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NON-SYMMETRIC CONVEX DOMAINS HAVE NO
BASIS OF EXPONENTIALS

MIHAIL N. KOLOUNTZAKIS

ABSTRACT. A conjecture of Fuglede states that a bounded measurable set f2 C d, of measure 1, can
tile 1Rd by translations if and only if the Hilbert space L2(2) has an orthonormal basis consisting of
exponentials ex (x) exp 2zri (), x). If f2 has the latter property it is called spectral. We generalize a
result of Fuglede, that a triangle in the plane is not spectral, proving that every non-symmetric convex
domain in 1Rd is not spectral.

Introduction

Let f2 be a measurable subset of Rd of measure 1 and A be a discrete subset of
Rd. We write

ex(x) exp2zri(), x), (x d),

E^ {ez" ) A} C L(f2).

The inner product and norm on L2(f2) are

(f, g)a fa f’ and Ilfll.-- f Ifl2.

Definition 1. The pair (f2, A) is called a spectral pair if E,x is an orthonormal
basis for L2(f2). A set f2 will be called spectral if there is A C Rd such that (f2, A)
is a spectral pair. The set A is then called a spectrum of

Example. If Qd (- 1/2, 1/2)d is the cube of unit volume in Rd then (Qd, Zd)
is a spectral pair.
We write BR(x) {y Rd Ix Yl < R}.

Definition 2 (Density). (i) The set A C Rd has uniformly bounded density if for
each R > 0 there exists a constant C > 0 such that A has at most C elements in each
ball of radius R in Rd.
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(ii) The set A C ]Ra has density p, and we write p dens A, if we have

IA N BR(x)I
p lim
R IBR(X)I

uniformly for all x ]Id.

We define translational tiling for complex-valued functions below.

Definition 3. Let f: ][d C be measurable and A C iRa be a discrete set. We
say that f tiles with A at level to C, and sometimes write f + A wlRd, if

E f(x Z) w for almost every (Lebesgue) x ]d,
.A

(1)

with the sum above converging absolutely a.e. If f2 C IRd is measurable we say that
f2 + A is a tiling when 1 + A to]Rd, for some to. If to is not mentioned it is
understood to be equal to 1.

Remarks. 1. If f L (iRd) and A has uniformly bounded density one can easily
show (see [KL96] for the proof in one dimension, which works in higher dimension
as well) that the sum in (1) converges absolutely a.e. and defines a locally integrable
function of x.

2. In the very common case when f L I(IRd) and fra f # 0 the condition that
A has uniformly bounded density follows easily from (1) and need not be postulated
a priori.

3. It is easy to see that if f L I(IRd), fa f # 0 and f + A is a tiling then A has
a density and the level of the tiling to is given by

w fee f. densA.

From now on we restrict ourselves to tiling with functions in L and sets of finite
measure.

Example. ad + Zd is a tiling.

The following conjecture is still unresolved.

Conjecture (Fuglede [F74]). If f2 C ]Rd is bounded and has Lebesgue measure
1 then L2(f2) has an orthonormal basis of exponentials if and only if there exists
A C ]d such that f2 + A d is a tiling.

Remark. It is not hard to show [F74] that L2(f2) has a basis A which is a lattice
(i.e., A AZd, where A is a non-singular d d matrix) if and only if g2 + A* is a
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tiling. Here

^*
is the dual lattice of A (we have A*

Fuglede [F74] showed that the disk and the triangle in IR2 are not spectral domains.
In this note we prove the following generalization of Fuglede’s triangle result.

THEOREM 1. Let f2 have measure and be a convex, non-symmetric, bounded
open set in IRa. Then f2 is not spectral.

The set f2 is called symmetric with respect to 0 if y 6 fa implies -y 6 f2, and
symmetric with respect to Xo IRd if y 6 f2 implies that 2x0 y fa. It is called
non-symmetric if it is not symmetric with respect to any x0 IRd. For example, in
any dimension a simplex is non-symmetric.

It is known [V54], [M80] that every convex body that tiles IRd by translation is a
centrally symmetric polytope and that each such body also admits a lattice tiling and,
therefore (see the remark after Fuglede’s conjecture above), its L2 admits a lattice
spectrum. Given Theorem 1, to prove Fuglede’s conjecture restricted to convex
domains, one still has to prove that any symmetric convex body that is not a tile
admits no orthonormal basis of exponentials for its L2.

In we derive some necessary and some sufficient conditions for f + A to be a
tiling. These conditions roughly state that tiling is equivalent to a certain tempered
distribution, associated with A being "supported" on the zero set of f plus the origin.
Similar conditions had been derived in [KL96] but here we have to work with less
smoothness for f. To compensate for the lack of smoothness we work with compactly
supported f and nonnegative f and f, conditions which are fulfilled for our problem.

In {}2 we restate the property that fa is spectral as a tiling problem for I112 and
use the conditions derived in to prove Theoreml. What makes the proof work is
that when fa is a non-symmetric convex set the set fa fa has volume strictly larger
than 2dvol .

1. Fourier-analytic conditions for tiling

Our method relies on a Fourier-analytic characterization of translational tiling,
which is a variation of the one used in [KL96]. We define the (generally unbounded)
measure

where 8x represents a unit mass at k IRa. If A has uniformly bounded density
then 8^ is a t...empered distribution (for example, see [R73]) and therefore its Fourier
Transform 8^ is defined and is itself a tempered distribution.
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The action of a tempered distribution t (see [R73]) on a Schwartz function is
denoted by or(C). The Fourier Transform of t is defined by the equation

() ().

The support supp c is the smallest closed set F such that for any smooth of compact
support contained in the open set Fc we have o(b) 0.

