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HARDY-LITTLEWOOD THEOREMS FOR
A-HARMONIC TENSORS

CRAIG A. NOLDER

ABSTRACT. Conjugate A-harmonic tensors are generalizations of conjugate harmonic functions to dif-
ferential forms. They share common analytical properties such as integrability and Holder continuity.
Applications to quasiregular mappings follow.

1. Introduction

The theory of conjugate harmonic functions plays a central role in such areas of
mathematics as potential theory, harmonic analysis and the theory of H”-spaces.
Conjugate harmonic functions have many analytical properties in common, among
which are global L?-integrability and Holder continuity. These discoveries essentially
began with the work of Hardy and Littlewood in the 1930’s; see [HL1] and [HL2].
See [P] for an earlier reference on Holder continuity.

Here we mention three specific results.

THEOREM A. For each p > 0, there is a constant C such that

/ lu —u(0)|?dxdy < Cf v —v(0)|” dx dy
D D

for all analytic functions u + iv in the unit disk D.

THEOREM B. For each 0 < k < 1, there is a constant C such that
lullLip, b < CllvliLip,,D

for all analytic functions u + iv in D. Here | - ||Lip, ,p is the usual Lipschitz norm
over D.

THEOREM C. There is a constant C such that

lullemo,p < Cllv|lemo,D

for all analytic functions u + iv in D. Here || - ||gmo.p is the usual BMO norm over
D.
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614 CRAIG A. NOLDER

Conjugate A-harmonic tensors are interesting and important generalizations of
conjugate harmonic functions and p-harmonic functions, p > 1. See Definition 2.17.
They have recently found important applications in areas such as quasiregular map-
pings and the theory of elasticity; see [I] and [IM]. The main results of this paper,
Theorems 4.2, 5.5 and 6.7, generalize Theorems A, B and C to conjugate A-harmonic
tensors defined in domains in R” which possess an appropriate geometry. Examples
show that in many ways the results are best possible.

For example, a p-harmonic function is a solution u to the p-harmonic equation

div(l v ul’? vu) =0,

with p > 1. Its conjugate in the plane is a g-harmonic function v (often referred to
as the “stream function”, see [A1]), with i ql = 1, which satisfies

av ov
1.1 "gu=(—,-—|.
(1.1) [VulP~™*vu (ay ax)

Notice that when p = g = 2 we have the usual conjugate harmonic functions.

In the theory of elasticity as well as the theory of quasiregular mappings, the phe-
nomenon of p, g-conjugacy arises naturally for solutions to certain elliptic equations
for differential forms. More specifically, if u is a solution to

d*A(x,du) =0
in R”, then its conjugate is a tensor v such that
(1.2) A(x,du) = d*v.
As such, v is a solution to
dA™'(x,d*v) = 0.

If A(x, &) = |&|P, then A~ (x, &) = |€]7 with % + ; = 1. See Section 2 for details.
Notice that (1.1) can be rewritten to produce an example of (1.2) in R2.

A sharp regularity theorem for quasiregular mappings was recently proved using
certain conjugate A-harmonic tensors u; and v; associated with a quasiregular map-
ping. See [I] and [IM]. As such, the results of this paper yield corollaries. for the
quasiregular tensors u; and v;. We discuss a few of these which are particularly
interesting in Section 7.

In Section 3 we prove the local integrability result for conjugate A-harmonic
tensors. This is the basic estimate, a result of the conjugacy, which is used throughout
the paper to obtain global results.

The next two sections investigate the global L*-integrability of conjugate A-
harmonic tensors. Here the global geometry of the domains of integration is im-
portant. The integrability exponents and the conjugacy exponents p and g directly
determine each other.
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In Section 4 the first main result, Theorem 4.2, appears. This is a generalization
of Theorem A to conjugate A-harmonic tensors in John domains in R".

In Section 5 we deal with more general domains than John domains, so-called
L*-averaging domains and obtain a weaker result than Theorem 4.2. Theorem 5.5
seems to be new even in the case of conjugate harmonic functions in the plane.

