines. By (1.2), (2.1)and 2.2), £, = h + ZaeAk 8=k, u, =
pT = q.(z) = k + p*. Similarly let q; = £; + u; def qr+x(z) be the O-stable
parabolic defined by x + x(z) = x — iz € i hg. Using the basic assumption (1.3)’
and the properties of z in (2.1), and writing r(£) = A(£), one checks the following.

PROPOSITION 2.3. Fora € A, a¢(x +x(2) =0 < a e r(f) N Ay, alx +

x(2)) > 0= a € A(w) U A(p*) where A(p*) &ef QN A,. Hence (by (1.2)),

£ =h+ Z e =LNk, uy = Z ge=u+pt.
aer()NAg aeAW)UA(pt)

Alsoqi =qNgxqy Dbopandq Nk=q Nk, uyNk=unk.

Recall that subalgebras a of g which contain b (i.e. the aare parabolic subalgebras)
are indexed by subsets E of the system of simple roots Iy of Q as follows. For
a € A write @ = Xycn,ny(a)y where the n, () are integers with the same sign,
with + n,, (@) > 0 for @ € £ Q. Define

A(E)={a € A|n,(@) =0Vy € Mg — E}
le=h+ Y g UE= ) g (2.4)

aeA(E) aeQ~A(E)
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Then a = a(E) = £ + ug; here £g is reductive (the Levi factor of g) and E =
My N A(E). The parabolics g, gx(z), g1 &f qx+x(z) correspond, for example, to the
subsets E def r(@) NIy, Mo N Ay, E def r(€) NIy N Ay, respectively, of Tg.
In place of g, apply these remarks to the semisimple Lie algebra £°° &f [£, €], with

Cartan subalgebra h** & e and simple root system IT¢; %1 the set of restrictions
{ylh**ly € E =r()NIp}. AsubsetSof l'lg.thus determines a parabolic subalgebra
ps = £s + us of £** which contains the Borel subalgebra h** + 3. 5 () 8« Of £
We consider a particular subset of I1y;. Namely, once and for all, we choose

SE yIhly € ELE Mo Nr(®) N Ax) 2

where, as seen above, E; C Tlg defines g;. Using (2.1) for example and defini-
tion (2.4) one computes that

bs=h"+ Y guus= ) g 2.6)

aer(¢)NAg aeQNr)NA,

Then, by the basic assumption (1.3)/,
us=£N0p*. Q2.7

Let C denote the field of complex numbers. For o € A, let H, be the unique element
of h > a(H) = (H,Hy) YH € h. If h(E) denotes the C span of the elements
{Hy | @ € E} for E C Il then h(E) is a Cartan subalgebra of [££, ££] and

e, Lel=h(E)+ ) g 2.8)
a€A(E)

for £ in (2.4); note that h(E) = h N [Lg, £g]). As £ Nk = £, is the Levi factor of
q = q(E)) for E, &f My Nr(€) N Ag, as noted above, from (2.8) one obtains
€N EENkeNkl=h(ED+ Y. g 2.9)
aeA(E))=r(&)NA
Similarly since ¢ = q(E) for E &f r(£) N Iy, as noted above, h** &f hNes =
h(E). That is, clearly h(E;) C h(E) = h** = (L Nk)* + h** = h(E|) + h*° +
Y wcrna, 8« Y (2.9) =h™ + 3 ;)na, 8- Thatis, we can also write (2.6) as

Ls =h" + (Nk)* (2.10)

PROPOSITION 2.11. [£g, £5] = (£ Nk)*S.

Proof. [Ls,£2s[C (€N k)™ by (2.10). Conversely, as (£ N k)** is semisimple,
Nk =[Nk, (ENk)] C [Ls, £s], again by (2.10).
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Denote the center of a Lie algebra b by z(b). Thus z(g) = {H € h | a(H) =
0 Vo € E}forfgin (24) = z({) = {H € h | a(H) = OWa € r(¢) NIy} C
{H € h|a(H) =0Va € E|} = z(£Nk) (again as £ Nk = £;). Similarly
z2(Ls) ={H € h**|B(H) =0VB € E}(by (2.5)) = z(£s) C z(£Nk). Conversely,
one has the following.

PROPOSITION 2.12. z(£Nk) = z(£) ® z(£s).

Proof. £ =1 @ z({) => h = h* @ z(£), with h** = h(E = r(£) N Tly), as
noted above. Similarly £5 = £ @ z(€s) = h*" = h(E)) ® z({s) =

h=h(E)) ® z(£s) & z(¢). (2.13)

For H € z(¢€Nk), write H = Hy + Hs + Hy € h(E\) + z(£s) + z(£) by (2.13).
Fora € B, € MoNr@)NA, C r@@NTp, a(H) =0, a(Hs) = 0, and

a(Hy)) =0 = «a(H,) =0. Thatis, Hy € h(E)) Ch** s a(H)) =0Va € E, =
Hy ez({s) = H = (H + Hs)+ Hy € 2(£s) +z(£) = z(£Nk) C z(Ls) + z2(£),
as desired.

COROLLARY 2.14. £Nk =£5 @ z(£).

Proof. £Nk = ((Nk)* ®z(LNk) = [Ls, Ls]Dz(£s) Dz (£) (by Propositions 2.11,
2.12) = £s @ z(L).

In addition to the subalgebra pg of £°° we shall need to consider the subalgebra p,
of £ given by

peE @Nk)+us=(ENk)® (€N p*); (2.15)
see (2.7). The following is easily checked.

PROPOSITION 2.16.  pg = £Nqy(y; recall gy ;) = k+ p*. Also by Corollary 2.14,
pe=Ls®z(£) Dug = ps D z({).

PROPOSITION 2.17. £ = €*° + p, with £° N\ py = ps. Alsou; = u ® ug.

