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A BGG TYPE RESOLUTION OF HOLOMORPHIC
VERMA MODULES

FLOYD WILLIAMS

ABSTRACT. For a Hermitian symmetric space X G/K of non-compact type let 0 denote the Cartan
involution of the semisimple Lie group G with respect to the maximal compact subgroup K of G, and let
q denote a 0-stable parabolic subalgebra of the complexified Lie algebra g of G with corresponding Levi
subgroup L of G. Given a finite-dimensional irreducible L module Ft we find Bernstein-Gelfand-Gelfand
type resolutions of the induced (g, L fq K) module U(g) @U(q) EL and its Hermitian dual, the produced
module Homv)(U (g), F/ LNK-finite, where U (.) is the universal enveloping algebra functor and " is the
complex conjugate of q. The results coupled with a Grothendick spectral sequence provide for application
to certain (g, K) modules obtained by cohomologieal parabolic induction, and they extend results obtained
initially by Stanke.

I. Introduction

Let X G!K be a Hermitian symmetric space of non-compact type where G is
a non-compact connected semisimple Lie group with finite center and K C G is a
maximal compact subgroup. If g, k denote the complexifications of the Lie algebras
go, k0 of G, K and h0 C k0 is a maximal abelian subalgebra of k0, then h0 is a Cartan
subalgebra of go and we denote by A the set of non-zero roots of (g, h) where h h0c
is the complexification of h0. The G-invariant complex structure on X corresponds
to a choice Q c A of a positive system of roots such that the spaces p+ and p-
of holomorphic and antiholomorphic tangent vectors, respectively, at 0 1K are
given by

p+ g+/-a (1.1)

forg C g the root space of ct A and for A,, the set of non-compact roots of A. For
p p+ p-, g k p is a Caftan decomposition. Denote by 0 the corresponding
Cartan involution of g: 0 on k and 0 -1 on p.

Fix a 0-stable parabolic subalgebra q qx + u of g. That is,

e h + g,u g (1.2)
a(x)=O,otEA a(x >O,ot A

for some x h0; 2 -1. We assume that the structure of q is compatible with
the G-invariant complex structure on X, i.e., for

m(u) de...f {0 A I(X) > 0}, A(e) de__..f {19/ A O/(X) 0}, (1.3)
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we have

A (u) Q A(e) (1.3)’

We will check below that if bQ h + Y.otEQ go is the Bore! subalgebra of g defined
by Q then

(1.3)’ holds q D bQ.

We will also denote A(e) by r(e). Conjugation of g with respect to go will be
denoted by an overbar.

Let

L Lx {a G Ad(a)x x} (1.4)

be the Levi subgroup ofG with Lie algebra e0 where e e0c (since ); e0 gofqe
and L is connected.

In this paper, given a finite-dimensional irreducible L module Ft. we find a (g, L f’l
K) resolution of the produced module

U-&LK FL Homv()(U (g), FL)LK-finit (1.5)

where U (.) is the universal enveloping algebra functor and acts trivially on FL. The
resolution is in the spirit of Bemstein, Gelfand, and Gelfand [1 ], [6], [7] since it has
the form

(1.6)

for B L f) K, where

is a sum over a certain subset W (e) ofthe Weyl group of (e, h) and w 6 W (g) indexes
a particular finite-dimensional irreducible B module FB(W). See Theorem 4.23,
which is a dualization of the resolution of the induced module U(g) @U(q) EL by a
direct sum ofgeneralized Vermamodules given in Theorem 4.18. Theorems 4.18, 4.23
and applications to (g, K) modules obtained by cohomological parabolic induction
(see Section 5) extend to the general Hermitian symmetric space setting results of
R. Stanke obtained for the case X SU(n, m)/S(U(n) x U(m)). Compare with
Proposition 4.22 of [8], for example, where for the choice of q there the sum in (1.7)
here reduces to a single summand.

For the sake of completeness we verify statement (1.3)". Clearly if condition
(1.3)’ holds then q D ba. Assume conversely that q D ba. Let c A(u). We have
cg(x) > 0 ===> (-c)(x) < 0 === g_, C . If-c Q then g_, C ba C q ==
g_ C gfqq {0}, which is a contradiction. That is, -c 6 Q or ot 6 Q-A(g) ==

Vj @ Pro g’B FB(W) (1.7)
q fq(k+p+),B

wW (e),
length
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A(u) C Q-A(). Ifct 6 Q-A()then g, C bQ C q andt ’ A(e) == or(x) > 0
of c(x) < 0. But for or(x) < 0, g, C == g, C f)q {0}, which again is
a contradiction. That is, c(x) > 0 == ct 6 A(u) = Q- A() C A(u) =:
Q- A() A(u), which is (1.3)’ as desired.

2. Some structural preliminaries

In this section some structure results needed for later applications will be dealt
with and further notation will be established. Guided by Section 4 of [8] we construct
a certain parabolic subalgebra Ps of the semisimple part U [e, ] of whose role
will be of pivotal importance.

The G-invariant almost complex structure on X and the semisimplicity of G pro-
vide for the existence of an element z in the center of k0 which satisfies [z, x] +ix
for x p+. Since h0 C k0 is maximal abelian, z h0 and one has:

t(z) {0, 4- i} ct A with c(z) 0 ,== ot Ak de=f A An (2.1)
(the set ofcompact roots), u(z) 4- g C p+.

Equation (1.1) can be written as

P+ Z ga" (2.2)
a(z)=:l: i,otEA

Consider the element x(z) dej --iz h0 and the corresponding 0-stable parabolic
qx(z) ez. + uz it defines. By (1.2), (2. l) and (2.2), z. h + -aEZXk ga k, uz

defP+ qx(Z) k + p+. Similarly let ql el + ul qx+x(z) be the 0-stable
parabolic defined by x + x(z) x iz ho. Using the basic assumption (1.3)’
and the properties of z in (2.1), and writing r() A(), one checks the following.

PROPOSITION 2.3. For ot A, t(x + x(z)) 0 ot r() N Ak, ot(x +
x(z)) > 0 == ct A(u) A(p+) where A(p+) deaf Q An" Hence (by (1.2)),

el=h+ g=gk, ul= ga=u+p+.
ur(e)A A(u)UA(p+)

Alsoq =qqx<z) 3bQandqk=qk, uOk=uk.