In Section 6 we treat the local Lipschitz spaces and BMO spaces and obtain
generalizations of Theorems B and C. We use the integrability result in [Me] for
Lipschitz functions to extend the definition of local Lipschitz spaces to differential
forms. Again the relationship between p, g and the Lipschitz exponents is seen
to be the best possible. A global Lipschitz result holds in the plane for so-called
Lip, ;,-extension domains.

2. Exterior algebra, Sobolev spaces and elliptic equations

Let eq, ea, ..., e, denote the standard unit basis of R”. For £ =0, 1, ..., n, the
linear space of £-vectors, spanned by the exterior products e; = e;, Aej, A--- Ae;,
corresponding to all ordered £-tuples I = (iy,i2,...,0p), 1l <ij <iy<---<ip<mn,

is denoted by A¢ = A*(R"). The Grassman algebra A = @A° is a graded algebra
with respect to the exterior product. Fora = ) aje; € Aand B =) B;e; € A,
the inner product in A is given by

(@, )= B

with summation over all ¢-tuples I = (iy,...,i¢) and all integers £ = 0, 1, ..., n.
We define the Hodge star operator »: A — A by the rule

*l =ejANeyA---Ney,
and
aA*xB=BAxa = (a,B)(x])
foralla, B € A%, £=1,2,...,n Thenthe normof @ € A is
la|? = (o, a) =*x(@Axa) e A°=R.

The Hodge star is an isometric isomorphism on A with *: A®— A"~ and * *
()= AL AL

Throughout this paper 2 is an open subset of R". We write L7 (2, R),0 < p < oo,
for the usual L? space of real-valued functions with respect to Lebesgue measure.
The norm of f € L?(S2, R) is denoted

1/p

1fllpg = fmmwx
Q
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for0 < p < ooand

flloo, = esssup{| f (x)||x € }.

We also write
Lf:,c(Q, R) = NL? (2, R)

where the intersection is over all Q' compactly contained in 2. The Sobolev space
W,} (2, R) is the subspace of L7 (£, R) whose distributional first derivatives are also
in L?($2, R). Similarly we have the local space W;,m(Q, R).

A differential £-form w on 2 is a Schwartz distribution on Q with valuesin A¢(R").
We denote the space of differential £-forms by D'(§2, A%). We write L?(Q, A*) for
the ¢-forms w(x) = Y w;(x)dx; = Y wiiyi,(¥) dxiy A dxiy A -+ A dx;, with

1

w; € LP(, R) for all ordered £-tuples I. Thus LP (2, A%) is a Banach space with

norm
1/p
lolpe = ( / |w(x)l”dx)
Q
r/2
f (Z |w,<x)|2) dx
Q 1

Similarly W,} (£, AY) are those differential £-forms on § whose coefficients are in

W, (2, R). The notations W,:,loc(ﬂ’ R) and W;'IOC(Q, AY) are self-explanatory. We
denote the exterior derivative by

1/p

d: D'(Q, A - D'(@, A™)
fort =0,1,2,...,n. Its formal adjoint (the Hodge codifferential) is the operator
d*: '@, A" - D@, A9
given by
d* = (=1« ds

onD'(Q, A1), £=0,1,...,n. Werequire a version of the Poincaré inequality for
differential forms.

The details of the following constructions and results can be found in [IL]. Given
dw € LP(Q, A%, 1 < p < 0o, we construct the closed ¢-form wg € D/'(Q, AY)
used below. When £ = 0, wg is the average value of w over the cube Q. Otherwise
it plays a similar role in the Poincaré-Sobolev inequalities.
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THEOREM 2.1. Ifw € D'(Q, A) and dw € LP(Q’, A*)), then w — wg €
W,}(Q, AY and

22) llo —wgllp.o < Cn, p) diam Q|ldwl|p, 0.
for 1 < p < 0o. Moreover,
(23) lwgllp.o < Ca(n, p)lwllp,-
As in the case when wg is an average value, we have the following lemma.

