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CONVERGENCE IN THE CESARO SENSE OF
ERGODIC OPERATORS ASSOCIATED WITH A FLOW

A. L. BERNARDIS, F. J. MARTIN-REYES AND M. D. SARRION GAVILAN

ABSTRACT. We study the a.e. convergence of the Cesaro-(1 +«) ergodic averages and the a.e. existence in
the Cesaro-o sense of the ergodic Hilbert transform associated with a Cesaro bounded flowand —1 < « < 0.

1. Introduction

Let (X, F, v) be a finite measure space. By a flow {z;: ¢t € R} we mean a group
of measurable transformations 7;: X — X with 7y the identity and 7,4, = T, 0 75
(t, s € R). The flow is said to be measure-preserving if the 7, are measure-preserving,
ie., if v(t_+E) = v(E) for all E € F. The flow is said to be nonsingular if
v(tE) =0forallz € Rand all E € F with v(E) = 0. Finally, the flow is said to
be measurable if the map (x, £) — 7,x from X x R into X is F- -F-measurable where
F is the completion of the product-o -algebra F @ B of F with the Borel sets, and the
completion is taken with respect to the product measure of v on F and the Lebesgue
measure on B. Analogously we can define what we mean by a semiflow {t,: ¢ > 0},
a measure-preserving semiflow, a nonsingular semiflow and a measurable semiflow.

Y. Deniel studied in [4] the convergence of the Cesaro-(1 + ) ((C,1 + «)) er-
godic averages, —1 < « < 0, associated with a measure-preserving semiflow on a
probability space (€2, F, u). More precisely, he proved the following result.

THEOREM A ([4]). Let {t;: t > O} be a measure-preserving semiflow of a proba-
bility space (Q, F, ). Let =1 < & < 0, ;17 < p < oo and f € LP(dp). Then,
the (C,1 + «) ergodic averages

1 T
AT o f () = ',i:m/(; f@x)(T —t)*dt
converge, when T — 00, almost everywhere and in the LP (dw)-norm.

Theorem A does not hold in the limit case p = HLQ [4]. However a positive result
was obtained in [2] in this limit case. Their result is the following.
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THEOREM B ([2]). Let {t;: t > 0}, (2, F, u) and « be as in Theorem A. Then,
M7 so0 AT 14 f (X) exists a.e. for all f in the Lorentz space L 1 ,(dp) =

U NNz = Jo° (@) ™ dr < 00}, where Ap() = pllx: [F(0)] > )
is the distribution function of f.

On the other hand, Lorente Dominguez and Martin-Reyes studied in [6], the con-
vergence of the ergodic averages

1 T
arafw =5p [ sanar
and the ergodic Hilbert transform H f (x) = lim,_,o H, f (x), where

Hof (x) = f @) 4,

e<lti<ife !t

associated with a Cesaro bounded flow on a finite measure space (X, F, v) (notice
that the flow does not need to preserve the measure v). The result proved in [6] is as
follows.

THEOREM C ([6]). Let (X, F, v) be a finite measure space, 1 < p < oo and let
{r;: t € R} be a nonsingular measurable flow on X such that for some positive
constant C and all f € LP(dv),

sup [|1A7,1 fllpow < Cllfllpov-
T>0

1) If1 < p<ooand f € LP(dv), then limr_, o Ar,1 f(x) and lim,_,o H, f (x)
exist a.e. and in the LP(dv)-norm.

(ii) If p = 1 and f € L'(dv), then limr_ o, A1) f(x) exists a.e. and in the
L (dv)-norm and lim,_,q H, f(x) exists a.e.

The aim of this paper is to study, for —1 < o < 0, the convergence of the (C,1 4«)
ergodic averages and the existence in the Cesaro-o ((C,a)) sense of the ergodic Hilbert
transform in the setting of Theorem C, i.e., for Cesaro bounded flows. More precisely,
for the (C,1 + «) ergodic averages, we shall prove the following theorem.

