NON-SYMMETRIC CONVEX DOMAINS HAVE NO BASIS OF EXPONENTIALS

MIHAIL N. KOLOUNTZAKIS

ABSTRACT. A conjecture of Fuglede states that a bounded measurable set $\Omega \subset \mathbb{R}^d$, of measure 1, can tile \mathbb{R}^d by translations if and only if the Hilbert space $L^2(\Omega)$ has an orthonormal basis consisting of exponentials $e_{\lambda}(x) = \exp 2\pi i \langle \lambda, x \rangle$. If Ω has the latter property it is called *spectral*. We generalize a result of Fuglede, that a triangle in the plane is not spectral, proving that every non-symmetric convex domain in \mathbb{R}^d is not spectral.

Introduction

Let Ω be a measurable subset of \mathbb{R}^d of measure 1 and Λ be a discrete subset of \mathbb{R}^d . We write

$$e_{\lambda}(x) = \exp 2\pi i \langle \lambda, x \rangle, \quad (x \in \mathbb{R}^d),$$

$$E_{\Lambda} = \{e_{\lambda} : \lambda \in \Lambda\} \subset L^2(\Omega).$$

The inner product and norm on $L^2(\Omega)$ are

$$\langle f,g\rangle_{\Omega}=\int_{\Omega}f\overline{g}, \ \ \text{and} \ \ \|f\|_{\Omega_{\cdot}}^2=\int_{\Omega}|f|^2.$$

Definition 1. The pair (Ω, Λ) is called a *spectral pair* if E_{Λ} is an orthonormal basis for $L^2(\Omega)$. A set Ω will be called *spectral* if there is $\Lambda \subset \mathbb{R}^d$ such that (Ω, Λ) is a spectral pair. The set Λ is then called a *spectrum* of Ω .

Example. If $Q_d = (-1/2, 1/2)^d$ is the cube of unit volume in \mathbb{R}^d then (Q_d, \mathbb{Z}^d) is a spectral pair.

We write
$$B_R(x) = \{ y \in \mathbb{R}^d : |x - y| < R \}.$$

Definition 2 (Density). (i) The set $\Lambda \subset \mathbb{R}^d$ has uniformly bounded density if for each R > 0 there exists a constant C > 0 such that Λ has at most C elements in each ball of radius R in \mathbb{R}^d .

Received January 19, 1999.

¹⁹⁹¹ Mathematics Subject Classification. Primary 41; Secondary 52.

Partially supported by the National Science Foundation.

(ii) The set $\Lambda \subset \mathbb{R}^d$ has density ρ , and we write $\rho = \text{dens } \Lambda$, if we have

$$\rho = \lim_{R \to \infty} \frac{|\Lambda \cap B_R(x)|}{|B_R(x)|}$$

uniformly for all $x \in \mathbb{R}^d$.

We define translational tiling for complex-valued functions below.

Definition 3. Let $f: \mathbb{R}^d \to \mathbb{C}$ be measurable and $\Lambda \subset \mathbb{R}^d$ be a discrete set. We say that f tiles with Λ at level $w \in \mathbb{C}$, and sometimes write $f + \Lambda = w\mathbb{R}^d$, if

$$\sum_{\lambda \in \Lambda} f(x - \lambda) = w \text{ for almost every (Lebesgue) } x \in \mathbb{R}^d,$$
 (1)

with the sum above converging absolutely a.e. If $\Omega \subset \mathbb{R}^d$ is measurable we say that $\Omega + \Lambda$ is a tiling when $\mathbf{1}_{\Omega} + \Lambda = w\mathbb{R}^d$, for some w. If w is not mentioned it is understood to be equal to 1.

- Remarks. 1. If $f \in L^1(\mathbb{R}^d)$ and Λ has uniformly bounded density one can easily show (see [KL96] for the proof in one dimension, which works in higher dimension as well) that the sum in (1) converges absolutely a.e. and defines a locally integrable function of x.
- 2. In the very common case when $f \in L^1(\mathbb{R}^d)$ and $\int_{\mathbb{R}^d} f \neq 0$ the condition that Λ has uniformly bounded density follows easily from (1) and need not be postulated a priori.
- 3. It is easy to see that if $f \in L^1(\mathbb{R}^d)$, $\int_{\mathbb{R}^d} f \neq 0$ and $f + \Lambda$ is a tiling then Λ has a density and the level of the tiling w is given by

$$w = \int_{\mathbb{R}^d} f \cdot \operatorname{dens} \Lambda.$$

From now on we restrict ourselves to tiling with functions in L^1 and sets of finite measure.

Example. $Q_d + \mathbb{Z}^d$ is a tiling.