Recall that subalgebras aofg which contain bQ (i.e. the a are parabolic subalgebras)
are indexed by subsets E of the system of simple roots IIQ of Q as follows. For
ct 6 A write ot Enen(ot)V where the n (ct) are integers with the same sign,
with 4- n (or) > 0 for c 6 4- Q. Define

A(E) { A n(a) 0 / s Ha E}

ee=h+ g ue= g,, (2.4)
A(E) otQ-A(E)
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Then a a(E) ee + ue; here ee is reductive (the Levi factor of a) and E
defI’IQ n/(E). The parabolics q, qxz), q qx+xtz) correspond, for example, to the

subsets E def def
r(e) n I] o, l"Ia n Ak El r() n FIQ n Ak, respectively, of 1"I{2.

In place of g, apply these remarks to the semisimple Lie algebra e’’ de=f [, ], with
defCartan subalgebra h’’ def

h n U and simple root system H Q the set of restrictions

’ h IY E r()nFI O }. A subset S of FI’.thus determines a parabolic subalgebra
ps g.s + us of U which contains the Borel subalgebra h"’ + Y-aanr(e) go, of U’.
We consider a particular subset of I-I’. Namely, once and for all, we choose

defS dee
{r, ih.. i, (2.5)

where, as seen above, El C l"IQ defines ql. Using (2.1) for example and defini-
tion (2.4) one computes that

es h + 2’, ,s L, (2.6)
o"r )nA o" Qf3r()A,,

Then, by the basic assumption (1.3)’,

us n p+. (2.7)

Let C denote the field of complex numbers. For ct 6 A, let Ho. be the unique element
of h or(H) (H, Ho,) YH 6 h. If h(E) denotes the C span of the elements
{Ho, Iot 6 E} for E C l’la then h(E) is a Cartan subalgebra of lee, eel and

[ee, eE] h(E) + Z go. (2.8)

for ee in (2.4); note that h(E) h n [ee, ee]. As e n k is the Levi factor of
def

q q (E) for E I’Ia n r(e) n/x, as noted above, from (2.8) one obtains

(e n k) de=f [ n k, e n k] h(E) + go’. (2.9)

def
Similarly since q q(E) for E r() n HQ, as noted above, h

def
h n ss

h(E). That is, clearly h(E) C h(E) hss == ( n k) + h h(E) + hss +
-’-,o.rte)nzx go, (by (2.9)) h + v_,o,rte)nzx, go.. That is, we can also write (2.6) as

s hs’ + (e n ),, (2.10)

PROPOSITION 2.11. [es, es] (e n k)’*s.

Proof. [s, es[C (e n k) by (2.10). Conversely, as ( n k) is semisimple,
n k),. [(e n k),,, (e n k),, c [es, es], again by (2.10).
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Denote the center of a Lie algebra b by z(b). Thus z(ee) {H h a(H)
0 ’v’ct E} for ee in (2.4) ==, z() {H h a(H) OYa r(e) f3 HO} C
{H h ct(H) 0’c El} z (e fq k) (again asefqk 1). Similarly
z(es) {H h’LI/5(H) 0 /5 E} (by (2.5)) ==, Z(es) C z(ek). Conversely,
one has the following.

PROPOSITION 2.12. Z( f3 k) z() z(es).

Proof. e ess z(e) ==, h h’s z(), with hss h(E r() fq Ha), as
noted above. Similarly es = q z(es) ==, hs’ h(E) q z(es) =

h h(E) q) z(es) q) z(). (2.13)

For H z( (q k), write H H1 + Hs + He h(El) + z(es) + z() by (2.13).
For ot 6 El de_____.f i.la O r() fq A, C r() N H a, c(H) 0, ot(Hs) 0, and
or(He) 0 == ot(H) 0. That is, Ha h(El) C hss a(Hl) 0 c El ===
H z(es) == H (HI + Hs) + He z(es) + z() ==, z(g fqk) C z(es) + z(),
as desired.

COROLLARY 2.14. fq k s q) z().

Proof fqk (f3k)s’(3z(k) [s, s]z(es)q)z() (by Propositions 2.11,
2.12) s q) z().

In addition to the subalgebra Ps of L. we shall need to consider the subalgebra pe
of given by

def
Pe (e k) + us ( k) q) ( (3 p+); (2.15)

see (2.7). The. following is easily checked.

PROPOSITION 2.16. Pe Nqxz); recall qxtz) k + p+. Also by Corollary 2.14,
Pe s q) z() 9 us = Ps D Z(),

PROPOSITION 2.17. Ls + Pe with s, fq Pe Ps, Also u u D us.

Proof. pe e. fq qxtz), by Proposition 2.16, and ’’ C ==, e.s + Pe C e.ss.
Conversely, g e’’ + z()with z() C h C k C pe C ’’ + pe.
Clearly Ps C pe (cf. Corollary 2.14) and ps C e’’ by definition. Conversely, for
v 6 ’’pe writer y+z Ps+z(e) byCorollary2.14, asv Pc. Then

Y Ps C s, and v e z v-y ,s; i.e., z s, z() {0}
v =y Ps ’Pe Ps. ByProposition 2.3, u =u+p+,andby(2.7)
us g p+ u + us C u. Conversely, one checks that u C u + us. Of course
us c e us u {0}.
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COROLLARY 2.18. q Pe D u

def
Proof. pe+u eCk+us+u eCk+u (byProposition2.17)= el+u q.

PROPOSITION 2.19. q q + g. with q f) e Pe.

Proof. By Corollary 2.18, q =pe+u ==ql +=pe+u+e=u+e(as
Pe C ) q. By Propositions 2.3, 2.16, q q N qxz), Pe f’l qxz) == q
q f)qxz) f) qxz) f3 Pe.

Let W denote the Weyl group of (g, h) and let Wk denote the Weyl group of (k, h),
the subgroup of W generated by Weyl reflections r as ct varies over Ak. In (2.1),
ct 6 Q N An = c(z) i, ct 6 Ak == c(z) 0. It follows that

r(QnAn) QnA. fora W. (2.20)

In particular for 23n dej EtEQNA,, 0/,

O" tn tn for cr Wk and hence (3n, Ak) 0. (2.21)

3. Induced and produced modules

Given the general results of Section 2, and other generalities, we can adapt most
of the arguments of Section 4 of [8] and extend the results given there to arbitrary
Hermitian symmetric spaces. Many of Stanke’s arguments already are quite general
once his notation is established. The choice of q in [8] leads to special simplifications
(as indicated in the introduction) not available in general. In working with more
general q’s we can still move forward, since induction and production "commute" with
direct summation; see Proposition 3.8. An interesting point is finding a replacement
for Stanke’s Proposition 4.10, which is less suited for application here. For this we
make a simple but useful observation; see Theorem 3.3 and the remarks that follow
its statement.