THEOREM 1.1. Let (X, F, v) be a finite measure space, —1 < o« < 0and 1—_1;; <
p < oo. Let {1;: t € R} be a nonsingular measurable flow on X such that for some

positive constant C and all f € LPU+® (dv),

(1.2) ?uf(’)”A;lf“p(Ha):v < C||f”p(1+a):v-
>

1) Ifl_+a < p<ooand f € LP(dv), then limy_, o AJT"Haf(x) exists a.e. and
in the LP(dv)-norm.
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) Ifp= 1+a and f € L l(dv) then limr_, o0 AT 14o S (%) exists a.e.

Now, we make precise what we mean by the existence of the ergodic Hilbert trans-
form in the (C,«) sense. Following Hardy [5, §5.14 and Notes on Chapter V], we
wish to study the existence of the limit

Hf(x) = limg_,o Hy f(x) = lim;_, o Hyj: f(x) in the (C,ox) sense; in the case
o > 0 that means that we want to study the limit

Tooo T

lim — / Hy f )T — )™ dt.

Interchanging the integrals we can easily see that studying the above limit is equivalent
to studying the limit of

Hyof (x) = / f (@) (1—i) di + / FE@D 4 e ar,
e<jr<1 1<iti<tze ¢

t I7]

when ¢ — 0. We shall see that for suitable f the above integrals make sense not
only for « > O but also for « > —1. Since the convergence of H, ¢ f(x) implies
the convergence of H, , f(x) for @ > 0 (see §4, claim (d)), we are interested in the
limit lim, ¢ H; o f, for —1 < o < 0. In particular, we shall prove the following
theorem.

THEOREM 1.3. Let (X, F, v) be a finite measure space, —1 < a < 0and —— <

1 —
p < 0o. Let {t;: t € R} be a nonsingular measurable flow on X such that for sgme

positive constant C and all f € LPU+9) (dv),

(1.4) iup HAT 1 fllpa4ayy < CHFHpaayv-
>

() If 4z < p < ocoand f € LP(dv), then lim,_o He o f (x) exists a.e. and in
the L”(dv) -norm.

Gi) If p= 1+a and f € L l(dv) then lim,_,o H, o f (x) exists a.e.

On one hand, notice that for « = 0, Theorem 1.3 is contained in Theorem C. On
the other hand, under the assumptions in Theorem 1.3 one can obtain the convergence
of the “two-sided”(C,1 + «) ergodic averages

1 T o
Arasaf ) = Gz [ fan@ — ey,

but this result is an easy consequence of Theorem 1.1 applied to the flows {7;: ¢t € R}
and {%;: t € R}, where T, = 7_,.

The proofs of Theorems 1.1 and 1.3 are based on the study of the maximal operators
S1++af = Supr.g A}Lyl_,_alfl and H} f = sup,.q |Heq f| (Theorems 3.1 and 3.7) and
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the Banach Principle. The boundedness of these operators will be obtained by using
transference arguments. This requires knowledge of the behaviour on weighted spaces
of some maximal operators in the real line. These last results appear in §2 while the
boundedness of S, and H} are in §3. Finally, the proofs of Theorems 1.1 and 1.3
are given in §4. ~

Throughout this paper & will be anumber suchthat —1 < @ < 0andifl < p < o0
then p’ will denote its conjugate exponent, i.e., 1/p + 1/p’ = 1. The letter C will
mean a positive constant not necessarily the same at each ocurrence.

2. Preliminary results

As we said above, in order to prove the theorems we will need results about some
maximal operators in the real line which were studied in [9] and [1]. First we introduce
the following definitions about weights.

Definition 2.1 [10]. Let w be a positive measurable function on the real line. It
is said that w satisfies the Muckenhoupt A, condition, 1 < p < o0, if there exists a
constant C > 0 such that

1 b 1 [ p-t
sup (———f w(t)dt) (——/ WP @dt) <C i 1<p<oo
a<b \b—a J, b—al,

and

sup (—1— /r w(x —1t) dt) <Cw(x) ae. if p=1.

r>0 2r —-r

Definition 2.2 ([12], [8], [7]). Let w be a positive measurable function on the real
line. It is said that w satisfies A"f, 1 < p < o0, if there exists a constant C > 0 such
that

1t 1 [, -l
sup ( ] w(t) dt) (————/ w! =7 (1) dt) <C if l<p<o
a<b<c \C—Qa Jg c—alp

and

1 r
sup (;]0 wx —1t) dt) < Cw(x) ae. if p=1.

r>0

The A} classes are defined in the obvious way, reversing the orientation in the real
line.