The following conjecture is still unresolved.

Conjecture (Fuglede [F74]). If $\Omega \subset \mathbb{R}^d$ is bounded and has Lebesgue measure 1 then $L^2(\Omega)$ has an orthonormal basis of exponentials if and only if there exists $\Lambda \subset \mathbb{R}^d$ such that $\Omega + \Lambda = \mathbb{R}^d$ is a tiling.

Remark. It is not hard to show [F74] that $L^2(\Omega)$ has a basis Λ which is a *lattice* (i.e., $\Lambda = A\mathbb{Z}^d$, where A is a non-singular $d \times d$ matrix) if and only if $\Omega + \Lambda^*$ is a

tiling. Here

$$\Lambda^* = \left\{ \mu \in \mathbb{R}^d \colon \langle \mu, \lambda \rangle \in \mathbb{Z}, \; \forall \lambda \in \Lambda \right\}$$

is the *dual lattice* of Λ (we have $\Lambda^* = A^{-\top} \mathbb{Z}^d$).

Fuglede [F74] showed that the disk and the triangle in \mathbb{R}^2 are not spectral domains. In this note we prove the following generalization of Fuglede's triangle result.

THEOREM 1. Let Ω have measure 1 and be a convex, non-symmetric, bounded open set in \mathbb{R}^d . Then Ω is not spectral.

The set Ω is called *symmetric* with respect to 0 if $y \in \Omega$ implies $-y \in \Omega$, and symmetric with respect to $x_0 \in \mathbb{R}^d$ if $y \in \Omega$ implies that $2x_0 - y \in \Omega$. It is called *non-symmetric* if it is not symmetric with respect to any $x_0 \in \mathbb{R}^d$. For example, in any dimension a simplex is non-symmetric.

It is known [V54], [M80] that every convex body that tiles \mathbb{R}^d by translation is a centrally symmetric polytope and that each such body also admits a lattice tiling and, therefore (see the remark after Fuglede's conjecture above), its L^2 admits a lattice spectrum. Given Theorem 1, to prove Fuglede's conjecture restricted to convex domains, one still has to prove that any symmetric convex body that is not a tile admits no orthonormal basis of exponentials for its L^2 .

In §1 we derive some necessary and some sufficient conditions for $f+\Lambda$ to be a tiling. These conditions roughly state that tiling is equivalent to a certain tempered distribution, associated with Λ being "supported" on the zero set of \widehat{f} plus the origin. Similar conditions had been derived in [KL96] but here we have to work with less smoothness for \widehat{f} . To compensate for the lack of smoothness we work with compactly supported \widehat{f} and nonnegative f and \widehat{f} , conditions which are fulfilled for our problem.

In §2 we restate the property that Ω is spectral as a tiling problem for $|\widehat{\mathbf{1}}_{\Omega}|^2$ and use the conditions derived in §1 to prove Theorem 1. What makes the proof work is that when Ω is a non-symmetric convex set the set $\Omega - \Omega$ has volume strictly larger than $2^d \operatorname{vol} \Omega$.

1. Fourier-analytic conditions for tiling

Our method relies on a Fourier-analytic characterization of translational tiling, which is a variation of the one used in [KL96]. We define the (generally unbounded) measure

$$\delta_{\Lambda} = \sum_{\lambda \in \Lambda} \delta_{\lambda},$$

where δ_{λ} represents a unit mass at $\lambda \in \mathbb{R}^d$. If Λ has uniformly bounded density then δ_{Λ} is a tempered distribution (for example, see [R73]) and therefore its Fourier Transform $\widehat{\delta_{\Lambda}}$ is defined and is itself a tempered distribution.

The action of a tempered distribution α (see [R73]) on a Schwartz function ϕ is denoted by $\alpha(\phi)$. The Fourier Transform of α is defined by the equation

$$\widehat{\alpha}(\phi) = \alpha(\widehat{\phi}).$$

The support supp α is the smallest closed set F such that for any smooth ϕ of compact support contained in the open set F^c we have $\alpha(\phi) = 0$.