Proof. py = £ N gy, by Proposition 2.16, and £*° C £ = € 4 p, C £%.
Conversely, £ = £ + z(£) withz(¢) C h C LNk C py = £ C £* + p;.
Clearly ps C p¢ (cf. Corollary 2.14) and ps C £°° by definition. Conversely, for
v el Np,write v =y 42z € ps+ z(€) by Corollary 2.14, as v € p;. Then
yepsCl¥andv el = z=v—ye€l¥ie,ze’Nz{) ={0} =
v=y € ps == £ N py = ps. By Proposition 2.3, u; = u + p*, and by (2.7)
us = €N pT = u+ug C u;. Conversely, one checks that u; C u + ug. Of course
us C L = usNu = {0}.
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COROLLARY 2.18. g = p, D u

Proof. pe+u déffﬂk+us+u = £Nk+u (by Proposition2.17) = £, +u; = q.
PROPOSITION 2.19. g = gq; + £ withq, N £ = p,.

Proof. By Corollary 2.18, g, = pe+u => g1+ € =pr+u+£ =u+£ (as
pe C £) = q. By Propositions 2.3,2.16, q1 = ¢ Nquy, Pe = £NGxp) = @1 NE =
q NGxey NE =gy NE= pe.

Let W denote the Weyl group of (g, ) and let W, denote the Weyl group of (k, k),
the subgroup of W generated by Weyl reflections r, as « varies over A;. In (2.1),
€ QNA, < a(zx) =i,a € Ay < a(z) = 0. It follows that

g(QNA)=0NA, foroeW,. 2.20)
In particular for 28, & 2 acona, %

oé, = 4§, for o € W; and hence (§,, Ay) =0. 2.21)

3. Induced and produced modules

Given the general results of Section 2, and other generalities, we can adapt most
of the arguments of Section 4 of [8] and extend the results given there to arbitrary
Hermitian symmetric spaces. Many of Stanke’s arguments already are quite general
once his notation is established. The choice of ¢ in [8] leads to special simplifications
(as indicated in the introduction) not available in general. In working with more
general g’s we can still move forward, since induction and production “commute” with
direct summation; see Proposition 3.8. An interesting point is finding a replacement
for Stanke’s Proposition 4.10, which is less suited for application here. For this we
make a simple but useful observation; see Theorem 3.3 and the remarks that follow
its statement.

For a complex Lie algebra h containing the complexified Lie algebra of a compact
Lie group B with the pair (h, B) subject to conditions (a), (b) of Definition 6.1.1 of

[9], we can consider the category of (h, B) modules. In particular, choose B LNk
for L in (1.4) and let F be a finite-dimensional C* B module over C. Then F is an
(€Nk, B) module with £Nk acting on F via the differential I of the representation IT of
B on F. By definition (2.15), we can extend F toa (p¢, B) module > ug-F = 0(since
[€Nk, us] C ug). Similarly, asq, = £,®u;, £; = £Nk and g = £6du, we can extend
F to a(q, B) module 3 u; - F = 0, and we can extend the induced (¢, B) module

def

Ind;? F S U®) Qupy F 3.1

(cf. Definition 6.1.5 of [9]) to a (q, B) module on which u acts trivially. With these
stipulations we have the following version of Proposition 4.17 of [8].
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THEOREM 3.2. There exists a canonical (g, B) isomorphism 1 of the induced
module U (g) ®u g) (U (€) ®u p,) F) onto the induced module U (8) ®u(q,) F. t(uBuq)
(A ®U(m) ) =uA ®U(¢l|) ffor (u, A, .f) € U(g) xU{) x F.

We outline the proof. By Proposition 2.19, ¢ = g + £ with g N ¢ = p,. By
Proposition 5.1.14 of [2] (which we call a Mackey ‘“subgroup” theorem), it follows
that there is an £ module isomorphism ¢ of U (£) Qu p,) resfl’l’: gFontoU(q)®uq) F

(given by u ®u(p,) f —> u Quyq f for (u, f) € U() x F), where resf;f,‘gF is F
considered as a (p,, B) module by restricting the g, action to p;. ¢ is clearly a B
map, where B acts via Ad ® I, and thus is an (¢, B) isomorphism. Note that we
initially regarded F as a (p¢, B) module with p; = (£ Nk) @ us and with ug acting
trivially. That (p¢, B) module coincides with resfl’l‘:gF since ugs C u; = u +us C
g1 = pe + u by Proposition 2.17 and Corollary 2.18. Next, note that u acts trivially
on U(q) ®u,) F, since [q,u] C u C u; C q. By definition, u acts trivially on
U () ®u(p) F in (3.1) and thus ¢ is a (g, B) isomorphism. ¢ induces a unique (g, B)
isomorphism ¢* of U (g) ®u(q) (U (£) Qu(p,) F) onto U(g) ®u 4y (U(q) Bu(q,) F) such
that ¢* (1 Qu(q) V) = u Qu(q) ¢ (v) for (v, u) € (UE) Qup,) F) x U(g). Finally, as
g1 C g C g (cf. Proposition 2.3) there is an “induction in stages” (g, B) isomorphism
¥ of U(g) ®ug) (U(q) Buq,) F) onto U(g) uq,) F givenby ¥ (u Qu(y) (A Qu(q)
) = uA Qu, f for (u, A, f) € U(g) x U(q) x F (cf. Proposition 5.1.11 of
[2]); ¥ can also be constructed by repeated applications of Frobenius reciprocity (cf.

(6.1.7) of [9]). ¢ f ¥ o ¢* is the desired (g, B) isomorphism.

THEOREM 3.3. LetY, = U(£) Quqp,) F be an induced (£, B) module as in (3.1);
thus F is finite dimensional with ug - F = 0. Let Y, be an arbitrary (¢, B) module.
Then any £-module map ¢: Y\ —> Y, is automatically a B-module map, and hence
is an (£, B) module map.

Remarks. A version of Theorem 3.3 is given in Proposition 4.10 of [8] where Y,
there is also taken to be an induced module U (£) @y p,) F2, and M there is B in our
notation. In Theorems 3.2, 3.3 it is not necessary to assume irreducibility of F. We
observe in Theorem 3.3 that ¥, need not necessarily be an induced module, though
for the proof it is certainly necessary that Y, be an induced module. For us this is
a rather useful observation. Since B is connected and F is finite-dimensional one
can adapt the proof given in [8] of Proposition 4.10, almost word for word, to prove
Theorem 3.3 (even for Y, arbitrary).