LEMMA 2.4. There exists a constant C, depending only on n and p, such that
2.5 lo —wollp,o < Cllw —cllp,o

forallw € LP(Q, A% andall c € D'(Q, A*) withdc = 0. Here 1 < p < 0co. When
p = 1 we have

2.6) lo — wgllp,o < C(n) diam Qllw — cllp,o-
Proof. When c is closed, cg = c; see [IL]. Using (2.3) we obtain

lo —wollp.o = Il{w—c) = (wg —co)llp.0
= [(@=c¢)—(@—2)gllp.0
< (I 4+cn, p)llo —cllp,o-

A

We consider solutions to equations of the form
2.7 d*A(x,dw) =0.
Here A: Q x AY(R") — A(R") satisfies the assumptions

|A(x, &) < alg|P™!
(2.8) (A(x,8),&) = |&1P

for almost every x € Q and all £ € A“(R"). Herea > Ois constantand 1 < p < 00
is a fixed exponent associated with (2.7). The exponent p will denote this exponent
throughout the rest of this paper. A solution to (2.7) is an element of the Sobolev
space W, 1. (2, A") such that

/(A(x,dw),dw) =0

Q

for all 9 € W)(Q, A*~") with compact support. Such differential forms are called
A-harmonic tensors; see [I] and [IL].

It is important that the Euler-Lagrange equations of certain variational integrals
are of the form (2.7).
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Letn € CP(0Q), n = lin Q and |Vp| < (O‘il)IQI"/”‘ Using the test form

¢ = —wnP for (2.7) and using the inequalities (2.8) we get Theorem 2.9.

THEOREM 2.9. Let w be a solution to (2.7) in Q2 and let 0 > 1. There exists a
constant C, depending only on a, p and n, such that

(2.10) ldwllp.o < © llo—=clpoo

(o
— 1)diam Q
for all cubes Q with o Q C 2 and all closed forms c.

We extend this result for the positive and negative parts of the form w to obtain the
weak-reverse Holder inequality (2.15). Our proofs are modifications of the proofs of
theorems in [HKM]. We present the details of those modifications. First,ifu € A°(R)
we write

u™ = max{u, 0},
u~ = min{u, 0}.

Also we write
ot = Z wfdxy,
T

w = Z w;dx;.
1

THEOREM 2.11. Let w be a solution to (2.7) in Q2 and q > 0. There exists a
constant C, depending only on a, p, q and n, such that

2.12) f w19 ot PP < C f |w* 4P V)P
Q Q

for all nonnegative n € C$°(2). Also, (2.12) holds with w™ in place of w™.

Proof. Using the test form ¢ = —w*n? for (2.7) we get
@.13) [1atewr <c [1atrronr.
Q Q

See [HKM], Lemma 3.27. Next, let T = Z tdx; where t > 0. Then w — T is also

1
a solution to (2.7) and as such satisfies (2.13) as well.
For ¢t > 0, consider the sets

A= (x]l@=T)*"#0),
B = Jix] @ -n*>0},
1

C = {x|lo*| > 1},

D = {x|of >1}.
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Now D; C B = A C C for all 1. Hence with dv = |dw*|5P, and using (2.13) we

get
f lwt]9 dv
Q

IA

), f (@})? dv
I Q

o0
=C Yy qft""fdvdt
! 0 D,

IA

o0
ay Iq [t [ 1@ty ar
! 0 B
o0

<G / 9! f | d(@— T)*1PnP di
0 B
o0
<G f 9~ f (w* 17|Vl di
0 C
< G f o 4P|V 1P,
Q

THEOREM 2.14. Let w be a solution to 2.7) in Q,0 > land 0 < s,t < oo.
Then there exists a constant C, depending only on s, t, a, p, o and n, such that

(2.15) lolls,o < C1RI™ |lwll;.0 0

for all cubes Q witho Q C Q.

Proof. Itisenoughto show that(2.15) holds for ' and w™. From the calculations
for Theorem 3.34 in [HKM] (with w™ in place of u* and Q in place of B), using
(2.12) and the Moser iteration technique we get

lo*lls.o < CHHQIP™ Pl llp,00.
Using Theorem 2 from [IN] we can improve the weak reverse Holder inequality to
get (2.15) for w*. The same arguments hold for w™.