THEOREM 2. Suppose that $f \geq 0$ is not identically 0, that $f \in L^1(\mathbb{R}^d)$, $\widehat{f} \geq 0$ has compact support and $\Lambda \subset \mathbb{R}^d$. If $f + \Lambda$ is a tiling then

$$\operatorname{supp}\widehat{\delta_{\Lambda}} \subseteq \left\{ x \in \mathbb{R}^d : \ \widehat{f}(x) = 0 \right\} \cup \{0\}. \tag{2}$$

Proof of Theorem 2. Assume that $f + \Lambda = w\mathbb{R}^d$ and let

$$K = \{\widehat{f} = 0\} \cup \{0\}.$$

We have to show that

$$\widehat{\delta_{\Lambda}}(\phi) = 0, \ \forall \phi \in C_c^{\infty}(K^c).$$

Since $\widehat{\delta_{\Lambda}}(\phi) = \delta_{\Lambda}(\widehat{\phi})$ this is equivalent to $\sum_{\lambda \in \Lambda} \widehat{\phi}(\lambda) = 0$, for each such ϕ . Notice that $h = \phi/\widehat{f}$ is a continuous function, but not necessarily smooth. We shall need $\widehat{h} \in L^1$. This is a consequence of a well-known theorem of Wiener [R73, Ch. 11]. We denote by $\mathbb{T}^d = \mathbb{R}^d/\mathbb{Z}^d$ the d-dimensional torus.

THEOREM (Wiener). If $g \in C(\mathbb{T}^d)$ has an absolutely convergent Fourier series

$$g(x) = \sum_{n \in \mathbb{Z}^d} \widehat{g}(n) e^{2\pi i \langle n, x \rangle}, \quad \widehat{g} \in \ell^1(\mathbb{Z}^d),$$

and if g does not vanish anywhere on \mathbb{T}^d then 1/g also has an absolutely convergent Fourier series.

Assume that

$$\operatorname{supp}\phi,\ \operatorname{supp}\widehat{f}\subseteq\left(-\frac{L}{2},\frac{L}{2}\right)^d.$$

Define the function F

- (i) to be periodic in \mathbb{R}^d with period lattice $(L\mathbb{Z})^d$,
- (ii) to agree with \widehat{f} on supp ϕ ,
- (iii) to be non-zero everywhere and,
- (iv) to have $\widehat{F} \in \ell^1(\mathbb{Z}^d)$, i.e.,

$$\widehat{F} = \sum_{n \in \mathbb{Z}^d} \widehat{F}(n) \delta_{L^{-1}n},$$

is a finite measure in \mathbb{R}^d .

One way to define such an F is as follows. First, define the $(L\mathbb{Z})^d$ -periodic function $g \ge 0$ to be \widehat{f} periodically extended. The Fourier coefficients of g are $\widehat{g}(n) = L^{-d} f(-n/L) \ge 0$. Since $g, \widehat{g} \ge 0$ and g is continuous at 0 it is easy to prove that $\sum_{n \in \mathbb{Z}^d} \widehat{g}(n) = g(0)$, and therefore that g has an absolutely convergent Fourier

Let ϵ be small enough to guarantee that \widehat{f} (and hence g) does not vanish on $(\operatorname{supp} \phi) + B_{\epsilon}(0)$. Let k be a smooth $(L\mathbb{Z})^d$ -periodic function which is equal to 1 on $(\operatorname{supp} \phi) + (L\mathbb{Z}^d)$ and equal to 0 off $(\operatorname{supp} \phi + B_{\epsilon}(0)) + (L\mathbb{Z}^d)$, and satisfies $0 \le k \le 1$ everywhere. Finally, define

$$F = kg + (1 - k).$$

Since both k and g have absolutely summable Fourier series and this property is preserved under both sums and products, it follows that F also has an absolutely summable Fourier series. And by the nonnegativity of g it follows that F is never 0, since k = 0 on $Z(\widehat{f}) + (L\mathbb{Z}^d)$. By Wiener's theorem, $\widehat{F}^{-1} \in \ell^1(\mathbb{Z}^d)$, i.e., \widehat{F}^{-1} is a finite measure on \mathbb{R}^d . We now

$$\left(\frac{\phi}{\widehat{f}}\right)^{\wedge} = \widehat{\phi F^{-1}} = \widehat{\phi} * \widehat{F^{-1}} \in L^{1}(\mathbb{R}^{d}).$$

This justifies the interchange of the summation and integration below:

$$\sum_{\lambda \in \Lambda} \widehat{\phi}(\lambda) = \sum_{\lambda \in \Lambda} \left(\frac{\phi}{\widehat{f}}\widehat{f}\right)^{\Lambda} (\lambda)$$

$$= \sum_{\lambda \in \Lambda} \left(\frac{\phi}{\widehat{f}}\right)^{\Lambda} * \widehat{f}(\lambda)$$

$$= \sum_{\lambda \in \Lambda} \int_{\mathbb{R}^d} \left(\frac{\phi}{\widehat{f}}\right)^{\Lambda} (y) f(y - \lambda) dy$$

$$= \int_{\mathbb{R}^d} \left(\frac{\phi}{\widehat{f}}\right)^{\Lambda} (y) \sum_{\lambda \in \Lambda} f(y - \lambda) dy$$

$$= w \int_{\mathbb{R}^d} \left(\frac{\phi}{\widehat{f}}\right)^{\Lambda} (y) dy$$

$$= w \frac{\phi}{\widehat{f}}(0)$$

$$= 0.$$

as we had to show.