For a complex Lie algebra h containing the complexified Lie algebra of a compact
Lie group B with the pair (h, B) subject to conditions (a), (b) of Definition 6.1.1 of

[9], we can consider the category of (h, B) modules. In particular, choose B de=f LOK
for L in (1.4) and let F be a finite-dimensional C B module over C. Then F is an
(ek, B) module withek acting on F via the differential I:I ofthe representation FI of
B on F. By definition (2.15), we can extend F to a (Pe, B) module 9 us" F 0 (since
[nk, us] C us). Similarly, asql elt)Ul, e nkandq eu, we can extend
F to a (ql, B) module 9 u F 0, and we can extend the induced (, B) module

Indep’e.B F de__.f U () (U(pe) F (3.1)

(cf. Definition 6.1.5 of [9]) to a (q, B) module on which u acts trivially. With these
stipulations we have the following version of Proposition 4.17 of [8].
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THEOREM 3.2. There exists a canonical (g, B) isomorphism of the induced
module U(g)(R)v(g) (U(g.)(R)V(pe) F) onto the inducedmodule U(g)(R)u(q,) F. t(U(R)U(q)
(A (R)U(pe) f)) uA (R)U(q,) f for (u, A, f) U(g) x U() x F.

We outline the proof. By Proposition 2.19, q ql + with ql f3 Pe. By
Proposition 5.1.14 of [2] (which we call a Mackey "subgroup" theorem), it follows
that there is an e module isomorphism b of U (e) (R)V(pe resqPiF onto U (q) (R)V(q,) F

(given by u (R)V(p, f ---+ u (R)U(q,) f for (u, f) U(e) x F), where resq,pe’BF,B is F
considered as a (Pe, B) module by restricting the ql action to pe. is clearly a B
map, where B acts via Ad (R) FI, and thus is an (e, B) isomorphism. Note that we
initially regarded F as a (Pe, B) module with pe ( N k) us and with us acting
trivially. That (Pe, B) module coincides with resqpe’BF,B since us C u u + us C
q Pe + u by Proposition 2.17 and Corollary 2.18. Next, note that u acts trivially
on U(q) (R)U(q) F, since [q, u] C u C u C q. By definition, u acts trivially on
U(e) (R)V(pe F in (3.1)and thus b is a (q, B) isomorphism. b induces a unique (g, B)
isomorphism b* ofU(g)(R)u(q)(U(e)(R)U(pe)F) onto U(g)(R)u(q)(U(q)(R)u(q,)F) such
that *(u (R)U(q) 13) U (R)U(q) t](13) for (v, u) (U(e) (R)V(pe) F) x U(g). Finally, as
ql C q C g (cf. Proposition 2.3) there is an "induction in stages" (g, B) isomorphism

of U(g) (R)V(q) (U(q) (R)V(q, F) onto U(g) (R)V(q F given by
f)) uA (R)V(q) f for (u, A, f) U(g) x U(q) x F (cf. Proposition 5.l.ll of
[2]); ap can also be constructed by repeated applications of Frobenius reciprocity (cf.

def
(6.1.7) of [9]). ap o is the desired (g, B) isomorphism.

THEOREM 3.3. Let Y U() (R)U(pe) F be an induced (, B) module as in (3.1);
thus F is finite dimensional with us F O. Let Y2 be an arbitrary (, B) module.
Then any e-module map YI Y2 is automatically a B-module map, and hence
is an (, B) module map.

Remarks. A version of Theorem 3.3 is given in Proposition 4.10 of [8] where Y2
there is also taken to be an induced module U() (R)u(m F2, and M there is B in our
notation. In Theorems 3.2, 3.3 it is not necessary to assume irreducibility of F. We
observe in Theorem 3.3 that Y2 need not necessarily be an induced module, though
for the proof it is certainly necessary that Y be an induced module. For us this is
a rather useful observation. Since B is connected and F is finite-dimensional one
can adapt the proof given in [8] of Proposition 4.10, .almost word for word, to prove
Theorem 3.3 (even for Y2 arbitrary).

By Proposition 2.17, Pe + ’’ with Pe ’’ Ps. Therefore by Proposi-
tion 5.1.14 of [2] (again, as in the proof of Theorem 3.2), given a Pe module Fl, there
is a canonical e module isomorphism

U(ess) (R)U(ps) res, El U(e) (R)U(pe) F (3.4)
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where respP Fi FIIps F as a Ps module. Given an f’l k module F, extend
it to ape (e N k) (9 Us module such that us acts trivially (as before) and choose
F Fasape module. LetEs resenkes F(wherees C fqk sz(e) bY
Corollary 2.14) and let F,, F,, extended to a Ps s Um module such that

us acts trivially. Then respP Fl (a__) /’ss" Namely, since F F as a Pe module (by

r..senk def
definition) and e N k C pe we have resek FI F F and us F ) O. InPe

t;
Pe

is F def Fs F,/es reseCk El reseckparticular es C
have the same gs module structure. They also have the same us module structure by
(b) since u s . de__f 0. Hence (a) holds, and by (3.4) we deduce:

PROPOSITION 3.5. Given an e f3 k module F (possibly infinite-dimensional) let
Fs reseo F F as an es module. Then there is a canonical g.ss module isomor-
phism ofU(U’) (R)Vps) F. onto U() (R)V(pe) F given by u (R)V(ps f u (R)V(pe) f
for (u, f) U(Us) x Fs,, where Fs and F are extended to Ps s ( us and
pe (e k) 9 us modules, respectively, such that us acts trivially.

We refer to Definition 6.1.1 of [9] again for the notion of a general abstract (h, B)
module. Here the compact Lie group B (not necessarily the specific choice L K
above) acts on h by automorphisms {r(b)lb B} which extend the adjoint action of
B on its complexified Lie algebra b C h. Let a C h be a complex Lie subalgebra
b C a, r(b)a C a Vb B. Then the category of (a, B)modules is also well

defined. Given an (a, B) module X we can form in general the induced (h, B) module

h B def
IndalBX U(h) (R)U(a) X (3.6)

(as in (3.1)), and the produced (h, B) module

Proah, BX def
_,B Homua)(U(h), X)B-finite; (3.7)

cf. Definition 6.1.21 of [9].