The boundedness of the ergodic maximal operator S7,, associated with the
(C, 1 + @) ergodic averages is based on the corresponding result for the maximal
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operator in R defined by

1 T
Mo ) =sup e [ 15+ 01T - 0,
T>0 0

The following result has been proved for this operator (see Theorem 2.5, Theorem 3.5
and Final Remarks in [9]).

THEOREM D ([9]). Let -1 < a < 0, H_La < p < oo and let w be a positive
measurable function on the real line.

G If '1'}-57 <p<ooandw € A;(l +a)» then there exists a constant C > 0 such
that

/[ HafO) w(t)dt<Cf|f(t)l”w(t)dt

for all f € LP(w(t)dt).
i) Ifp= 1+_a and w € AT, then there exists a constant C > 0 such that

w({r € R: MY, f() > A) < — e ||f||‘/‘+‘”

—-lw

forall f € L_l_};_l(w(t)dt) andall \ > 0.

Remark 2.3. Actually, in [9], Theorem D (ii) was proved only for characteristic
functions but, for -1 < o < 0, applymg Theorem 3.13 in [13], p. 195 which
also holds for the sublinear operator My, ,, we easily obtain the result for all f €
Lﬁ'l (w(t)dt). On the other hand, if o = 0, statement (ii) is the known result that
w € AT implies the weak type (1,1) inequality for the one-sided Hardy-Littlewood
maximal function with respect to w(t)dt that was proved by E. Sawyer [12] (see also
[8] and [7]).

Obviously, a result analogous to Theorem D holds for the other one-sided maximal
operator M, f(x) = supr.g -ﬂl—,; fi)r |f(x+8)|(T +t)* dt and the corresponding
A (1+a) classes. Now, taking into account that the maximal operator

1 T
MisafG) =sup e [ 1fGe01T — e

is pointwise equivalent to the sum of the operators M, , and M, , and that A, (1.4) =
A*'(1 +a) NV A (14a)» We see that Theorem D is valid for My, with the A (1+a) Classes
replaced by the Ap(1+q) classes. This result will be used to obtain the boundedness
of the ergodic maximal operator

1 2T o
Riaf ) = swp e [ £l IT — 11 di.
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On the other hand, in the study of the ergodic Hilbert transform in the Cesaro-«
sense (see §3) the following maximal operator appears:

Nijo f(x) = | f(x +D|(It| — T)* dt.

e ||
sup—
o QT Jrop<ar

This operator was studied in [1, Theorems 2.1 and 2.4], which obtained results anal-
ogous to the ones for the operator M;.,. In the following theorem we collect these
results and the corresponding ones for M.

THEOREME ([9], [1]). Let —1 < o <0, ﬁ < p < 0o and let w be a positive
measurable function on the real line. Let us denote by M either My o or Ni4q.

(l) I L <p <X and weA 140a)> then there exists a constant C > O such
1+a p(1+a)
that

f IMFOY w)dt < C f f @O Pw(r) d
R R

for all f € LP(w(t)dt).
) Ifp= 1 + - and w € Ay, then there exists a constant C > 0 such that

w({t € R: MF() > AP < nfn"‘*“

forall f € L 1(w(t)dt) and all . > 0.

3. Boundedness for the ergodic maximal operators

This section is devoted to establishing the boundedness of the maximal operators
+ 1 T
St ) = s0p fo | F @I — 1) dr,

associated to the (C,1 + «) ergodic averages A} +of> and Hj. First, we shall prove
the following theorem.

THEOREM 3.1. Let (X, F,v), a, p and {t;: t € R} be as in Theorem 1.1.

0 If iﬁ < p < 00, then there exists a constant C > 0 such that for all
f € LP(dv),

1S3 a fllpw < ClLF 1w
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Gi) Ifp = 14+a’ then there exists a constant C > O suchthatforall f € Lﬁil(dv)
andall ) > 0,

V({x € X: Sfaf00) > AD < A%nfn‘“*‘”

1 oyt
e Ly

In order to prove this theorem, we need two lemmas. The proof of the first one is
very similar to the proof of the claim in the proof of Theorem 1 in [6]; therefore we
omit it.