For a set $A \subseteq \mathbb{R}^d$ and $\delta > 0$ we write

$$A_{\delta} = \left\{ x \in \mathbb{R}^d : \operatorname{dist}(x, A) < \delta \right\}.$$

We shall need the following partial converse to Theorem 2.

THEOREM 3. Suppose that $f \in L^1(\mathbb{R}^d)$, and that $\Lambda \subset \mathbb{R}^d$ has uniformly bounded density. Suppose also that $O \subset \mathbb{R}^d$ is open and

$$\operatorname{supp}\widehat{\delta_{\Lambda}}\setminus\{0\}\subseteq O \text{ and } O_{\delta}\subseteq\left\{\widehat{f}=0\right\} \tag{3}$$

for some $\delta > 0$. Then $f + \Lambda$ is a tiling at level $\widehat{f}(0) \cdot \widehat{\delta_{\Lambda}}(\{0\})$.

Proof. Let $\psi \colon \mathbb{R}^d \to \mathbb{R}$ be smooth, have support in $B_1(0)$ and $\widehat{\psi}(0) = 1$ and for $\epsilon > 0$ define the approximate identity $\psi_{\epsilon}(x) = \epsilon^{-d} \psi(x/\epsilon)$. Let

$$f_{\epsilon} = \widehat{\psi_{\epsilon}} f$$

which has rapid decay.

First we show that $(\int f_{\epsilon})^{-1} f_{\epsilon} + \Lambda$ is a tiling. That is, we show that the convolution $f_{\epsilon} * \delta_{\Lambda}$ is a constant. Let ϕ be any Schwartz function. Then

$$f_{\epsilon} * \delta_{\Lambda}(\phi) = \widehat{f_{\epsilon}} \widehat{\delta_{\Lambda}}(\widehat{\phi}(-x)) = \widehat{\delta_{\Lambda}}(\widehat{\phi}(-x)\widehat{f_{\epsilon}}).$$

The function $\widehat{\phi}(-x)\widehat{f}_{\epsilon}$ is a Schwartz function whose support intersects supp $\widehat{\delta_{\Lambda}}$ only at 0, since, for small enough $\epsilon > 0$,

$$\operatorname{supp} \widehat{\phi} \widehat{f_{\epsilon}} \subseteq \operatorname{supp} \widehat{f_{\epsilon}} \subseteq (\operatorname{supp} \widehat{f})_{\epsilon} \subseteq O^{c}.$$

Hence, for each Schwartz function ϕ ,

$$f_{\epsilon} * \delta_{\Lambda}(\phi) = \widehat{\phi}(0) \widehat{f_{\epsilon}}(0) \widehat{\delta_{\Lambda}}(\{0\}),$$

which implies

$$f_{\epsilon} * \delta_{\Lambda}(x) = \widehat{f_{\epsilon}}(0)\widehat{\delta_{\Lambda}}(\{0\}), \text{ a.e.}(x).$$

We also have $\sum_{\lambda \in \Lambda} |f(x - \lambda)|$ finite a.e. (see Remark 1 following the definition of tiling), hence, for almost every $x \in \mathbb{R}^d$,

$$\sum_{\lambda \in \Lambda} |f(x-\lambda) - f_{\epsilon}(x-\lambda)| = \sum_{\lambda \in \Lambda} |f(x-\lambda)| \cdot |1 - \widehat{\psi_{\epsilon}}(x-\lambda)|,$$

which tends to 0 as $\epsilon \to 0$. This proves

$$\sum_{\lambda \in \Lambda} f(x - \lambda) = \widehat{f}(0) \cdot \widehat{\delta_{\Lambda}}(\{0\}), \text{ a.e.}(x).$$

2. Proof of the main result

We now make some remarks that relate the property " E_{Λ} is a basis for $L^{2}(\Omega)$ " to a certain function tiling \mathbb{R}^{d} with Λ .