PROPOSITION 3.8. Given finitely many (a, B) modules X Xn there exists
B na canonical (h, B) module isomorphism oflndha’t_, Ej=I (Xj onto Ej=I Indah’B_,B Xj

B n ()Xj onto Ej=I Proah’ Xj.anda canonical (h, B) module isomorphism ofProahl B Zj=I n

Occasions arise when one is given two 0-stable parabolics qJ J + uj, j 1,2,
with ql C q2, el C 2, u u2, L fq K C L2 tq K; cf. the notation in (1.2), (1.4).
In this situation one has the following:

PROPOSITION 3.9. If W is any (e L f’) K) module extended to a (ql, L f) K)
module on which u acts trivially, then there is a canonical (g, L f)K) isomorphism of

q2 L tfqK W--qE,LOKI""g’LnK Proq2’LOKqt,tK W onto Pro’K,K W. Also u2 acts trivially on PrOq’LK,
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Define

U
0

U N e2 q0 el + u0 C e2. (3.10)
Then q q0 U2 and

q2 ql + e2 with ql N e2 q0. (3.11)

Given (3.11), a Mackey type "subgroup theorem" (cf. the proof of Theorem 3.2)
provides

r"e2’Lfg D""qZ’LNKW -e2’LK-q’LK W. (3 12)Oq2,LKUq,LK qO,LtKq,LK
Extend the module on the r.h.s, in (3.12) to a (q2, L K) module by letting u2 act

q2 L’KW by Proposition 3.9. Thustrivially. On the other hand u2 acts trivially on Proq,’.,r
by (3.12)

q2,LK 2,LK qO LtKProq W reSq’,L W (3.13),LK VrOq,LK OK

is a (q2, L K) module equivalence and we derive the next result.

COROLLARY 3.14. The (g, L K) module isomorphism in Proposition 3.9 can
be expressed as

g,LOK D._g,LK,L OK q ,L KW W (3.15)VrOq2,LK PrOqo,LKreSq,LK Oq,LK

where o-e2’or-"q’rW is regarded as a (q2, L K) module on which u2 acts--OqO, L Kq,L K
trivially.

Proposition 3.9 (or Corollary 3.14) is an induction in stages result; compare equa-
tion (6.3.8) of [9], where the definition of the functor Pro differs from our (3.7) by
a certain "rho shift", i.e., W is replaced by W (R) /dim U The trivial action of

q2’L’nrW in Proposition 3.9 compares with the trivial action of u onU2 on Proqi,LnK
U(q) (R)U(q) F in the proof of Theorem 3.2. The assumption that G/K has a Hermi-
tian structure is not needed in Proposition 3.9, nor in Corollary 3.14 of course. Given
the existence of such a structure however, using the structure theory of Section 2 we

,q2choose ql l q fq qxz) "xz). Then e k k, u u + p+
-ff + p+, e2 - k, u2 p+ p L fq K L fq K, L2 fq K K (since
Ad(k)z z ’v’k 6 K, and K is connected). By (3.11), q0 l fq ql k q f3 k,
which gives the following concrete version of Corollary 3.14 (cf. Proposition 4.24
of [8]).

COROLLARY 3.16. Let W be an ( f) k, L fq K) module extended to a (’l, L fq

K) module on which "ff + p- acts trivially. Then there is a canonical (g, L t’) K)
....g LNK r....k LtqK ..^..qk,LK p....g,Lf)Kisomorphism of r,o-’ ro I7,-t,LtqK W onto _lt.,LtqK W where ql

qxz),t ^ qfqk,LK

q tqqxfz),qxfz) k + p+,andPro’qN,rc,r W is regarded as a (’xfz), L fq K)

module on which -if+ p- acts trivially.
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4. BGG type resolutions

The starting point for obtaining Bernstein-Gelfand-Gelfand type resolutions of in-
duced modules is the application of Lepowsky’s generalized version of BGG [6],[7]
to the semisimple part U of e as was done in [8]. Afterwards, one tensors appro-
priately the terms of the resolution and applies functorial properties of induction.
The maps involved are Lie algebra module maps, a priori. Thanks to the magic of
Theorem 3.3, however, they are B module maps as well. The resolution of pro-
duced modules follows by duality. Some of the arguments in [8] use the fact that
dim z(es) dim z(e) for the choice ofq there. Since this is notthe case in general
we must seek alternative reasoning at various points. Given a finite-dimensional irre-
ducible L module Ft, the goal is to construct a (g, Lf)K) resolution of U(g)u(q) EL
by direct sums of certain generalized Verma modules for g; see Theorem 4.18. Since
q satisfies (1.3)’ (or equivalently (1.3)") we call U(g) (U(q) EL a holomorphic Verma
module.

For El de l-Ia 1"] r(e) (q Ak, as before define

Pc, { ) h*
2(k’ t) Z+ }c El (4.1)
(c, c)

where (,) denotes the .Killing form of g and 7/.+ is the set of non-negative integers;
h* is the dual space of h. Let W(g.) be the subgroup of the Weyl group W of (g, h)
generated by the Weyl reflections r as c varies over r(O and let

Wl() {w W()l Q f-)r(e) f3 Ak C w(Qfqr(e))},

23(e)= E u,23=Eot. (4.2)
otQnr(e) otEQ

(,) Z+PROPOSITION 4.3. Let ) h* be Q r(e)-dominant integral: ",m V 6

Qfqr(e). Thenforw W(e), w() + 3(e)) 3(e).: wok +3) -3 Pc, in (4.1).

Note here that for any w W(e) in fact, w3(u) 3(u) for 23(u)
i.e. (c, 3(u)) 0 ’v’c 6 r(e).

By (1.3)’ and (4.2), 23 2a(e) + 26(u) w(Z + (e)) (e) w(Z +
(u)) + (u) w(; + ) .
Now take Z 6 Pc, and let F(Z) be the corresponding finite-dimensional irreducible

f] k module. F()) restricted to ( N k)’s is in fact ( fq k)L’-irreducible. By
Proposition 2.11 and Corollary 2.14 [s, es] ( fqk) and k D s. We see that
by restricting the k module structure of F(Z) to es we obtain an irreducible es
module F00.,.

def es F()) since in fact F(.)s. is [s, es] ( f3 k)’’-irreducible.resmk
Extend F()).,, to a Ps g.s us module on which us acts trivially and form the
g:"-generalized Verma module

M.,(Z; S) U(esly) (R)v(ps) F())ss; ,k 6 Pc,. (4.4)
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For Z 6 h* which is Q o r()- dominant integral and w 6 W (e) in (4.2) let

z --f w(z + (e)) -(e) w(z + ) -. (4.5)

Then by Proposition 4.3, Zo e PE and hence the generalized Verma module M.,.,
(Zv; S) is well defined, where Z in (4.4) is replaced more generally by Zv; w ===

defZo Z. For k 0, 1,2, 3 dim us define

C Ck(S) de___f Ms,(Zw; S)
u,eW (e).
e(u,)=k

(4.6)

for e(w) dej i{O/ e Q o r(e) w-lot e -(Q o r(e))}l equal the length of w; IAI is
the cardinality of a set A. Let L.+. (Z) be the finite-dimensional irreducible e module
with Q o r(e)-highest weight Z and let : Co M,s(Z S) ---, L..(Z) be the
canonical surjection.