Next suppose that u is a solution to (2.7) in Q2. At least locally in a ball B, there
exists a form v € Wql (B, A, % + 5 = 1, such that

A(x,du) = d*v.
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From (2.8) we obtain
ldulP~" < |d*v| < aldu|"~!
or
[du|? < |d*v|? < a|du|”.
If A is invertible, then v satisfies the following conjugate equation
(2.16) dA™'(x,d*v) =0

where A~!(x, £) has associated exponent g.
Notice that w = v satisfies

d*A™ ' (x,dw) = 0.

Since the Hodge star operator is an isometry, v satisfies versions of (2.10) and (2.15).

Definition 2.17.  When u and v satisfy (1.2) in §2, and A~! exists in 2, we call u
and v conjugate A-harmonic tensors in 2.

Of particular interest are p, g-harmonic functions mentioned in the introduction;
see (1.1).

We remark that the polar angle 6 is p-harmonic for all 1 < p < oo in the domain
(re®lr >0, —m <6 < ).

The quasi-radial p, g-harmonic tensors in R? are described in [A1] and [AZ2].
These tensors are represented by functions of the form u = r* f(0) and w = rfg(6)
where k, £ € R and r and 6 are the usual polar coordinates in R2. It is necessary that

(2.18) pk—1) =q—-1).
We will use the following examples later.

Examples 2.19.

(1) p =gq = 2. Here u and w are conjugate harmonic functions. Notice that log r
and 6 are conjugate harmonic functions in Q| = {re’®|r > 0and — 7 <6 <
m}. The only quasi-radial conjugate harmonic functions must have k = £ and
are of the form r* cos k@ and r* sink@.

() Ifp,q # 2,k = (p—2)/(p—1and£ = 0,thenu = (p—1)r'?=2/?=b /(p-2)
and v = — % 6 are conjugate p, g-harmonic tensors in £2).

B Ifp#A2,k=0and? =(q—2)/(gq—1),thenu =0andv = —x(q —
1)r@=2/@=b /(g — 2) are conjugate p, g-harmonic tensors in ;.
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(4) If g > 2 and (2.18) holds, then there exists conjugate p, g-harmonic tensors in
Q2 of the form

u = r*f(p),
v = —*riglp)

where f (@) and g(¢) are bounded.

Notice that if u and w are conjugate p, g-harmonic functions in R?, then they can
be embedded as conjugate p, g-harmonic tensors in R”. There are many ways to do
this. One such is as follows:

uxr, X2, .oy Xp) = u(xy, x2),
V(X1, X2, ...y Xp) = —w(xy, X2)dx; A dx;.

The following is an interesting example of conjugate harmonic tensors in R3:

u(x) = 3x|7,

3
v(x) = Zvij(x)dx,- Adx;

i<j

where

-1
vij (%) = xix; (x} — [le n(xk +x; ] .

k<t
See [D1] for this and other examples.

The study of equations of the form (2.7) is intimately connected with and partially
motivated by the theory of quasiconformal and quasiregular mappings. In this case
(2.7) is the Euler-Lagrange equation for a functional defined in terms of the exterior
powers of the matrix dilatation of the quasiregular mapping. See [BI], [V], [IM], (1],
[HKM] and [N].

Applications of the main results of this paper are given for quasiregular mappings
in the last section.

3. The local norm comparison

THEOREM 3.1. Let u and v be conjugate A-harmonic tensorsin 2 C R",o0 > 1,
and 0 < s,t < 0o. There exists a constant C, independent of u and v, such that

3.2) lu — uglls.o < CIQIP IV — c11{,
and

lv = vollrg < CIQI™#P/)|u — cy274,
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for all cubes Q with o Q C Q. Here c is any form in W;YIOC(Q, A) withd*cy =0,
cy is any form in qu,loc(Q’ A) withdc, = 0 and

Proof. Choose p so that p> = o. We prove the first inequality in (3.2). The
second follows similarly. First we use the weak reverse Holder inequality (2.15) and
the Poincaré inequality (2.2) to get

[l — an"s,Q < CIQ|(p_S)/Sp flu — an"p,pQ
< C diam Q|Q|"/" ||dull, 0.
Now using the inequality |du|? < | x dv|? we get

lu = uaplls.o < CIQIP"= /Py (v |2/7 .