LEMMA 3.2. Let (X, F,v), a, p and {1;: t € R} be as in Theorem 1.1 or in
Theorem 1.3. Then, there exists a measure |4 equivalent to v such that the flow
{r;: t € R} preserves the measure L.

In what follows, the measure u will be fixed and w will be the Radon-Nikodym
derivative of v with respect to . It is clear that 0 < w < oo a.e.. Let w* denote the
function w*: R — R such that w*(¢) = w(r;x).

LEMMA 3.3. Let (X, F, v) be a finite measure space, —1 < o < 0 and -1-_‘-’_—5 <
p < 0o. Let {t,: t € R} be a nonsingular measurable flow on X.

() If (1.2) holds, then w* € A;'(l +a) Jor almost every x € X and with the same
constant.

(ii) If (1.4) holds, then w* € Ap4a) for almost every x € X and with the same
constant.

Proof. We only sketch the proof of (i), since the proof of (ii) is similar (notice
that (ii) was already used in [6]). First, observe that if p = 1—_'5, then (i) follows from
the fact that the flow preserves the measure p given in Lemma 3.2.

Now assume that g = p(1 + «) > 1 and let ¢’ be its conjugated exponent. Taking

Lemma 3.2 into account, by (1.2) we get that
[ g, sl e due < € [ 1@ ruedue)
b'¢

for all T > 0. Then letting 0 = w!~7', by duality we can write the above inequality
as

/X (A7) F@|" o) dux) < € fx If @)1 0 (x) du(x),

where (AT ,)* f(x) = F _(_)T f(t:x) dt is the adjoint operator of AT, with respect to
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the measure w. Let us define the following operators:

, 1/q'
rs = [a2, ()] wit)

Org= [(A ) (|g|qa—1/q/)]1/q0#7.

Pr and Qr are sublinear operators and Pr, Qr: L1 (dp) — L9 (dw) with
IPrll, 1Qrll < C, where C is the constant in (1.2). Clearly, the same holds for
the operator Pr + Qr and | Pr + Qr|| < 2C. Now, given f € L @uw), f > 0,let
us define

i (Pr+ 01" f
4c)yi ’

where (Pr + Q7)® denotes the i-th iteration of Pr + Qr. Clearly gr € L9 (du)
and

Pr (gr) (x) <4Cgr(x) and Qr (gr) (x) <4Cgr(x).
From these inequalities we can see that if vy = g% w~1/7 and ur = gho~1/4 then

34 Af (vr) < Cvr and (A}"l)*(ur) < Cur.

The lemma follows since w(x) = uT(x)vlT_q (x) for almost every x € X and as a
consequence we can prove that w* € A;’. In fact, let a, b and ¢ be real numbers such
thata < b < c¢. If t € (a, b), by the inequality for vy in (3.4) with T = ¢ — a we get

c 1 c—t
/ vr(tsx)ds f vr(T, Tix) dr
b b—t

c—a c—a

<

1 c—a
f vr(t,0ix) dr

c—aljo

< Cur(mx).

In the same way, by using the inequality for ur in (3.4) with T = ¢ — a and for
t € (c,d), we get

b
f ur(tsx)ds < Cur(t,x).
a

c—a

Then, from the last inequalities,

q-1

b c
/ uT(t,x)v;'q (T;x) dt (/ ulT_q'(r,x)vT(t,x) dt) <C(c—a)l.
a b
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Proof of Theorem 3.1. 'We only prove (ii) since (i) follows in a similar way. As-
sume o < 0. As we observe in Remark 2.3, in order to prove (ii) we only need to
consider characteristic functions, i.e., we need to prove that

c
v({x € X: Si (xe) () > AD) < e /x XE(x)dv(x)

for all A > 0 and all measurable sets E. We shall use a transference argument. For
fixed L > 0 we define