THEOREM 4.7. [6] (Generalized BGG resolution of zLss(Z)). Let Z h* be Q o
def

r(e)-dominant integral. Then there exist eSS-module maps otj ctt, dim us,
Oltsuch that 0-----+ Ct(S) ct_j(S) - Co(S) Lss(Z) 0 is an

exact sequence; see (4.5),(4.6).

Note that dim(e O p+) by (2.7).
Since F(Z), for Z e Pe,, is an irreducible e O k module and e O k is reductive, the

center z(e O k) of e O k acts on F(Z) by scalar operators: 51 a map xx: z(e O k)
C z. f xx(z)f forz e z(eOk), f. F(Z). Choose f0 e F(Z) to be a non-zero
X-weight vector. Then for z z(e O k) C h, Z(z)fo z fo xx(z)fo ===
x Zlzenk i.e.z, f Z(z)f Yz z(e O k), Yf F(Z). Extend F(Z)
to a Pe (e O k) us module on which us acts trivially. Then z e z(e) acts on
U (e)(R)ut,e> F(Z) via the scalar Z (z). This follows since z(e.) C Pe (cf. Corollary 2.14)
and z(e) C z(e Ok) (cf. Proposition 2.12). Apply these remarks to Zw Pe, in place
of Z, for w e W (e), Z which is Q o r(e)-dominant integral (see Proposition 4.3 and
Definition (4.5)): z e z(e) acts via the scalar Zo(z) on U(e) (R)uP,> F(Zo). We claim
however that Z0(z) Z(z) for z e z(e), w e W(e). First, z(e) {H e h c(H)
0 ct e r()} wH (i.__) Hforw e W(e),H e z() sinceforct e r(), r(H)de___.f
H- 2ct(H)(ct, ct)-H, H for H z(). Also (e)(H) 0 for H z() by
Definition (4.2). Hence Zv(n) de=f [W(Z + ()) $(e)](n) vo(z + (e))(n) (for
n z()) (Z + (e))(w-ln) (X + $(e))(n)(by (i))= x(n), as claimed.
That is:

PROPOSITION 4.8. Z e Z() acts on each U(e.) U(pe) F(Zo), w W(e.), by the
same scalar Z(z) (which is independent of w).
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We continue to assume that/k h* is Qt3r(g)-dominant integral; .o Pe, Yw
wl(e) and in particular ) Pe, (again by Proposition 4.3). By Proposition 3.5 there
is a canonical g’’ module isomorphism it, of M..(,kw; S) onto U(g) (R)t:(pe) FO,)
(see (4.4)) where us acts trivially on F(/kw) extended to a pe (g. Ak) us module.
By (4.6), there are induced g’’ module isomorphisms

def Elk )iw" Ck -- k (4.9)
u,W (e).
e(u,)=k

for 0 < k < t, where we set

k de__f E U(e) (R)t:(pe) F(L,). (4.10)
wW (e).
e(w)=k

Consequently for k >_ 1, tk de___f ik-I o Otk o i 1" k k-l is an ’ module map,
for Ok in Theorem 4.7 By Proposition 48, the action of z 6 z(e) on a summand in
(4.10) is independent of the in_dexing element w 6 wl(e) and is g_iven by ~the scalar
;(z). Hence z 6 z() acts on Ck via the scalar ,k(z). That is, tk" Ck --- Ck- is an
U module map of e s. z(e) modules with z z() acting by the same scalar
)(z) on Ck and Ck-, which shows in fact that (k is an module map.

Our main interest is the case when the e k module structure on each F()w)
integrates to a B module structure: y. f w(Y)f for y 6 k, f 6 F(w), for
a C representation Fifo of B on F()w). For this we assume in addition that , 6 h*
is analytically integral: L(F) C 2zriZ for F dej {H h0 exp H }. Then each
,k,, w W(), is analytically integral, the F(,kw) are (Pe, B) modules (cf. remarks
prior to (3.1)), the

Yw dej U(e) U(pe) F(,kw) (4.11)

are (, B) modules, and consequently the k are also (e, B) modules. The &k, k > 1,
which we have shown to be maps are B module maps. To see this let

Fk()) deal E 9F(,,ktv) (4.12)
wW (e).
e(u,)=k

for 0 < k < t. By Proposition 3.8 there is a canonical (, B) isomorphism

fk" U(e) (R)U(pe) Fk(’) k; (4.13)

see (4.10). By Theorem 3.3, the e module map 6tk o fk: U(g.) (R)u(m) Fk()O --->

k k > is automatically a B module map Hence ck (ck o fk) o f- is a Bk
module map, and is thus an (e, B) module map.
Now let Ft (,k) be a C finite-dimensional irreducible L module with Q (q r(e)-

highest weight ,k, say FI. is the representation of L on F. (,k). More specifically,
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via I:I/, FL(,) is an irreducible e module on which z(O acts by scalars, and by
restriction, FL (,) le.. is g’’ irreducible, as is reductive. We assume Ls.(Z) arose via

EL (,)" Lss(,) EL (,)le,." Lss(,) integrates to an (e, L) module. By (4.4), (4.6),
(4.9), (4.10) (or by Proposition 3.5 directly), i0: U(e

U() (R)Vp, F(X) t0 is an e’’ module isomorphism. That is, def._ e oil" 0 --FL(.)Ie,, is an ’’ module map for e in Theorem 4.7. Choosing a non-zero .-weight
vector in FL() we see that z z() acts on FL (,k) via the scalar )(z) (arguing as we
did for the Ok module F(,k) above), which is the same scalar by which z() acts on
t0, as noted earlier. As earlier, it follows that " ’0 -- FL (.) is an e module map,
and hence by Theorem 3.3, " Co -- FL (.) is an
are isomorphisms we deduce that

(4.14)

is an exact sequence of (, B) modules, given the exactness expressed in Theorem 4.7.
There is a final step in constructing the desired resolution of U(g)

Extend each F(,ko) to a (ql, B) module on which Ul acts trivially, and each Yo to
a (q, B) module on which u acts trivially. Then Ck is a (q, B) module such that
u C 0. Also, by Theorem 3.2, there is a canonical (g, B) module isomorphism

w: U(g) (R)U(q) Yw U(g) (R)U(ql) F()to). (4.15)

Tensor the exact sequence of (, B) modules in (4.14) (which are now (q, B) modules)
with U(g) over U(q) to obtain the exact sequence

0 U(g) (R)U(q) dt -- U(g) (R)U(q) t-l
*U(g)(R)U(q)Co U(g)(R)U(q) FL(,k) 0 (4.16)

of (g, B) modules; cf. Lemma 6.1.6 of [9]. By Proposition 3.8 and equations (4.10),
(4.11), (4.15), we have (g, B) module isomorphisms

U(g) (R)U(q) -’k (U(g) (R)U(q) Yw
uW (e).
etu,=k

wW
e(u,)=k

U(g) (R)U(q,) F(Zw) (4.17)

which, by (4.16), lead us to the following.