Next, v satisfies (2.16) so applying the Caccioppoli estimate (2.10) and using (2.15)
again, we obtain

IA

C|Ql(pn—sn+sp—qs)/spn | %v— *c"q/p

lle — usolls, 0 0.0
C1Q1 Ilv = cllrpo-

IA

For a weighted version of Theorem 3.1 see [D2].

4. The global result in John domains

In this section we restrict our attention to O-forms u € D’(€2, A%). As such the
conjugate forms v are 2-forms in 2 C R”.

Definition 4.1. 'We call a bounded domain 2 §-John, § > 0, if there exists a point
xo € 2 which can be joined with any other point x € €2 by a continuous curve y C Q
so that

d(§,0%) > 8|x — §|
for each § € y. Here d(§, 3R2) is the Euclidean distance between £ and 9€2.

Bounded quasiballs and bounded uniform domains are John domains. See [MS]
and [M]. In such domains we have the following global result. For given n, p and q
we write
npt

O = TG
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THEOREM 4.2. Letu € D'(R2, A®) andv € D'(R2, A?) be conjugate A-harmonic
tensors. If Q is 8-John, q < p, v —c € L'(, A?) and

4.3) s = &(1)

thenu —ug, € L*(L2, A®) and moreover, there exists a constant C, independent of
u and v, such that

44) lu = ugylleg < Cllv — Iy

Here c is any form in Wq",OC(SZ, A) with d*c = 0 and Q) is the distinguished cube of
Lemma 4.5.

We remark that since |2| < oo we can increase ¢ or decrease s using Holder’s
inequality.
To facilitate the proof of Theorem 4.2, we use the following lemmas.

LEMMA 4.5. Each 2 has a modified Whitney cover of cubes W = {Q;} which
satisfy

(4.6) UQi = Q,

X /5, < Nxa

N

for all x € R" and some N > 1 and if Q; N Q; # @, then there exists a cube
R (¢ W)in Q; N Q; such that Q; U Q; C NR. Moreover if Q is 8-John, then
there is a distinguished cube Qo € W which can be connected with every cube

Q € W by a chain of cubes Qq, Q1, ..., Qr = Q from W and such that Q C pQ;,
i=0,1,2,...,k,for some p = p(n, ).

Proof. Al except the last assertion follows immediately from the properties of
a usual Whitney cover {W;} (see [Ste]) if we let Q; = /5/4W;. If Q is §-John,
let Q¢ be a member of W containing xo. Given Q € W let x be the center of Q.
By Definition 4.1 there is a distinguished curve y C 2 joining xo to x. The chain

Qo, Q15 - .., Oy arises as those cubes Q; € W such that y N Q; # @. Itis easy to
see that
“.7 QCpQ;

fori =0, 1,2, ...,k with p = 4/n(5 + 1/8). Also

4.3) max(|Q;l, |Qi+1]) < NIQi N Qiy1l
fori =0,1,2,...,k—1.
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LEMMA 4.9. Suppose that 0 < s < oo, Q2 is §-John, W is the Whitney decom-
position of Q and u is a distribution, u € D'(, A%). If for each cube Q € W there
exists a constant by such that

(4.10) lu — ugll} o < bo.

then there exists a constant C, depending only on s, n and 8, such that

@4.11) lu —ug,lli g < C D bo.

QeWw
To prove Lemma 4.9 we need the next lemma. A proof appears in [B].

LEMMA 4.12. Ifl1 <s < 00,0 < p < 00, {Q} is an arbitrary collection of cubes
in R" and {ag} are nonnegative numbers, then there is a constant C, depending only
on s, n and p, such that

4.13) 1Y " agxoollser < CIIY_apxollse-
9] Q

We now prove Lemma 4.9. Assume that W is a cover of Q2 of the form described
in Lemma 4.5. Using the properties (4.6) we get

@14)  u—ugliq <2° Y lu—ugllo+2° Y llug, —ugll o
QeW QeW

We can estimate the first sum on the right-hand side in (4.14). With (4.6),

(4.15) Yl —ugllg < Y bo.