Assume that Ω is a bounded open set of measure 1. First, notice that

$$\langle e_{\lambda}, e_{x} \rangle_{\Omega} = \widehat{\mathbf{1}_{\Omega}}(x - \lambda).$$

The set E_{Λ} is an orthonormal basis for $L^2(\Omega)$ if and only if for each $f \in L^2(\Omega)$,

$$||f||_{\Omega}^2 = \sum_{\lambda \in \Lambda} |\langle e_{\lambda}, f \rangle_{\Omega}|^2,$$

and, by the completeness of the exponentials in L^2 of a large cube containing Ω , it is necessary and sufficient that

$$\sum_{\lambda \in \Lambda} |\widehat{\mathbf{1}_{\Omega}}(x - \lambda)|^2 = 1 \tag{4}$$

for each $x \in \mathbb{R}^d$. In other words a necessary and sufficient condition for (Ω, Λ) to be a spectral pair is that $|\widehat{\mathbf{1}_{\Omega}}|^2 + \Lambda$ is a tiling at level 1. Notice also that $|\widehat{\mathbf{1}_{\Omega}}|^2$ is the Fourier Transform of $\mathbf{1}_{\Omega} * \widehat{\mathbf{1}}_{\Omega}$ which has support equal to the set $\overline{\Omega - \Omega}$. We use the notation $\widetilde{f}(x) = \overline{f(-x)}$.

Proof of Theorem 1. Write $K = \Omega - \Omega$, which is a symmetric, open convex set. Assume that (Ω, Λ) is a spectral pair. We can clearly assume that $0 \in \Lambda$. It follows that $|\widehat{\mathbf{1}_{\Omega}}|^2 + \Lambda$ is a tiling and hence that Λ has uniformly bounded density, has density equal to 1 and $\widehat{\delta_{\Lambda}}(\{0\}) = 1$.

By Theorem 2 (with $f = |\widehat{\mathbf{1}}_{\Omega}|^2$, $\widehat{f} = \mathbf{1}_{\Omega} * \widetilde{\mathbf{1}}_{\Omega}(-x)$) it follows that

$$\operatorname{supp}\widehat{\delta_{\Lambda}}\subseteq\{0\}\cup K^c.$$

Let H = K/2 and write

$$f(x) = \mathbf{1}_H * \widetilde{\mathbf{1}}_H(x) = \int_{\mathbb{R}^d} \mathbf{1}_H(y) \mathbf{1}_H(y - x) \, dy.$$

The function f is supported in \overline{K} and has nonnegative Fourier Transform

$$\widehat{f}={|\widehat{\mathbf{1}_H}|}^2.$$

We have

$$\int_{\mathbb{R}^d} \widehat{f} = f(0) = \text{vol } H$$

and

$$\widehat{f}(0) = \int_{\mathbb{R}^d} f = (\text{vol } H)^2.$$

By the Brunn-Minkowski inequality (for example, see [G94, Ch. 3]), for any convex body Ω ,

$$\operatorname{vol} \frac{1}{2}(\Omega - \Omega) \ge \operatorname{vol} \Omega,$$

with equality only in the case of symmetric Ω . Since Ω has been assumed to be non-symmetric it follows that

$$vol H > 1$$
.

For

$$1 > \rho > \left(\frac{1}{\text{vol } H}\right)^{1/d}$$

consider

$$g(x) = f(x/\rho)$$

which is supported properly inside K, and has

$$g(0) = f(0) = \text{vol } H, \quad \int_{\mathbb{R}^d} g = \rho^d \int_{\mathbb{R}^d} f = \rho^d (\text{vol } H)^2.$$

Since supp g is properly contained in K, Theorem 3 implies that $\widehat{g} + \Lambda$ is a tiling at level $\int \widehat{g} \cdot \text{dens } \Lambda = \int \widehat{g} = g(0) = \text{vol } H$. However, the value of \widehat{g} at 0 is $\int g = \rho^d (\text{vol } H)^2 > \text{vol } H$, and, since $\widehat{g} \geq 0$ and \widehat{g} is continuous, this is a contradiction.

REFERENCES

- [F74] B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal. 16 (1974), 101–121.
- [G94] R. J. Gardner, Geometric tomography, Cambridge University Press, 1994.
- [KL96] M. N. Kolountzakis and J. C. Lagarias, Structure of tilings of the line by a function, Duke Math. J. 82 (1996), 653–678.
- [M80] P. McMullen, Convex bodies which tile space by translation, Mathematika 27 (1980), 113-121.
- [R73] W. Rudin, Functional analysis, McGraw-Hill, New York, 1973.
- [V54] B. A. Venkov, On a class of Euclidean polyhedra, Vestnik Leningrad Univ. Ser. Math. Fiz. Him. 9 (1954), 11–31 (Russian).

Department of Mathematics, 1409 W. Green St, University of Illinois, Urbana IL 61801

kolount@math.uiuc.edu

Current address: Department of Mathematics, University of Crete, 714 09 Iraklio,

Greece

kolount@math.uch.gr