THEOREM 4.18. Let h* be Q r(e)-dominant integral and analytically
integral. Let Fl() be the smoothfinite-dimensional L module with Q fq r() highest
weight ;. Then there exist (g, LK)modulemaps4l, t2 tt, e, dim(ep+),
such that

0 y’ U(g)(R)U(q,)F()o) -- y U(g)(R)U(q,)F()o)
weW (e). wew (e),
e(w)=t e(w)=t-
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is an exact sequence of(g, L fq K) modules; see(1.1), (4.2), (4.5). Here
Q Cr(e) w-a -(Q c r(e))}l is the length ofw (where we have denoted A() in
(1.3) by r(e)), the F(w) are irreducible smooth finite-dimensional L fq K modules
(= (ql, L N K) modules on which ul u + p+ acts trivially) with Q
highest weight ., and ql is the O-stable parabolic (g. k) u q fq (k + p+).

Remarks. In Theorem 4.18, which generalizes Proposition 4.18 of [8], recall
that q u is any 0-stable parabolic subalgebra of g which contains the Borel
subalgebra ba h + EotEa ga of g, or (equivalently)which satisfies condition (1.3)’.
In Section 4 of [4], Enright and Wallach construct a finite resolution of a Verma
module (in the category of g-modules) which differs markedly in form from that of
Theorem 4.18. Also compare with Chapter 6 of 10].

For a (q, B) module Z let Zh denote its B-finite Hermitian dual, which is a (’, B)
module: Zh is the space of B-finite vectors in the space of conjugate linear maps
Z C. There is a standard (g, B) isomorphism

Proqg-’,Zh (U(g)(U(q)z)h; (4.20)

see (3.7). If Z is a smooth finite-dimensional B module (and thus an (eqk, B) module)
regard Z as both a (q, B) and a (, B) module on which both u, ff act trivially. Then
Zh in (4.20) can be replaced by Z; cf. Lemma 4.19 of [8]. Write

E U(g)(U(q,) F(Zw) U(g)(U(q,) Fk()) (4.21)

by Proposition 38 and equation (4.12). Apply (4.20) with q replaced by q, and apply
Proposition 3.8 again"

(l.h.s. of (4.21))h Prog-’Fk(k)
ql,t

w6W (e).

(4.22)

That is, if we take the B-finite Hermitian dual of the terms in (4.19), then as exactness
is preserved we obtain from (4.22) the following generalization of Proposition 4.22
of [8].

THEOREM 4.23. Let q D bQ be any O-stable parabolic and let ;k h*, FL (.)
be as in Theorem 4.18. With the notation of that theorem, there exist (g, L f3 K)
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module maps b, b,..., b*t, e*, dim( f3 p+), such thatfor B L f3 K, _<
k<t,

V, de__r E Prg-’L F()w)
ql,t

u,W (e),

(4.24)

0-----+ Pro:B ’* -t Ft.(X) Vo V V2 Vt 0

is an exact sequence of (g, B) modules.

5. Some applications

Applications of Theorem 4.23 will be based on the folowing general result in
conjunction with the Borel-Weil theorem.

THEOREM 5.1. Let G be any Lie group and let B, K C G be closed subgroups of
G with B C K, K compact and connected. Let g denote the complexified Lie algebra
of G. Given a (g, B) module V, let FV C V be the corresponding (g, K) module
given by the Zuckerman construction; see 11 and Chapter 6 of [9]. Suppose one has

a (g, B) resolution 0 --+ V - Vo - VI - V2 - of V. Then there is a
r,s1st quadrant spectral sequence E (i.e., E2 0 if either r or s < O) with cx-terms

associated to the cohomology H*(T) of a complex T given by Hr(T) Frv for
r O, H (T) Ofor r < O, where Fr, r O, is the rth right derivedfunctor ofthe

g,KZuckerman functor F Fg.s. E is induced by a decreasing filtration {FPTn}peZ
of each Tn (the space of n-cochains of T) which satisfies the regulari conditions
(i) FPT Ofor p > n, (ii) FPTn T for p O. The E, E2 terms are given by

r,s FS r,SE G for r, s, O, with E 0 ifeither r or s < O,

r,s (Fs lFs ) FsE2 ker Vr Vr+l /(USer) Vr-I for r, s, > 1,

E ker F’Vo V for s > 1, (5.2)

E’ ker(FV0 FV,).
The differential d: En En has bidegree (n n)" i.e. d: E’’ En+r’s-n+l

Given that the category of (g, B) modules has enough injectives, Theorem 5.1 follows
by general Grothendieck principles, e.g., the theory of resolution of a complex. See
Proposition 3.2 of [8] or Appendix D of [5] for a more general result.

COROLLARY 5.3. In Theorem 5.1, suppose Fj V # 0 for some jo >_ O. Then
there is an integer ro >_ 0, ro < jo such that Fro Vjo_ro # 0.
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.Proof. As HJ(T) jV 5 0 the regularity conditions (i) and (ii) imply that
Eo-ro,ro 0 for a or b < 0 we must have0 for some integer ro. Since E’b

jo ro, ro >_ 0. Then Fro Vjo_r E{-r’r 0, as desired.

The connectivity assumption on K in Theorem 5.1 is dispensable. In application
of course, G will be connected semisimple as before, K will be a maximal compact
subgroup of G (therefore K is connected), and we will choose, as before, B L N K
where L (as in (1.4)) corresponds to a 0-stable parabolic in g. By Theorems 4.23 and
5.1 we therefore have the following.