By Proposition 2.17, £ = p; + €*° with p, N £* = pg. Therefore by Proposi-
tion 5.1.14 of [2] (again, as in the proof of Theorem 3.2), given a p, module F, there
is a canonical £*°* module isomorphism

U(Z”) ®U(I’S) resl’,’f F,>~U®¥) ®U(Pl) F, (3.4)
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where resp; F| = Fy|p, = F; as a ps module. Given an £ N k module F, extend
ittoa p; = (£ Nk) ® us module such that ugs acts trivially (as before) and choose
F| = F as a p, module. Let Fy, = res;%, F (where £5 C £ Nk = £5 & z(£) by
Corollary 2.14) and let Fy; = F“ extended to a ps = €5 @ u, module such that
ug acts trivially. Then res,,s Fl = F” Namely, since F1 = Fasapy module (by

definition) and £ Nk C p; we have res’* F| = res; *F “f Fandus-F, 20. In

. def
particular £5 C £ Nk = ress Fy = resﬁsnkresf,?" Fi =res;, F = Fy = Fy, F,

have the same Zs module structure. They also have the same us module structure by
(b) since us - Fy; = 0. Hence (a) holds, and by (3.4) we deduce:

PROPOSITION 3.5. Given an £ N k module F (possibly infinite-dimensional) let
F;s = resﬁ%kF = F as an £5 module. Then there is a canonical £** module isomor-
phism of U(€%) Qups) Fss onto U (L) Qup,) F given by u Qups) [ —> u Qupy) f
for (u, f) € U(£**) x Fy;, where Fy; and F are extended to ps = £5 ® us and

= (£ N k) ® ug modules, respectively, such that ug acts trivially.

We refer to Definition 6.1.1 of [9] again for the notion of a general abstract (%, B)
module. Here the compact Lie group B (not necessarily the specific choice L N K
above) acts on 4 by automorphisms {r(b)|b € B} which extend the adjoint action of
B on its complexified Lie algebra b C h. Let a C h be a complex Lie subalgebra
5 b Ca,r(b)a Ca Vb € B. Then the category of (a, B) modules is also well
defined. Given an (g, B) module X we can form in general the induced (h, B) module

md"2x ¥ Uh) ®u X 3.6)
(as in (3.1)), and the produced (h, B) module

Prol5 X & Homyg) (U (h), X) p—puic: 3.7
cf. Definition 6.1.21 of [9].

PROPOSITION 3.8. Given finitely many (a, B) modules X, ..., X, there exists
a canonical (h, B) module isomorphism of Ind'§ 3-'_, @X; onto Y_"_, ®Ind"' | X;

and a canonical (h, B) module isomorphism of Pro, 3 Y j—1 ®Xjontoy Pro}’ 5 X;.

Occasions arise when one is given two 6-stable parabolics g/ = ¢/ +u/, j = 1,2,
withg! C ¢%,¢' c €2, u' D u?, L' N K C L? N K; cf. the notation in (1.2), (1.4).
In this situation one has the following:

PROPOSITION 3.9. IfW isany (¢!, L' N K) module extended to a (q', L' N K)

module on which u' acts trivially, then there is a canonical (g, L' NK) isomorphism of
g,L'nkK q2,L'nK g,L'nK 2 .. 42,L'nK
ProqzyL.nK Proq.,L.nK W onto qu',L'nK W. Also u* acts trivially on Proq.’L.nK w.



A BGG TYPE RESOLUTION 641

Define
wW=u'nez, ¢"=¢"+ul c e (3.10)
Then g¢' = q° ® u? and
q* =q' + 2 with ¢' N % = ¢°. @3.11)

Given (3.11), a Mackey type “subgroup theorem” (cf. the proof of Theorem 3.2)
provides

2 71 271 2 71 07l
o Prof [ g W = Protyt WX res? [ TEW. (3.12)
Extend the module on the r.h.s. in (3.12) to a (g2, L' N K) module by letting u? act
271
lt:,riviglll)g On the other hand u? acts trivially on PmZ':i'pwﬁ W by Proposition 3.9. Thus
y (3.12)

res

271 2 71 (O A
2 L'NK v, p BLINK g% L'NK
Proq,'L,nKW = Proqo,L.nKresq.,L,nKW 3.13)

isa (g%, L' N K) module equivalence and we derive the next result.

COROLLARY 3.14. The (g, L' N K) module isomorphism in Proposition 3.9 can
be expressed as
JL'NK ¢2,L'nK O.L'nk ,L'nK
ngz,Lan Prqu'L.nKresZ,'L.nKW = Proi.,L.nKW (3.15)

2 L! OL'NK 4, .
where Proso",:.';’,((res:. Ling W is regarded as a (q*, L' N K) module on which u? acts

trivially.

Proposition 3.9 (or Corollary 3.14) is an induction in stages result; compare equa-
tion (6.3.8) of [9], where the definition of the functor Pro differs from our (3.7) by
a certain “tho shift”, i.e., W is replaced by W ® A%m«'y!, The trivial action of
u? on ProZT’ﬂQﬁW in Proposition 3.9 compares with the trivial action of u on
U@) Quy Finthe proof of Theorem 3.2. The assumption that G/K has a Hermi-
tian structure is not needed in Proposition 3.9, nor in Corollary 3.14 of course. Given
the existence of such a structure however, using the structure theory of Section 2 we
chooseq' =7, =9 N g, q°> =y Thent' =Nk =LNk, u' =u+p*t =
i+ pt,l=k=k u?=pt=p~ , L'NK=LNK,L>’NK = K (since
Ad(k)z = z Vk € K, and K is connected). By 3.11),¢° =q,Nk = ¢, Nk =q Nk,
which gives the following concrete version of Corollary 3.14 (cf. Proposition 4.24
of [8]).

COROLLARY 3.16. Let W be an (£ Nk, L N K) module extended to a (q,, L N
K) module on which w + p~ acts trivially. Then there is a canonical (g, L N K)

. , ,LNK &, LNK gnk,LNK 2, LNK
isomorphism of Pro% P res— where =
P f 0Fuo LOK rOEer,LnK €871 Lnk W onto PrOEI-LﬂK LE 9

= + k,LNK g0k, LNK
9N9x@): 9x =k+p™,andPro=2 | resz o,

module on which p* = p~ acts trivially.