Qew Qew

To estimate the second sum in (4.14) we first fix Q € W andlet Qp, Qy, ..., Qx = Q
be the chain from Lemma 4.5. Using (4.8), we have

lug, —ug., I’ = 1QiN Qi+l|_l”“Qi - uQi+|":\;‘QinQi+l
i+1
! -1 :
N2 Y 1017 lu —ug,li o,
j=i
i+l
-1
= Cz 191" by,

Jj=i

IA

fori =0,1,...,k— 1. Next, by (4.7),

i+1
g, =g ' xo(®) < €Y 10517 bg, xpg, (*)

Jj=i
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fori =0,1,...,k — 1. And so, by the triangle inequality,

lug, — g Ixo,(x) < C Y 1QI""*bg* xpo(x)

Qew
for all x € R". Using Lemma 4.5 we get
(4.16) 3 llug, —uolls o < CI Y1017 by’ Xpoll -
QeWw QeWw

When 0 < s < 1, (4.16) becomes

D llug, —ulfy < €Y 101710 Qlbo

QeWw QeW

= C ) b

Qew

Now (4.11) follows from this and (4.15). On the other hand if | < s < 00, then we
apply Lemma 4.12 and (4.16) becomes

S - 1
> lug, —ugli o < €| 31017 byg" x
QEW QEW s, R7
< C) bg.

Qew

Again we obtain (4.11).
We are now ready to prove Theorem 4.2. If s and ¢ are related by (4.3), then with
o= «/5/2, (3.2) becomes

lu —ugllf o < Cllv— /5.

Choosing bp = |lv — c||*/”, we conclude from Lemma 4.9 that
g0 t,oQ

lu —ugylliq < C Y bo.

Qew

Now when s = ®(¢) and g < p it follows that gs/pt > 1. In this case we conclude
from above that

lu —ugylf.q < Cllv — cll#4”.

This completes the proof of Theorem 4.2.

We now show that the condition (4.3) is essentially best possible at least whenn =
2. Here we use the conjugate p, ¢-harmonic tensors given by Example 2.19 (4) with
k,€ < 0. Itis easy to see that ||u|;.q, < ooifandonlyifs < —2/k and ||v|l;., < o0
if and only if t < —2/£. Furthermore with the condition p(k — 1) = q(£ — 1) we
have ®(-2/¢) = —2/k.
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Remark4.17. Letq < pand 0 < tp < 29/(p — ¢q). The above mentioned
P, g-harmonic pair of quasi-radial solutions in € satisfies

lullyo < Cllol|72

forall¢,0 < t < fp but only for s(t) < ®(t) + (¢, tp) where (¢, tp) = 0 as t — .
To see this choose £ = —2/1; so that ty = —2/£ and define

e(t,tg) = —2/k — d(t)
= (1) — (7).

5. Global results in L*-averaging domains

Definition 5.1.  We call Q2 L*-averaging, s > 1, if there exists a constant M such
that

(5.2 1Qol ™ IU = Ug,ll} o < MZU% 10171V — Uglly o
C

for some cube Qo C 2 and for all U € L} (2, R). Here the supremum is over all
cubes O C Q.

These domains were introduced in [St]. See also [H]. It turns out that if Q is
8-John, then 2 is L*-averaging for all s. See [St].

In [St], condition (5.2) is characterized by the global L®-integrability of the quasi-
hyperbolic metric k(x, xo). Theorem 5.3 follows from results in [St].

THEOREM 5.3. If Q is L*-averaging and o > 1, then there exists a constant N
such that

54 1Qol U = Ug, Il o < N S;PQIQI"IIU —Uogll5o
agQC

forallU € Lj (2, R). Here the supremum is over all cubes Q witho Q C Q.