THEOREM 5.4. Let h*, FL (.), q be as in Theorem 4.18; thus q is any O-
stable parabolic D bQ. Then there is a 1st quadrant spectral sequence E with
o-terms associated to the cohomology H*(T) of a complex T given by Hr(T)
Frpro_’" ( )q,BFL(J) for r > O, B defLOK, Fr FgglKB with nr(T Ofor r < O.
E is induced by a decreasing filtration (of cochains) which satisfies (i) and (ii) in

r,s FsTheorem 5.1. The El and E2 terms are given by E V for r, s > 0 and by the
equations of(5.2), where

Vr @Pro B F(Z0);,B
wW (e),
e(u,)=r

(5.5)

80 e*, r ,, < r < dim( O p+) in the notation of Theorem 4.23. The
differential En ----> En has bidegree (n, n).

For k PE, in (4.1) which is analytically integral let F(Z) be the irreducible
B module with Q o At‘ A()-highest weight ), as in Section 4, given a 0-stable
q D ba. In fact, we have seen that F(,k) is a (Pe, B) module for pe tqk @ O p+
in (2.15). Using q Ok efk@u Ok, regard F()) asa (q Ok, B) module on which

u O k acts trivally. Then for 2t‘ de__f -cEQAt, Ct one has the following.

THEOREM 5.6 (Borel-Weil [3]). /f (. + t‘, a) 0 for some a At‘ then
(It‘,Bk,K)j Prok,Bqt,,n F()0 0 Yj _> 0 (see (3.7)). Assume ) + 8t‘ is At‘-regular:
() + t‘, or) 0 Vt Ak. Let tr be the unique element in the Weyl group Wk of
(k, h) such that (cr(,k + tSt‘), ct) > 0 Vt Q f3 At‘. Then (Fkir)j Prokq,n F(L) 0

for j (tr) de___f I{Ot Q f3 At, o-ct -(Q o At‘)}l, and equals the irreducible
(k.K) module with Q f3 Ak-highestweight tr(. + dk) dk if j (tr).

In the situation prior to the statement of Proposition 3.9 (there the assumption that
G/K has a Hermitian structure was not needed), as in Lemma 6.3.9 of [9], one has
the following.
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THEOREM 5.7. Let Y be an (e2, L f’) K) module extended to a (q2, L f-) K)
module on which u2 acts trivially. Then there is a (g, L2 f3 K) isomorphism of
(L2NK)r’ g,L|NK Y ontoO_..g,L2fqK [1-,g2,L2K)l-’gglL’CqK l"rOq2, L’fqK --lqE,L2OK \-e2,t,Nr Y for r >_ O, where --e2,WeE’L2f3KL’3K Y

is regarded as a (q2, L2 f-I K) module on which u2 acts trivially.

Again bear in mind that the definition of the functor Pro in (3.7) differs slightly
from that of [9]. For G/K Hermitian symmetric we obtain the following.

COROLLARY 5.8. Let Y be a (k, L f3 K) module extended to a (xz), L f3 K)
k,Kmodule by the trivial action of p-. Similarly extend [’k,Lor Y to a (’xz), K) mod-

ule on which p- acts trivially. Then there is a (g, K) module isomorphism of
(g,K)r ()rFg,Lr Pro’t-K Y onto Prog’r k,rFk,Nr Y for r > 0; here againqxtz),LK qxtz), K

q--x(z) k + p-. (5.9)

q2 exactly asCorollary 5.8 follows if we choose ql q q fq qx(z) = qx(z),
we did to establish Corollary 3.16. Thus, as we have seen, 2 k, L N K
L f) K L2 fq K K.

Using the Borel-Weil theorem we can now compute the cohomological paraboli-
cally induced (g, K) modules F’Vr appearing in the E2 terms in (5.2) for Vr given
in (5.5); compare with Proposition 4.26 of [8]. As we needed the fact that the
functors Pro, and Ind commute with direct summation (Proposition 3.8) we will
similarly need the fact that each 1"’3, s > 0, commutes with direct summation. As
usual q + u D bQ is any 0-stable parabolic. Again let 23k YotafqAk o/,

let L 6 Pe| in (4.1) be analytically integral, and let F(,k) be the corresponding
irreducible B dej L t3 K module with Q f3 Ak f"l A(e)-highest weight L. In Theo-
rem 5.6, we viewed F(L) as a (q f3 k, B) module on which u f3 k acts trivially, using
q f3 k e f3 k u f3 k. Similarly we view F(.) as a (0l, B) module on which
acts trivially, using f3 k 1, where l u + p+ + p-.

THEOREM 5.10. If(.+3k, t) Oforsomet A then I’g, Pro F(Z)
0 Vj O. Assume+k is Ak-regularand let W be the unique elementsuch that

((X+) ) > 0 Q,asin Theorem5.6. Then F, Pro[’F(X) 0
ql,

for j e() de i{ a Ak - -(a A)}I, and

g, K)e(cr)Fg, Pro’n F(,k) Prog-’K
,B qx,z),K FK(cT()L + 6k) 3k) (5.1 1)

where FK(Cr(L + 6) 3k) is the irreducible (k, K) module with Q f3 Ak-highest
weight cr(. + 3k) 6, which one extends to a (ffxz) k + p-, K) module by the
trivial action of p-.
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resq-CB F(.), which we extend to a (’xz), B) mod-Proof. Let Y Pro
,B q,,-

( g’K)Jpr:BF(jk)ule by the trivial action of p Then by Corollary 3.16, I"g,B B

(l"g,n Prog-’/qx(z>, B Y, which by Corollary 5.8 equals Proz),K. kl Y. Theo-
rem 5.10 now follows from Theorem 5.6.

In (2.20) and (2.21) we observed that a (Q f3 An) (i=) Q fq An for a Wk, and in

particular crSn 0i___) 8n, (Sn, Ak) 0. It follows from (4.5) that for to W (e), c
(iii)

Ak w.3t_Sk
def

to(_..8)_8__8k to(),_/.8)_8n (w._Sk Ol) (to(--8), Ol).
That is, Zw + 8k is Ak-regular= w(. + 8) is Ak-regular, in which case we define
ao 6 Wk to be the unique element such that

(awW(Z + 8), or) > 0 rot Q n A,,,. (5.12)

By (ii) and (iii), ao(),o + 8k) 8k ato[w() + 8) 8hi 8k aww(L + 8) 8,
and by (5.5),

wW (e).
e(u,)=r

(5.13)

where we now assume ,k is Q fqr (e -dominant integral and analytically integral. Then
as we have seen (by Proposition 4.3) each .w PE is analytically integral. Thus is
(5.13) we can apply Theorem 5.10 to obtain the following.