W is regarded as a G LNK)
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4. BGG type resolutions

The starting point for obtaining Bernstein-Gelfand-Gelfand type resolutions of in-
duced modules is the application of Lepowsky’s generalized version of BGG [6],[7]
to the semisimple part £*° of £ as was done in [8]. Afterwards, one tensors appro-
priately the terms of the resolution and applies functorial properties of induction.
The maps involved are Lie algebra module maps, a priori. Thanks to the magic of
Theorem 3.3, however, they are B module maps as well. The resolution of pro-
duced modules follows by duality. Some of the arguments in [8] use the fact that
dim z(£s) = dim z(£) = 1 for the choice of g there. Since this is not the case in general
we must seek alternative reasoning at various points. Given a finite-dimensional irre-
ducible L module F;, the goal is to constructa (g, LN K) resolution of U (g) Quq) F1L
by direct sums of certain generalized Verma modules for g; see Theorem 4.18. Since
g satisfies (1.3)’ (or equivalently (1.3)") we call U (g) ®u q) F1 @ holomorphic Verma
module.

For E; &ef [T Nr(£) N Ay, as before define
MEZ‘* VaeE.} “4.1)

(o, @)
where ( , ) denotes the Killing form of g and Z* is the set of non-negative integers;
h* is the dual space of . Let W (£) be the subgroup of the Weyl group W of (g, #)
generated by the Weyl reflections r, as « varies over r(£) and let

W) ={we W | QNrE)N A Cw(@Nr)),

2= Y 2= > e 4.2)

aeQnNr(f) aeQ

PE. = IXGh*

PROPOSITION 4.3.  Let A € h* be Q Nr(£)-dominant integral: 2%:%% € Z* Va €
Q Nr(L). Then for w € W'(€), w(A + 8(£)) —8(¢) = w(A +8) — 8 € Pg, in(4.1).

Note here that for any w € W (£) in fact, w8(u) = 8(u) for 28(u) = 3_ep) %
ie. (a,8(m)) =0Va € r(f).

By (1.3)" and (4.2), 28 = 28(€) + 26(u) = w(A +8(¢)) —6(€) = w(L + 6 —
S(u) +8u) — 8 =w +8) — 8.

Now take A € Pg, and let F'(A) be the corresponding finite-dimensional irreducible
£ N k module. F(A) restricted to (£ N k)* is in fact (£ N k)**-irreducible. By
Proposition 2.11 and Corollary 2.14 [£s, £5] = (€Nk)** and £ Nk D £5. We see that

by restricting the £ N k module structure of F(A) to £s we obtain an irreducible £

module F' () def resﬁﬁlkF (M) since in fact F(\),, is [£s, £s] = (£ N k)**-irreducible.

Extend F(\)s to a ps = £5 @ us module on which ug acts trivially and form the
£%%-generalized Verma module

My (25 S) = U(€™) Qups) F(Mss; A € P, 44
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For A € h* which is Q N r(£)- dominant integral and w € W'(£) in (4.2) let

Ao F w4+ 80) — 8(8) = wh +8) — 8. (4.5)

Then by Proposition 4.3, A,, € Pg, and hence the generalized Verma module Mj;
(Ay; S) is well defined, where A in (4.4) is replaced more generallyby A,,; w = 1 =

Aw=A Fork=0,1,2,3...,t % dimug define

def

Ce=Cu($)E Y OMy(us 5) (4.6)

wew! ().
)=k

for £(w) dof Hae € @Nr®) | wla € —(Q Nr(£))}| equal the length of w; |A| is
the cardinality of a set A. Let L, ()) be the finite-dimensional irreducible £°° module
with Q N r(£)-highest weight A and let &: Cyp = M (A : §) —> L (1) be the
canonical surjection.

THEOREM 4.7. [6] (Generalized BGG resolution of zL(1)). Let A € h* be QN
r(£)-dominant integral. Then there exist £**-module maps o, ..., o, t & dimu S5

such that 0 —> Cy(S) —5 ¢;_1(S) == ... —> Co(S) —> Lyg(A) —> Oisan
exact sequence; see (4.5),(4.6).

Note that ¢t = dim(¢ N p*) by (2.7).

Since F(A), for A € Pg,, is an irreducible £ N k module and £ Nk is reductive, the
center z(£ N k) of £ Nk acts on F(A) by scalar operators: 3 a map x,: z({ Nk) —
Coz-f=x3(z)f forz € z(¢Nk), f € F(A). Choose fy € F()) to be a non-zero
A-weight vector. Then for z € z(ENk) C h, A fo =2 fo = xa(@Dfo =
Xy = Myerwy s i€ z2- f = M2)f Yz € z€Nk),Vf € F(A). Extend F(})
toa py = (£ Nk) ® us module on which ug acts trivially. Then z € z(£) acts on
U (£)®uy p,) F (M) viathe scalar A(z). This follows since z(£) C p (cf. Corollary 2.14)
and z(€) C z(£Nk) (cf. Proposition 2.12). Apply these remarks to A,, € Pg, in place
of A, for w € W!(£), A which is Q N r(£)-dominant integral (see Proposition 4.3 and
Definition (4.5)): z € z(£) acts via the scalar A,,(z) on U (£) Qu(p,) F(1y). We claim
however that A,,(z) = A(z) forz € z(£), w € W(£). First, z({) = {H e h | a(H) =
0 Yo e r(0)) = wH 2 Hforw € W), H € z(€) since fora € r(€), ro(H) %
H —20(H)(a, ) "H, = H for H € z(£). Also 8(¢)(H) = 0 for H € z(£) by
Definition (4.2). Hence A, (H) f [wA+6)) —8(O)I(H) = w(A +5())(H) (for
Hez(0) = A+ 80)w'H) = (A + 8&)(H) (by (i)) = A(H), as claimed.
That is:

PROPOSITION 4.8. z € z(£) acts on each U (£) Qu p,) F(Ay), w € W'(e), by the
same scalar AL(z) (which is independent of w).
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We continue to assume that A € h* is QNr(£)-dominant integral; A, € Pg, Yw €
W!(£) and in particular A € Pg, (again by Proposition 4.3). By Proposition 3.5 there
is a canonical £*° module isomorphism i, of My (A,; S) onto U(€) Qu(p,y F(Aw)
(see (4.4)) where ug acts trivially on F(A,) extended to a p; = (£ Nk) & us module.
By (4.6), there are induced £°* module isomorphisms