THEOREM 5.5. Suppose that u € D' (2, A®) and v € D' (R, A?) are conjugate
A-harmonic tensors in Q2 and that Q is L*-averaging. If v —c € L'(Q, A?),q < p
and

(5.6) f=-"19
pP—q

then u —ug, € L*(£2, A% and there exists a constant C, independent of u and v,
such that

(5.7 llu — ugylls.e < ClQol" llv — e

If p = q, then (5.7) holds with t = co. Here c is any form in D' (2, A%) withd*c = 0.
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Proof. By using hypothesis (5.6) the result (3.2) becomes

(5.8) 1017 llu — uglls. < Cillv — cll?%,

for all cubes Q with 2Q C Q. Since Q is L*-averaging we can use (5.4) combined
with (5.8) to obtain
1Qol ™" llu — ugylls.e < C2 sup llv—cll?5,
20c

Callv — cll#2,

IA

This is (5.7) for ¢ < p. Next if p = ¢, then we obtain from (3.2), for 20 C Q,

G310 v = clly20

llu —uglls.o =<
1/s
< G121 IIv = clloo,-

In particular, it follows that if f = u + iv is analytic, or more generally quasiregular,
in an L*-averaging domain €, and if v € L*(R, R), then u — ug, € L°(22, R). In
an L*-averaging domain we then get (5.7) with t = oo.

If we invert the relationship between s and ¢ hypothesized in Theorem 4.2, then
we get

ngs

np+s(p—q)
Wheng < pands > 0, ®~!(s) is increasing. Moreover vl_l)rgo &~ '(s) =nq/(p—q),

t=o7 1) =

namely (5.6). Now in a John domain , if v — ¢ € L"/?=9(Q, A?), thenu —uyp, €
L*(2, A®) for all s < oo. (Simple examples show that s = oo is false in general.)
This is consistent with the fact that a John domain is L®-averaging for all s.

Remark 5.9. When n = 2, condition (5.6) is sharp. Examples include quasi-
radial p, g-harmonic functions in planar domains with cusps.

6. Lipschitz conditions and BMO

Definition 6.1. Assume that w € L} (Q, A%, £ =0,1,...,n. We write w €
BMO(Q, AY) if

(6.2) sup Q|7 lw — wglli,p < 00
oQCQ
for some o > 1. Similarly, we write w € loc Lip,(Q, A%),0 <k < 1, if
(63) sup Q7" lw — woll1,o < 00
oQCQ

for some o > 1. Also we denote the expressions in (6.2) and (6.3) by ||@|liocLip,.©
where k > 0. When w is a 0-form, (6.2) is the classical definition of BMO(L). It
turns out that these spaces are independent of the expansion factor o.
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A continuous 0-form which satisfies (6.3) is in the usual space loc Lip, (2). This
result is in [Me]. It, along with the natural connection to the BMO space, inspires
(6.3) for forms. We see below that in many ways this definition is natural. The usual
local Lipschitz space, loc Lip, (2, R), was introduced in [GM].

Furthermore we write Lip, (2, A%) for those forms whose coefficients are in the
usual Lipschitz space with exponent k and write ||w||Lip, e for this norm.

THEOREM 6.4. Let w be a solution to (2.7). The following are equivalent.

(@) w € BMO(Q, A);
(b) sup{|Q|P~"/ | dw]|, 0|0 @ C Q) < o0 for some o > 1.

Similarly the following are equivalent:

(c) w € loc Lip, (2, A);
(d) sup{]Q|(P—Pk-m/pn ||dw||,,,Q|0Q C Q) < oo for some o > 1.

Proof. Assume (a) or (c). Then by (2.10) and (2.15),
ldwllp.e < Ci(n, PIQI™ " lw — w20ll, 30

Ca(n, p)I1QI™ PP lw — wiglli 20

The results (b) and (d) follow by taking the supremum over all cubes Q with20 Q C .
Next assume (b) or (d).
By Holder’s inequality and (2.2),

IA

llo —wollie < 10177l — wollp,e
< Ci(n, p)|QIP" PP dw]| 0.

‘We now take the supremum over all cubes Q with 2Q C €2 to obtain (a) or (c).
In view of Theorem 6.4 we get the following results.

COROLLARY 6.5. Suppose that w is a solution to (2.7) in Q.

If the coefficients of w, w;, are in BMO(Q), then € BMO(2, A). If the coeffi-
cients of w are in loc Lip,(Q2), then o € loc Lip, (2, A).

Conversely, if o € BMO(Q, A), then the coefficients of w — wg are in BMO(Q),
and if w € locLip, (2, A), then w — wg € Lip,(Q, A) for all cubes Q C Q.