THEOREM 2. Suppose that f > 0 is not identically O, that f L l(d), f" > 0
has compact support and A C d. If f + A is a tiling then

supp^ {x e llU" f’(x) O} {0}. (2)

Proofof Theorem 2.

We have to show that

Assume that f + A wd and let

{?’= o}

^() 0, v e Cc(c).
Since 3^ () 3^ () this is equivalent to -xe^ (.) 0, for each such . Notice
that h /f is a continuous function, but not necessarily smooth. We shall need

" e L This is a consequence of a well-known theorem of Wiener [R73, Ch. 11].
We denote by 7fd d/zd the d-dimensional torus.

THEOREM (Wiener). Ifg e C(’]d) has an absolutely convergent Fourier series

g(x) (n)e2ri(n’x), e g.1 (Zd),
ne7Zd

and ifg does not vanish anywhere on qd then 1/g also has an absolutely convergent
Fourier series.

Assume that

Define the function F

(supp, suppf c_ -,

(i) to be periodic in d with period lattice (LZ)d,
(ii) to agree with f on supp,
(iii) to be non-zero everywhere and,
(iv) to have ff 6 e (%d), i.e.,

(n)L-In,
nZ

is a finite measure in d.



546 MIHAIL N. KOLOUNTZAKIS

One way to define such an F is as follows. First, define the (LZ)a-periodic
function g > 0 to be f" periodically extended. The Fourier coefficients of g are
(n) L-df(-n/L) > O. Since g, " > 0 and g is continuous at 0 it is easy to prove
that Y,,.,i ’(n) g(0), and therefore that g has an absolutely convergent Fourier
series.

Let e be small enough to guarantee that f (and hence g) does not vanish on
(supp q) + B(0). Let k be a smooth (LZ)a-periodic function which is equal to 1
on (suppb) + (LZd) and equal to 0 off (suppb + B(0)) + (LZd), and satisfies
0 < k < everywhere. Finally, define

F =kg+(1-k).

Since both k and g have absolutely summable Fourier series and this property is
preserved under both sums and products, it follows that F also has an absolutely
summable Fourier series. And by the nonnegativity of g it follows that F is never 0,
since k 0 on Z (f") + (LZd).

By Wiener’s theorem, F-1 e (zd), i.e., F-’i is a finite measure on Rd. We now
have

f
qbF-1 dp. F- L l(Rd).

This justifies the interchange of the summation and integration below:

f (L)

tO

w%(O)
=0,

as we had to show.

For a set A c Id and 3 > 0 we write

Aa {x Id" dist(x, A)< 3}.
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We shall need the following partial converse to Theorem 2.

THEOREM 3. Suppose that f L (Re), and that A C Re has uniformly bounded
density. Suppose also that 0 C Re is open and

suppS\(0}
___

O and 08 c_ {’=0} (3)

for some 3 > O. Then f + A is a tiling at level f(O) 3^ ({0}).

Proof. Let ap: d ._ be smooth, have support in B1 (0) and (0) and for
> 0 define the approximate identity (x) e-a(x/e). Let

f,

which has rapid decay.
First we show that (f f,)- f, / A is a tiling. That is, we show that the convolution

f 3^ is a constant. Let be any Schwartz function. Then

f 3^() f,3^((-x)) 3^((-x)f).

The function (-x)f is a Schwartz function whose support intersects supp 3^ only
at 0, since, for small enough e > 0,

suppfi

_
supp f __. (supp f)

_
0c.

Hence, for each Schwartz function ,
f 3^() (0)f(0)3A({0}),

which implies

f 3^ (x) f (0)3^ ({0}), a.e.(x).

We also have -xs^ If(x ,)1 finite a.e. (see Remark following the definition of
tiling), hence, for almost every x 6 Ra,

which tends to 0 as --+ 0. This proves

f(x )) f’(0) ({0}), a.e.(x).
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2. Proof of the main result

We now make some remarks that relate the property "E^ is a basis for L2(f2) to
a certain function tiling Ra with A.

Assume that f2 is a bounded open set of measure 1. First, notice that

(ex, ex)a la(x )).

The set E^ is an orthonormal basis for L2(f2) if and only if for each f L2(f2),

Ilfll I(ex, f)l2

and, by the completeness of the exponentials in L2 of a large cube containing , it is
necessary and sufficient that

Ia(x ))12 (4)

for each x e Rd. In other words a necessary and sufficient condition for (f2, A) to

be a spectral pair is that I + A is a tiling at level 1. Notice also that Ilal
2

is the
Fourier Transform of la la which has support equal to the set f2 f2. We use the
notation f(x) f(-x).

Proofof Theorem 1. Write K f2 f2, which is a symmetric, open convex set.
Assume that (f2, A) is a spectral pair. We can clearly assume that 0 e A. It follows
that Ila12 + A is a tiling and hence that A has uniformly bounded density, has density
equal to and ^({0})= 1.

By Theorem 2 (with f I11 f la la(-x)) it follows that

supp^ c_ {0} U Kc.

Let H K/2 and write

f(x) 1n * In(x) ln(y)ln(y X) dy.

The function f is supported in K and has nonnegative Fourier Transform

We have

f f(O) vol H
d
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and

f’(O) (vol H)2

By the Brunn-Minkowski inequality (for example, see [G94, Ch. 3]), for any convex
body

vol

with equality only in the case of symmetric f2. Since f2 has been assumed to be
non-symmetric it follows that

vol H > 1.

For

consider

) lid
> p >

vol H

g(x) f(x/p)

which is supported properly inside K, and has

g(O) f(O) vl H, fs e’ Pd f f pd(vl

Since supp g is properly contained in K, Theorem 3 implies that "+ A is a tiling at
level f ’. dens A f" g(0) vol H. However, the value of " at 0 is f g
pd (vol H)2 > vol H, and, since " > 0 and " is continuous, this is a contradiction.
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