= Y @iy G — G 4.9)

wew! (o),
Lw)=k

for 0 < k < t, where we set

GE Y SU® ®uipy Flhw). (4.10)

wew! (o).
e(w)=k

Consequently for k > 1, & of ir_1o0g o i,:': C‘k —> Cy_ is an £** module map,
for o in Theorem 4.7. By Proposition 4.8, the action of z € z(£) on a summand in
(4.10) is independent of the mdexmg element w € W!(¢) and is gwen by the scalar
A(z). Hence z € z(€) acts on Cy, via the scalar A(z). That is, &@: Cx —> Ci_, is an
£°5 module map of £ = £°° @ z(£) modules with z € z(£) acting by the same scalar
A(z) on C‘k and Cy_;, which shows in fact that & is an £ module map.

Our main interest is the case when the £ N k module structure on each F(A,)
integrates to a B module structure: y - f = I1,(y) f fory € £Nk, f € F(Ay), for
a C* representation I1,, of B on F(A,). For this we assume in addition that A € h*

is analytically integral: A\(T') C 2miZ for T % {H € ho | exp H = 1}. Then each

Aw, w € W(£), is analytically integral, the F(A,,) are (pg, B) modules (cf. remarks
prior to (3.1)), the

» L U@ ®u(py FOhw) 4.11)

are (£, B) modules, and consequently the Ck are also (£, B) modules. Thea; , k > 1,
which we have shown to be £ maps are B module maps. To see this let

FOE Y @F(w) @.12)

wew!(e),
ew)=k

for 0 < k < t. By Proposition 3.8 there is a canonical (¢, B) isomorphism

fei U®) ®upy F(A) =3 Ci; (4.13)
see (4.10). By Theorem 3.3, the £ module map @ o fi: U(€) Qu(p) Fr(A) —>
C~'k_ 1, k > 1, is automatically a B module map! Hence &; = (& o fi) o fk‘l isaB
module map, and is thus an (¢, B) module map.

Now let F (1) be a C™ finite-dimensional irreducible L module with Q N r(£)-
highest weight A, say I1; is the representation of L on Fi(A). More specifically,
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via 1z, FL(}) is an irreducible £ module on which z(£) acts by scalars, and by
restriction, Fy (A)|¢ss is £°° irreducible, as £ is reductive. We assume L (A) arose via
Fr(A\): Lgs(A) = Fp(M)|es: Lgs()) integrates to an (¢, L) module. By (4.4), (4.6),
(4.9), (4.10) (or by Proposition 3.5 directly), ip: U(€**) ®u(ps) F(X)ss = Co —

v ®y,, F) = Cy is an £ module isomorphism. That is, £ o io": Co —
Fr(X)|ess is an £°* module map for ¢ in Theorem 4.7. Choosing a non-zero A-weight
vector in Fy (1) we see that z € z(£) acts on Fy () via the scalar A(z) (arguing as we
did for the £ Nk module F (1) above), which is the same scalar by which z(£) acts on
Co, as noted earlier. As earlier, it follows that &: Co —> Fp (1) is an £ module map,
and hence by Theorem 3.3, &: Co —> F. () is an (¢, B) module map. Since the ij
are isomorphisms we deduce that

0— & ¢, 38 i Gy FL) — 0 (4.14)

is an exact sequence of (¢, B) modules, given the exactness expressed in Theorem 4.7.
There is a final step in constructing the desired resolution of U(g) Qu(,) FL(A).
Extend each F(Ay) to a (g1, B) module on which u; acts trivially, and each Y, to
a (g, B) module on which u acts trivially. Then Crisa (g, B) module such that
u - Cx = 0. Also, by Theorem 3.2, there is a canonical (g, B) module isomorphism

8w Ug) ®uig) Yo — U(g) Qug) Flhw). 4.15)

Tensor the exact sequence of (£, B) modules in (4.14) (which are now (g, B) modules)
with U (g) over U (g) to obtain the exact sequence

. oy ~ &,*_
0 — U(g) ®uig € —> U(g) ®u(g) Ciot —
. —> U(g) ®ug) Co —> U(g) ®uig) FL(A) —> 0 (4.16)

of (g, B) modules; cf. Lemma 6.1.6 of [9]. By Proposition 3.8 and equations (4.10),
(4.11), (4.15), we have (g, B) module isomorphisms

U@ ®ug Ci Y, dUR BugYu= Y. ®U®Q) Buq) Flw) @17

wew (o), wew! (o),
ew)=k £(w)=k

which, by (4.16), lead us to the following.

THEOREM 4.18. Let A € h* be Q N r(£)-dominant integral and analytically
integral. Let F (\) be the smooth finite-dimensional L module with Q Nr(£) highest
weight ). Then there exist (g, LNK) module maps ¢y, ¢2, ..., ¢, &, t = dim((Np™),
such that

0 — 3 BU® ®ua Fiu) 2> Y. @U8) ®uiy Fhw)

wew! (o). wew!(e),
)=t w)=t~1
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- ¢

=5 Y BU®) Quigy Fw) — -+ Y @U(®) ®uigy Fhu)
ewLo,

= U(g) Quig F(O) = U(g) ®uig FL(A) — 0 (4.19)

is an exact sequence of (g, LN K) modules; see (1.1), (4.2), (4.5). Here £(w) = |{« €
oNr@) | wla € —(QNr())}] is the length of w (where we have denoted A(£) in
(1.3) by r(£)), the F(Ly,) are irreducible smooth finite-dimensional L N\ K modules
(= (q1, L N K) modules on which u; = u + p* acts trivially) with Q N r(£) N Ag-
highest weight A, and q, is the 0-stable parabolic € Nk) ®u, = q N (k + pH).