COROLLARY 5.14. Suppose ) h* is Qfqr ()-dominant integral andanalytically
integral, as in Theorem 5.4. Then in theformulasfor the E E2 terms in Theorem 5.4
(cf. (5.2)),for r, j, > 0, andfor aw defined in (5.12) one has

w (e).etu,)--r.

u,O.+8) is Ak-regular,
e(aw )=j

Pro’ Kqx,z,,KFK(trwto(. + 8) 8) E’j (5.15)

For (a, w, r) 6 Wk x W(e) x W let

w {c 6 Q f’l A(e) w-’oe -(Q A(e))},

{a 6 Q r-c 6 -Q}.

(5.16)

Then I is the Q fq Ak-length ofa, Iel is the Q fq A()-length of w, andI is the

Q-length (or simply the length) of r. We have observed that a (Q fq An) (i_)) Q An It
follows that ,. Similarly wA(u)= A(u)= Q-A() (see (1.3)’)== e

0. Notethata0 4r Ifthereexistsot 6 aothenc Q,a-a -Q
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and ct tr B with B e Q, w-1B e Q === B or- c Qfq Q is a contradiction.

Suppose, in fact, that w W ()" Q A(e) A <) w(Q A()) (see (4.2)); recall
that the sets A(e) and r(e)) are the same in our notation. Then C A" If
OA, thena QA(e)Ak w-la Qby(iv), whichisa

contradiction since w-la -Q. Thus A(e) A Q. In
paicular aw c A Q by (i). That is, , a C Q and since this union is
disjoint

from whence one can conclude Ua ,. Of course one can check this
equality of sets directly. This proves the following.

PROPOSITION 5.17. For (a,w) W x W(e), a and w g
w W (e), aw aUaw where the union is disjoint; see (5.17). Inparticula in
Theorems4.18, 4.23, 5.4, 5.6, 5.10, andCorolla 5.14 we can also write e(a) I I,

w-a s -Q} (y (v)).

PROPOSITION 5.18. Let ) h* be QfqA(e)-dominant (as above) and let (cr, w)
Wk W l(e). Then w {or Q fq An N A(e) (w(.
is Ak-regular let trvo Wk be the element defined in (5.12). Then

A(u) N A (w(.-t-8) ct) < 0} Ofcoursefor any tr 0.--I"

Proof For ot 6 w, c e Q q An I A(e) such that --1/)-let fi Q A()
(by Proposition 5.17) ( + ,-w-a) > 0 as is Q A(e)-dominant; i.e.,
(w(X + 6), ) < 0. Conversely, it is clear that any in Q A, A(e) subject to
the latter inequality belongs to w. Let a 6

by definition (5.16). If u A() then Q A. A() C w(Q A()) (since
w e W(e)) w- e Q A() ( + , W--I) > 0 as is Q A()-
dominant. That is, (aw(Z + 8), -aa) -(w(Z + 8), u) -(Z + 8, w-l) < 0,
which contradicts the definition ofaw in (5.12) since- e QA; here we assume
w(Z + ) is Ak-regular. In other words, A(e) Q A(e) A(u).
That is, u A(u) Ak and -aw Q A 0 < (aww(Z + 8),-awu)
-(w(Z + ), ). Conversely if A(u) Ak satisfies (w(Z + 8), u) < 0 then
(aw(X + d), a) < 0, with aw Ak and Q Ak, as A(u) C Q. By (5.12)
we must then havea -(Q Ak); i.e. u _,, which concludes the proof.

Corollary 5.3 provides for the following vanishing theorem.

PROPOSITION 5.19. Let e h*, FL(,), q be as in Theorem 4.18, as usual. Sup-

( ,r)J Pro,,npose Fg,B n EL(Z) O, where B L fq K. Then there exists to wl(e)
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(see (4.2)) such that w(Z + 8) is Ak-regular. Let crw Wk be the unique ele-
ment such that (trww() + ), or) > 0 ot Q fq A (as in (5.12)). Moreover,
j g.(rt) +(w) with e(tro) [{or A fq A(u) (w(. +),c) < 0}l
andg(w) [{a Qf) An f) A(e) (w(.+),ct) < 0}l. We can also write

j e(trww) ae=f I{ot Q (trow)-lot -Q}I < dim(u

In Corollary 5.3, choose V Proog--’,tProof. s FL(.), as in Theorem 5.4 so that

g, K j g, K Vj_r 0 for somethe Vr are given by (5.5). Then l-’g,s V

0 r j,byCorollary5.3. ByCorolla5.1a, Pro’,F(aww(Z+8)-8) 0F,

for some w 6 W (g) such that e(w) j r, w(k + 8) is Ak-regular, and g(a) r.
That is, j g(a) + e(w) and the remaining asseions of Proposition 5.19 follow

def
from Propositions 5.17 and 5.18, except for the inequality j s dim(u k)
which is a bit deeper. This inequality follows from the generalized Blattner foula,
Theorem 6.3.12 of [9]; see Corolla 6.3.21 of [9]. Strictly speaking, the latter
theorem applies to our situation provided two minor points are taken into account:

(i) The cohomological parabolic induction employed here involves the opposite
parabolic 0 g + , rather than q employed in [9].

(ii) As pointed out earlier, the functor Pro of [9] differs from ours in (3.7) by a rho
shift. At any rate we can obtain the inequality j < s by replacing the Weyl
group element in Wit of (a)ofTheorem 6.3.12 of [9] by a suitable Wk-translate
of it.

As an example of the preceding proposition one has the following well-known fact.
See [5], [9] and 10] for example for more general results.

COROLLARY 5.20. Suppose that in Proposition 5.19, . satisfies

( + 8, a) < Ofor every a A(u).

(g’g)jFg,BThen Pro’, F/(.) Ofor j s dim(u f3 k).

Proof. Given any ot A(u) (in particular given any ot A(u) f3 Ak) and
w W(), one has w-lot A(u) so that (w(. + 8), a) (. + 8, w-lot) < 0 by
(5.21). If FJProF/(,k) #- 0 we see that for a w W1() given by Proposition 5.19,
e(tro) IA f3 A(u)l s. Then j (ro) 4- e(w) <_ s forces e(w) 0; i.e., .j s.

In the program set up in [8] to construct irreducible unitarizable (g, K) modules

(g’K)jl’g,B Proqg--’,F (.), interest is focused on the case j < s, which by Corollary 5.20

requires the existence of at least one a in A(u) for which (. + , a) _> 0. For
example it is assumed eventually that ProF (,) is reducible: is a reduction point
in the Enright-Howe-Wallach classification of unitary highest weight modules.
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