1 T
St x)= su —/ 7)) |(T — t)* dt.
farf ) = swp o | I @IT - )
Then, for all N > 0 we have

v({x € X: Sfi, (xe) () > AD

N,/ fX(x S (xE)(x)>A)(Ttx)w(Ttx)dﬂ(x)dt

= —/ / w(tx)du(x)dt.
(xeX: St (xp)(mx)>A}

I+a

Since ST, (XE)(Tx) < M{ o (XEXQ.N+1))(2), Where X (1) = xe(%x) and w* sat-
isfies A for almost all x with the same constant (Lemma 3.3 (ii)), Theorem D (i)
implies that

v({x € X: 8§, (xg) (x) > A}

1A

—f/ w*(@)dtdu
{r: My, (XExoN+0)) ®)>1)

N+L
< e / f Xe(Tmx)w(tx)dtdu
C(N+L
= —(----r—2 Xe(x)dv(x)
NAT= X

because the flow preserves the measure u. Letting N — oo and then L — oo we
finish the proof for —1 < & < 0. The case @ = 0 is proved in the same way but using
general functions f € L'(dw).

In what follows, we shall establish the boundedness of the ergodic maximal oper-
ator H} = sup,.o | Hs«|. This will follow from the boundedness of the operators H
and the fact that

1 2T
Risaf ) = swp e [ £ lT = 11 .

The result for the last operator is in the following theorem.



676 A.L.BERNARDIS, F.J.MARTIN-REYES, M.D. SARRION GAVILAN

THEOREM 3.5. Let (X, F,v),a, p and {t;: t € R} be as in Theorem 1.3.

() If 4z < p < 00, then there exists a constant C > O such that for all
f € LP(dv),

”R1+af||p:v =< C||f”p:v~
(i) Ifp = 7 +m,then there exists a constant C > O suchthatforall f € L l(dv)
andall . > 0,

V(X € X: Rigaf(x) > A)) < T IIfII‘“*"

Proof of Theorem 3.5. The proof of Theorem 3.5 is completely similar to the
proof of Theorem 3.1. We only need to notice that the operator R4, is pointwise
equivalent to the sum of the following two maximal operators:

1 T
R, f(x) = W _/;T | f (tx)|(T — [¢])* dt,

Rl f(x) = |f(mx)|(It] — T)* dt.

=
Sup ————
p(ZT)”"‘ T <|t|<2T

Then, when we apply the transference arguments we shall need to use the results of
Theorem E for the operators M., and Ni4q.

Now we are ready to establish the boundedness of H;. First, we easily see that
the ergodic truncations H; o f are well defined. In fact, by Theorem 3.5, we get

| f ()| (1 B i)“ d f | f(rsx)] |- @y
'/;""5‘ I7 Il o 1<pist/e 2l (1= ele)® dr

< Ce Riya(f)(x) <00

for almost every x and f € LP(dv) if 77 < p < oo or f € L dvifp= o
Second, we prove the following key pointwise estimate.

LEMMA 3.6. Let (X, F,v) be a finite measure space, —1 < o < 0 and let

{r;: t € R} be a nonsingular measurable flow on X. Then, there exists a constant
C > 0 such that

H; f(x) < C[Riyaf(x) + Hy f(0)].
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Proof. First, we write

f(mx) ( € )"' / f(mx) [( € )“ ]
Hoof(x) = 1-2) 4 1-2) 1|4
af () /e<|r|sza t |£] o 2e<lti<l  t |£ ‘
+ f L@ 40y / TG0 1 e — 1] dr
2e<lt|<1/2e ¢t 1<ltl<1/2e ¢

+/ f('L'tx)(l_sltl)adt=1+1[+II]+IV+V.
/2e<|t|<1/e

Clearly, |111| < Hj f(x). Also, we can easily see that |I], |V| < CRi4q f(x). On
the other hand, by the Mean Value Theorem and by decomposing the integral in II
into the sum of integrals over the sets {¢: 2¥e < |¢t| < 2¥+l¢}, we can see that |/ ]| and
|IV| are bounded by a constant times the usual ergodic maximal operator My f (x).
Then the lemma follows since Mo f(x) < Rito f(x) for -1 <o < 0.

Now, the boundedness of H; follows from the above lemma, Theorem 3.5 and
Theorem 1 in [6]. In this way we obtain the following result for the operator H.

THEOREM 3.7. Let (X, F,v), o, p and {1,: t € R} be as in Theorem 1.3.