Remarks. In Theorem 4.18, which generalizes Proposition 4.18 of [8], recall
that ¢ = € @ u is any 6-stable parabolic subalgebra of g which contains the Borel
subalgebraby = h+ ZaeQ g« of g, or (equivalently) which satisfies condition (1.3)’.
In Section 4 of [4], Enright and Wallach construct a finite resolution of a Verma
module (in the category of g-modules) which differs markedly in form from that of
Theorem 4.18. Also compare with Chapter 6 of [10].

For a (g, B) module Z let Z" denote its B-finite Hermitian dual, which is a (g, B)
module: Z" is the space of B-finite vectors in the space of conjugate linear maps
Z —> C. There is a standard (g, B) isomorphism

B
Proé

$5Z" ~ (U(g) ®uig) 2)"; (4.20)
see (3.7). If Z is a smooth finite-dimensional B module (and thus an (£Nk, B) module)
regard Z as both a (¢, B) and a (g, B) module on which both u, # act trivially. Then
Z" in (4.20) can be replaced by Z; cf. Lemma 4.19 of [8]. Write

> @U@ Quiy FOuw) = U(g) Quqy Fi(A) .21

wew! (o),
e(w)=k

by Proposition 3.8 and equation (4.12). Apply (4.20) with g replaced by g, and apply
Proposition 3.8 again:

(Lh.s. of (4.21))" = Pro%'fB F.(A) = ZI EBProg"?BF(Aw). 4.22)
That is, if we take the B-finite Hermitian dual of the terms in (4.19), then as exactness

is preserved we obtain from (4.22) the following generalization of Proposition 4.22
of [8].

THEOREM 4.23. Let g D bg be any 0-stable parabolic and let A € h*, F1())
be as in Theorem 4.18. With the notation of that theorem, there exist (g, L N K)
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module maps %, ¢, ..., ¢F, e*, t = dim(€ N p*), such that for B=LNK,1 <
k <t,

v, &f Z @ Pro;lf’fB F(Ay) (4.24)

wew!(e),
)=k

* ¢* ¢* :(
0— Pt FL0) S VB v By — By,

is an exact sequence of (g, B) modules.

5. Some applications

Applications of Theorem 4.23 will be based on the folowing general result in
conjunction with the Borel-Weil theorem.

THEOREM 5.1. Let G be any Lie group and let B, K C G be closed subgroups of
G with B C K, K compact and connected. Let g denote the complexified Lie algebra
of G. Given a (g, B) module V, let TV C V be the corresponding (g, K) module
given by the Zuckerman construction; see [11] and Chapter 6 of [9]. Suppose one has
a (g, B) resolution) —> V LN Vo LN Vi ——5—2—> V, LN of V. Then there is a
Lst quadrant spectral sequence E (i.e., E;* = 0 if either r or s < 0) with co-terms
associated to the cohomology H*(T) of a complex T given by H'(T) = I'"V for
r>0,H (T)=0forr <0, where'",r > 0, is the rth right derived functor of the
Zuckerman functor I’ = l"g:g. E is induced by a decreasing filtration {FPT"},c7
of each T" (the space of n-cochains of T) which satisfies the regularity conditions
() FPT" =0 for p > n, (il) FPT" =T" for p < 0. The E,|, E; terms are given by
E;* =T9V, forr,s,> 0, with EY’ = 0 if eitherr ors <0,

E}* = ker (r“v, g r"vm) /(T 8TV, forr,s,> I,

£ = ker (Vo T3 V) forsz 1, 62

(
ES® = ker (1“V0 By rv.).

The differential d: E, —> E, has bidegree (n, 1 —n); i.e.,d: El'* — EM7s—ntl
Given that the category of (g, B) modules has enough injectives, Theorem 5.1 follows
by general Grothendieck principles, e.g., the theory of resolution of a complex. See

Proposition 3.2 of [8] or Appendix D of [5] for a more general result.

COROLLARY 5.3. In Theorem 5.1, suppose TV 3 0 for some jy > 0. Then
there is an integer ro > 0, rg < jo such that TV, _, # 0.
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Proof. As H*(T) =TV # 0 the regulanty conditions (i) and (ii) imply that
E{"_"‘ " £ 0 for some integer ry. Since E“ = 0 for a or b < 0 we must have
jo—ro,ro>0. Then TV, _, = E"’_"’ "0 £ 0, as desired.

The connectivity assumption on K in Theorem 5.1 is dispensable. In application
of course, G will be connected semisimple as before, K will be a maximal compact
subgroup of G (therefore K is connected), and we will choose, as before, B = LN K
where L (as in (1.4)) corresponds to a f-stable parabolic in g. By Theorems 4.23 and
5.1 we therefore have the following.

THEOREM 5.4. Let A € h*, Fi (L), q be as in Theorem 4.18; thus q is any 0-
stable parabolic D bg. Then there is a 1st quadrant spectral sequence E with

00- terms associated to the cohomology H*(T) of a complex T given by H'(T) =

Prof b FL (V) forr > 0,B ¥ LN K, T = (rg;{,f)r with H'(T) = 0 for r < 0.

E is mduced by a decreasing filtration (of cochains) which satisfies (i) and (ii) in

Theorem 5.1. The E and E; terms are given by E{"* =T'*V, forr,s > 0 and by the
equations of (5.2), where

A ®Prod % F ()3 (5.5)

weW! (o),
w)=r

S0 =€* 8, = ¢, 1 <r <t =dim( N p*) in the notation of Theorem 4.23. The
differential E, — E, has bidegree (n, 1 — n).

For A € Pg, in (4.1) which is analytically integral let F(A) be the irreducible
B module with @ N A, N A(€)-highest weight A, as in Section 4, given a 6-stable
g D bg. In fact, we have seen that F()) is a (p¢, B) module for p, = £Nk® LN p*
in(2.15). Usingg Nk = €Nk@®u Nk, regard F(A) as a (g N k, B) module on which

u Nk acts trivally. Then for 26 &f > wcona, @ one has the following.

THEOREM 5.6 (Borel-Weil [3]). If (A + 8k, ) = O for some @ € Ay then
(l" )/ Pro“i FA) =0 Vj > 0 (see (3.7)). Assume A + &8; is Ay-regular:
o + 8k, ) ;‘.- 0 Va € Ay. Leto be the unique element i m the Weyl group Wy of

(k, h) such that (c (A +8;), @) >0 Yo € QN Ay. Then (l" )1 ProZ— nk 5 FQ) =

for j # £(o) &t Hae € QN A | o7 'a € =(Q N Ap)}|, and equals the irreducible
(k.K) module with Q N Ay-highest weight o (A + 8) — 8 if j = £(0).