THEOREM 6.6. Suppose that 0 < k, £ < 1 satisfy p(k — 1) = q(€ — 1). There
exists a constant C such that

"“”{:,cupk,g 9
67 [

p
C”“"IocLipk,Q

for all conjugate A-harmonic tensors u and v in 2.

IA
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Proof. We prove the first inequality from the local result (3.2). The second
inequality follows similarly. From Definition 6.1,

(6.8) llliocLip,2 < C sup QI ™™/ lu —ug|l; 0.
20CQ

Next, using the condition p(k — 1) = q(£ — 1), (3.2) becomes
(6.9) 1QI= 0 Iy — ugll 0 < CLAQIT™ O™ lv = clly 20)7/”

for all cubes Q with2Q C Q2. Now choose c so that xc = (*v),¢o. The first inequality
follows from (6.8) and (6.9).

Now we have the following global result over a cube.
THEOREM 6.10. There exists a constant C such that

lu —ugliLip,.0/C =< |l *v —cllLip,.0

=<
< Cllu — ugllLip,.0

for all conjugate A-harmonic tensors u and v in a cube Q C R". Here 0 < k <1
and xc = *(xv)g.

For conjugate A-harmonic functions in R?> we have a global version of Theo-
rem 6.10.

Definition 6.11.  We call Q a Lip, ; -extension domain, 0 < k' < k < 1, if the
following equivalent conditions are satisfied. Here o > 1.
(a) Given (6.13), there exists a constant M, depending only on n, k, o and N, such
that each pair of points x;, x, € € can be joined by a continuous curve y C Q with

(6.12) /d(y(s), A 1 ds < Mix) — x|~
Y

(b) Given (6.12), there exists a constant N, depending only on n, k, o and M, such
that

(6.13) IUllLipy,2 < N sup U llLip,,B
oBcCQ
for all U: 2 — R. Here the supremum is over all balls B with o B C Q.

The class of Lip, ;-extension domains is wide including quasiballs and uniform
domains. Certain internal cusps however are ruled out; see [GM] and [L].
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THEOREM 6.14. Suppose that @ C R? isa Lip, ,/-extension domain. There is a
constant C such that

lullLip, .2 < CllvlliocLip,.@
for all conjugate A-harmonic tensors u and v in 2.

Remark 6.15. The quasi-radial p, g-harmonic functions in Example 2.19 again
show that Theorem 6.7 is sharp with respect to k and £ in the plane.

7. Quasiregular mappings

We record here some interesting inequalities for conjugate A-harmonic tensors
that arise from a quasiregular mapping f = (f!, f%,..., f").

The following function u and two-form v are conjugate A-harmonic tensors, (see
[(IM)):

u= f,
v = *f2df> A Adf".
We state this special case of Theorem 4.2 over the unit ball B* for simplicity.

COROLLARY 7.1. There is a constant C such that

7.2 If' = F Ollsp < ClFPdfP A Adf” ”.:r/t%n-(:l)—l)+s(n—2)],]l¥"

for all K -quasiregular f = (f', f2,..., f*): B* = R". Here C depends only on s,
nand K.
When n = 2, (7.2) reduces to

1" = £1O)lls 2 < CllLF2 s p2-

Since a coclosed form may be added inside the norm on the right-hand side, we also
have

(7.3) I = 1 O)llsm < CILF2 = £20) 5 p2-

This result appears in [IN] where in fact it is shown to hold in all dimensions. As

such we can replace || f' — f!'(0)||s. in (7.2) by | f — f(0)|ls . In particular, in
dimension 3, (7.2) becomes

3

(74) If = FOllsm <CY
Jj=1

)"

2
axj

3s/(s+6),B*
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COROLLARY 7.5. IfQ2isan L*-averaging domain, then there is a constant C such
that

(7.6) If = fO)lee < CUF2AfFP A Adf"IL)0 0 g

for all K -quasiregular mappings f = (f', f2,..., f*): Q — R*. Here C depends
onlyonn,s and K.

In 3-dimensions, notice that 7.6 reads

3

If=fOlse<CY_
Jj=1

3_f3 1/2

2
ij

3,Q
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