G If &= T7a < P < 00, then there exists a constant C > 0 such that for all
f € LP(dv),

H fllpw < Cllfllpiv-

() Ifp= 1 + ——, then there exists a constant C > O suchthatforall f € L 1(dv)
andall A > 0,

v({x € X: HXf(x) > A}) < — ||f||'“+°‘

4. Proofs of Theorems 1.1 and 1.3

From Theorem B and Theorem 3.1 we can easily prove Theorem 1.1.

Proof of Theorem 1.1.  'We only prove (i) since the proof of (ii) is similar. By
Theorem 3.1, the Banach Principle and the Dominated Convergence Theorem it
will suffice to prove the a.e. convergence of the averages ATM f for f in a dense
subset of L?(dv). Using Theorem B we have the a.e. convergence of AT, f for
feLrPdv)n L .1(dp) which is a dense subset of f € L”(dv) (u is the measure
given in Lemma 3 2) Then, the theorem follows.
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Proof of Theorem 1.3, As in the proof of Theorem 1.1 we only prove (i) and we
only have to show that the a.e. convergence holds for the functions in a dense subset
of L?(dv).

Let us fix 8 and g such that p < ﬁ < q and, as before, let i be the measure
given in Lemma 3.2. On one hand, the set D = L?(dv) N L7(du) is a dense subset
of L?(dv). On the other hand, since u is preserved by the flow, for all f € D we
have the following results:

(a) By the classical result by Cotlar [3] (see also [11]) or by Theorem C,
lim,,¢ He o f (x) = Hf(x) exists for almost every x € X.
(b) By Theorem 3.7, Hy f is a.e. finite, because g > Tj_—ﬂ and the ergodic averages

A7) are uniformly bounded on L1+A) (dp).

In what follows we will prove that, for all f € D, (a) and (b) imply the a.e.
existence of lim,_,o H o f(x) and that lim,_,o He o f (x) = Hf(x). The proof is an
adaptation of Lemma 2.27 in [14].

For fixed f € D, let x € X such that lim,o He 0 f(x) = Hf(x) and H;,‘f(x)
is finite. We may assume without loss of generality that Hf(x) = 0. Applying the
formula

X
4.1) (x —u)** = c/ (t—uw@x-0tdt, 8§>0,
u
with § = o — B, where C depends only on @ and & (in fact, C = %‘-’ﬁi—% where I’
is the Gamma function), we obtain
1/¢
“2) Heaf () =Co® [ (/e =05 ¥ Hypep f) .
1

Givenn > 0, letus fix 6 with 1/2 <6 < 1 and (1 — 6)*~# < n. Then,

6/¢
Houf(x) = C & / (/6 — tY“P=1 18 Hy )0 p f(x) dt
1

1/¢
+C&” ] (/e =) PV P Hyppf(x)dt =T+ 11
6/e

First, we estimate II and obtain

[11] < C&* Hy f(x) (8/e)? (1/e — 6/e)*F < C Hj f(x) n.
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To estimate I, we integrate by parts and use (4.2) with = 8 + 1 to obtain
6/¢e
I = Ce&%(1/e—0/e)* P! f sPHyspf(x)ds
1

6/¢e t
+Ce* f (@—B-D(1/e— z)“-ﬂ—Z/ sPHyspf(x)dsdt
1 1

1-6\**"!
_ e (T) 0/ Hyjo par f(2)

6/¢
+Ce (@—B— 1)[ (1/e = ) P=2PH Hy )y i f(x)dt = ITT + IV,
1
Now, we claim that the following hold.

©) H3+8f(x) is finite for all § > 0.
(d) limgo He g1 f(x) = Hf (x) = 0.

The above claims follow from (4.1), (4.2), (a) and (b). Taking into account the
claims (c) and (d) we obtain

11 < C (1 =0)* P 0" | Hg pr1 fX) < 1

for € small enough.
On the other hand, sincex — 8 — 2 € (—2,—1) and B > —1, we have (1/¢ —
12 F-2 < (1/e — 0/€)*P~2 and tP*! < (8/¢)P*! forall t € (1,6/¢). Then,

6/¢e
IVi<Ce f Hyje g f )\ d,
1

which tends to zero as & goes to zero because lim;, oo Hijr g1 f(x) = 0 and
,;‘ +1f(x) < 0o. Therefore we are done.
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