In the situation prior to the statement of Proposition 3.9 (there the assumption that
G/K has a Hermitian structure was not needed), as in Lemma 6.3.9 of [9], one has
the following.
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THEOREM 5.7. Let Y be an (£2, L' N K) module extended to a g% L'NK)
module on which u? acts trivially. Then there is a (g, L> N K) isomorphism of

2.L2nK\ 5. g L'nK 2,L*0K .0\ 2.120K
(I‘g’L.nK) quZ,LanY onto Proqz'LGK FF.L'nK Y forr > 0, where Fzz,L'nK Y

is regarded as a (q%, L* N K) module on which u? acts trivially.

Again bear in mind that the definition of the functor Pro in (3.7) differs slightly
from that of [9]. For G/K Hermitian symmetric we obtain the following.

COROLLARY 5.8. Let Y be a (k, L N K) module extended to a (q,,, L N K)

module by the trivial action of p~. Similarly extend T¢px Y t0 a (), K) mod-
ule on which p~ acts trivially. Then there is a (g, K) module isomorphism of

r r
&K g LNK 8K k.K . i
(l"g‘ N K) Proaxm' Lnx Y onto Proam), x \Li'Lak ) Y forr = 0; here again

Tew =k+p. (5.9)

Corollary 5.8 follows if we choose ¢' = §; = qNq, ), 9° = Gy, exactly as
we did to establish Corollary 3.16. Thus, as we have seen, 2 =k L'NK =
LNK,L>’NK =K.

Using the Borel-Weil theorem we can now compute the cohomological paraboli-
cally induced (g, K) modules I'*V, appearing in the E; terms in (5.2) for V, given
in (5.5); compare with Proposition 4.26 of [8]. As we needed the fact that the
functors Pro, and Ind commute with direct summation (Proposition 3.8) we will
similarly need the fact that each I'*, s > 0, commutes with direct summation. As
usual ¢ = £ + u D by is any f-stable parabolic. Again let 26, = ZaeQnAk a,
let A € Pg, in (4.1) be analytically integral, and let F (1) be the corresponding
irreducible B %' L N K module with Q N Ag N A(€)-highest weight A. In Theo-
rem 5.6, we viewed F (L) as a (m, B) module on which u Nk acts trivially, using
gNk =£Nk®uNnk. Similarly we view F () as a (7;, B) module on which &,
acts trivially, using g, = €Nk ®u, whereu; =u+ptr=u+p~.

J
THEOREM 5.10. If(A+3, @) = Oforsomea € Ay then (rg;,’,f ) Prof”, F(A) =
0 Vj > 0. Assume L+8y is Ax-regular andletc € Wy be the unique element such that

(@(A+8),@) > 0Va € QN Ay, as in Theorem 5.6. Then (5§ ) Prot.%, F3) =0

forj 2e@) E e e QN AL |0~ a € —(Q N AP}, and

(o)
(ré5) " Prog’ FO) =Prod* \ Fe(o(r+8) — &) (5.11)

where Fg (o (M + &) — ) is the irreducible (k, K) module with Q N Ay-highest
weight o (A + &) — &, which one extends to a (4, = k + p~, K) module by the
trivial action of p~.
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Proof. letY = Pro';’TB res‘lnk B F(A), which we extend to a (g,,, B) mod-
ule by the trivial action of p~. Then by Corollary 3.16, (I‘g:g) o%:gF W =

(l"g K) Pr og;:B Y, which by Corollary 5.8 equals Pro- O (r,’:;{,f )l Y. Theo-
rem 5.10 now follows from Theorem 5.6.

In (2.20) and (2.21) we observed that 0 (Q N A,) 9 QNA, foro € Wi, and in

particular o4, @ 8ns (6n, Ax) = 0. It follows from (4.5) that for w € W!(0), « €
Aty Ao+ Fw(r+8)—6+8 L wA+8)—8, = (ho+8k, @) = (WA+S), @).

That is, A, + 8 is Ag-regular <= w(A + 8) is A,-regular, in which case we define
oy € Wi to be the unique element such that

(ouw(A +68), ) > 0Va € QN Ag. (5.12)

By (ii) and (iii), oy (Ay + &) — 8k = oy[w(A + 8) — 8,1 — & = opw(A + 8) — 8,
and by (5.5),

(rg") vo= Y ea(rg ") Prof % F (L) (5.13)

wew! (o),
w)=r

where we now assume X is Q Nr (£)-dominant integral and analytically integral. Then
as we have seen (by Proposition 4.3) each A,, € P is analytically integral. Thus is
(5.13) we can apply Theorem 5.10 to obtain the following.

COROLLARY 5.14.  Suppose A € h* is QNr(£)-dominant integral and analytically
integral, as in Theorem 5.4. Then in the formulas for the E,, E; terms in Theorem 5.4
(cf. (5.2)), for r, j, > 0, and for o, defined in (5.12) one has

(F5) Vo= X @ Potf Feuwr+8) -8 =E. (5.15)

wew! (0).e(u)=r,

w(A+38) 1S Ay —regular,
tow)=j

For (o, w, 1) € W) x W(£) x W let
=f{eeQNA|o7lae—(QNAY},

® = (e QNAW |w'a e —(QNA®)}, (5.16)
&, = {aec Q| 'ae -0}

Then |®* | is the Q N Ay-length of 7, |®¢ | is the QN A(£)-length of w, and |®, | is the
Q-length (or simply the length) of . We have observed thata (QNA,) @ onA,. It
follows that ®* = ®,,. Similarly wA(u) = A(u) = Q—A(£) (see (1.3) )= <l>f;) =
®,,. Note that &,No ®,, = ¢: Ifthereexistsa € ®,No P, thena € @, 0 ' € —Q
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anda =oBwithBe Q,w'Be - Q= B = a la € —QNQisacontradiction.

Suppose, in fact, thatw € W'(£): QNAE)N A C w(QNA)) (see (4.2)); recall
that the sets A(€) and r(£)) are the same in our notation. Then &, C A,: If
a € &, NA, thena € QNAER) N A = wla € Q by (iv), which is a

V)
contradiction since & € ®, => w'a € —Q. Thus &, é A)NA,NQ. In
particular c®,, C A, N Q by (i). That is, ®, U o d,, C Q and since this union is
disjoint
Y a=) a+o) a=5-08+0@-wd)=5—ows= Y a,
aed,Uod,, aed, aed, a€dyy,

from whence one can conclude &, U 0®,, = ®,,,. Of course one can check this
equality of sets directly. This proves the following.

PROPOSITION 5.17. For (o, w) € W, x W(¥), <I>f‘, = &, and cbﬁ, =&, If
w e W), d,y = ®,Uc O, where the union is disjoint; see (5.17). In particular, in
Theorems4.18,4.23,5.4,5.6,5.10, and Corollary 5.14 we can also write £(0) = |D, |,
Lw) = |Pyl. fw € W), |Dgu| = |P6|+ Pyl and D, = {a € QNANA®) |
wla € —Q}) (by V).

PROPOSITION 5.18. Let A € h* be QNA(£)-dominant (as above) and let (o, w) €
Wi x WH(L). Then ®,, = {a € QN A, NAE) | (WA +8),a) <0} Ifw(Ah +8)
is A-regular let o,, € Wy be the element defined in (5.12). Then ®* e = {a €

AW) N A, | (w(A +6),a) < 0}. Of course for any o € Wy, <I>f‘, —0'<l>k_,

Proof. Fora € ®,, « € QN A, N A®) such that —w~la € Q N A)
(by Proposition 5.17)= (A + 8, —w™'a) > 0 as A is Q N A(£)-dominant; i.e.,
(w(A + 68), ) < 0. Conversely, it is clear that any ¢ in Q N A, N A(£) subject to
the latter inequality belongs to ®,,. Leta € <I>"_.' a € QNA, —opa € QN A,
by definition (5.16). If « € A(£) thenax € QN Ak NAWE) C w(Q N A(£)) (since
we W) = w'lae QNAWE = A+, wla) > 0as Ais QN A@)-
dominant. Thatis, (o, w(A +8), —opa) = —(W(A +8),0) = —(A+38, wla) <0,
which contradicts the definition of o, in (5.12) since —o,a& € QN A; here we assume
w(A + &) is Ag-regular. In other words, @« &€ A(f) = « € Q — A(X) = A(u).
Thatis, « € A(u) N Ay and —opx € QN Ay = 0 < (o ,w(A + 98), —oypa) =
—(w(A + 8), @). Conversely if « € A(u) N A, satisfies (w(A + §), @) < O then
(owwA +8),040) <0, withoya € Ay and € Q N Ay, as A(u) C Q. By (5.12)
we must then have o, € —(Q N Ay);ie. a € CD’; _1» which concludes the proof.

Corollary 5.3 provides for the following vanishing theorem.

PROPOSITION 5.19. Let A € h*, F1(A), q be as in Theorem 4.18, as usual. Sup-
J
pose (rg_‘{;) Pro%:g Fr(A) # 0, where B = L N K. Then there exists w € W!(£)
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(see (4.2)) such that w(\ + 8) is Ag-regular. Let o, € Wy be the unique ele-
ment such that (o, w(A + §),a) > 0 Yo € Q N Ay (as in (5.12)). Moreover,
j = L(oy) + L(w) with £L(oy) = [{la € Ay N AW) | (wh + 8),a) < O}
and L(w) = {o € QN A, NAWX | (WA +38),a) < 0}]. We can also write
Jj=to,w) = |{a e Q| (uw) ' € —0}| < dim Nk).

Proof. In Corollary 5.3, choose V = Pro%:f;FL (%), as in Theorem 5.4 so that
the V, are given by (5.5). Then (rg;{,f)’ V#£0= (I‘g:g)r Vi—, # 0 for some
r, 0 <r < j,byCorollary5.3. By Corollary 5.14, Pro%‘f)’KFK(aww()L-f-S)—S) #0
for some w € W!(£) such that £(w) = j —r, w(A + &) is Ai-regular, and £(0,) = r.
That is, j = £(oy) + £(w) and the remaining assertions of Proposition 5.19 follow
from Propositions 5.17 and 5.18, except for the inequality j < s &f dim(u N k)
which is a bit deeper. This inequality follows from the generalized Blattner formula,

Theorem 6.3.12 of [9]; see Corollary 6.3.21 of [9]. Strictly speaking, the latter
theorem applies to our situation provided two minor points are taken into account:

(i) The cohomological parabolic induction employed here involves the opposite
parabolic g = £ + u, rather than g employed in [9].

(ii) As pointed out earlier, the functor Pro of [9] differs from ours in (3.7) by a tho
shift. At any rate we can obtain the inequality j < s by replacing the Weyl
group element in W,'( of (a) of Theorem 6.3.12 of [9] by a suitable W, -translate
of it.

As an example of the preceding proposition one has the following well-known fact.
See [5], [9] and [10] for example for more general results.

COROLLARY 5.20. Suppose that in Proposition 5.19, A satisfies

A+ 38,a) <O0forevery a € A(u). 5.21)
Then (rg;{,f )’ Prof% FL(0) = 0for j # s = dim(u N k).

Proof. Given any @ € A(u) (in particular given any ¢ € A(u) N Ag) and
w € W(), one has w™'a € A(u) so that (w(A +8),a) = (A + 8, w™'a) < O by
(5.21). f TVProF (L) # O we see that fora w € W' (£) given by Proposition 5.19,
£(0y) = |ArNA)| = s. Then j = £(0y) + £(w) < s forces £(w) = 0;i.e., j =s.

In thg program set up in [8] to construct irreducible unitarizable (g, K') modules

(I“g: {,f )j Prog'g F; (A), interest is focused on the case j < s, which by Corollary 5.20

requires the existence of at least one @ in A(u) for which (A + §,@) > 0. For
example it is assumed eventually that ProF;, (1) is reducible: A is a reduction point
in the Enright-Howe-Wallach classification of unitary highest weight modules.
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