ON AUTOMORPHIC FORMS OF NEGATIVE DIMENSION'

BY
JosepH LEHNER

1. An automorphic form of positive dimension on an H-group is com-
pletely determined by its principal parts at the parabolic cusps; a form of
zero dimension is determined up to an additive constant. The classical
circle method of Hardy-Ramanujan-Rademacher-Zuckerman yields explicit
expressions for the Fourier coefficients of forms of nonnegative dimension on
the modular group and on certain of its subgroups. Recently we showed
how this method could be modified to cover all H-groups, although for forms
of zero dimension the Fourier coefficients are given only up to a bounded
error term [1, Ch. IX], [2], [3], [4].

The situation is quite different when we consider automorphic forms of
negative dimension. There may exist nonconstant forms of negative dimension
that are regular everywhere including the cusps; in particular, there may exist
cusp forms, that is, forms which vanish at the parabolic cusps. Hence in
general the Fourier coefficients of a form of negative dimension can only be
determined by its principal parts up to the order of magnitude of the Fourier
coefficients of an everywhere regular form.

It is the purpose of this paper to show that the circle method suffices to
determine the Fourier coefficients of forms of negative dimension also, insofar
as these are determined by their principal parts. The circle method is thus
revealed as a uniform method, valid for all dimensions, for extracting all
possible information from the principal parts of an automorphic form. As
we remark at the end of this section, the same statement holds for automorphic

integrals.
Let
g(m, 1) = m™" if 0<r <2,
(1) =mlogm if r=2

=m if r>2.

If ¢ is the m™ Fourier coefficient of an everywhere regular form
G(r) e{I', —r, v}, ie., of dimension —r and multiplier v, it is known that
([5], cf. also [6])

(2) e’ = 0(g(m, 1)).
For r > 2 this estimate is best possible, as the Eisenstein series show. At
any rate (2) is the best result presently obtainable for all H-groups by the
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1 The preparation of this paper was supported by the Office of Naval Research.
2 For definitions and notation, ef. [1, Chapters VIII, IX]; also Section 2, below.
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396 JOSEPH LEHNER

circle method, and so we cannot expect, by this method, to determine the
Fourier coefficients of a general form F of dimension —» more precisely than
(2). An exception to this statement arises, however, in case F, after sub-
traction of its principal parts, vanishes at the cusps. Then we can reduce
the error term to the order of magnitude of the coefficients of a cusp form,
which has long been known to be O(m™*). (Cf. [1, Ch. VIII, 3J].) More-
over, this situation always occurs when the multiplier system of the group is
such that certain parameters «; , defined in Section 2, are all positive. In
that case an everywhere regular automorphic form is already a cusp form.

We shall now state our results. Let F ¢ {T', —r, v}, that is, F(7) is a mero-
morphic function in the upper half-plane 3C, it satisfies the transformation
equation®

a b
(3) F(M7) = v(M)(cr + d)'F(r), M = < d> eT,
c
and it tends to a limit (which may be infinite) on approach to a parabolic
cusp of I'. Here r is real, v is independent of 7, and |»| = 1. Suppose,

moreover, F is regular in 3¢. At each finite parabolic cusp p; there is an
expansion*

T — pe)e(—k A /M)F (1) = fu(t), r = e(Ax7/M),
@ (1 = e)'e( /NIF(7) = fillt), B = e(Ax7/M)

fk(t) = :=’—Ilk ar(nk)tm: e = 0:

valid for 7 e3¢ (or |¢] < 1). The {al®} are called the Fourier coefficients
of F at pr . A similar expansion holds at po = ¢ ; the factor (r — pi)" is to
be replaced by 1. This is of course the usual Fourier series.

TureoreM 1. If F(7) € {T, —r, v} is regular in 3C and r > 0, then

. o ‘
I R VD 3D I D DR TCR
=1 y=1 ceCjk
(5) 0<c<ml/2

XM(C,mk,Vj,T)'FO(g(m,T)), m>0, k=1,"‘,8.

When r > 2, the sum in the right member can be extended to ¢ < o without
affecting the error term.

The new symbols appearing in this theorem are defined in Section 2 and
(40)-(42).
If F is regular in 3¢, all principal parts vanish and we get (2).

THEOREM 2. If
k; > 0, J=12 -8,

3 The branch of (¢cr + d)" is fixed by restricting the argument to the range —7 =
arg < .
4 Cf. [1, p. 273, formulas (14), (14a); also Note 30].
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then
(6) o = *aP + o(m™"™), r>0
where *al® is the finite sum in (5).

For r > 2, these results are available from the Petersson theory.
We turn now to ¢ntegrals. An integral is an analytic function f(7) that is
meromorphic in 3¢ and satisfies the functional equation

(7 f(M7) = v(M)f(7) + Cu, Mel, 7€3C

where Cy , the period, is independent of 7. We consider only integrals that
are regular in 3¢. It is clear that the derivative f’(7) belongs to {T, —2, v}.
The Fourier coefficients of f' are therefore given by Theorems 1 and 2, and
from them we obtain by integration the Fourier coefficients of f. Hence we
have

THEOREM 3. Let

(8) f(1) =8P 4ir 4+ T bPe((m + k) Ait/N), k=1,
be the Fourier expansions of the integral f(7). Then

(9) b = *a® /2mimy, + O(log m), m>0, my =(m+ )/ M.
If kg > 0,5 = 1, - -+, s, then

(10) b8 = *aP /2mimy, + O(1), m > 0.

The integral f is said to be of the first kind if it is regular everywhere,
including the cusps . Necessary and sufficient for this to be the case is that

¥ =0, b =0, m=—1,-, —m, k=15
Then f is a cusp form, and its Fourier coefficients ol have the estimate
(k) = O(m)
Hence
b = 0(1).

THEOREM 4. The Fourier coefficients b of an integral of the first kind are
bounded.

2. We shall make use of the notation and results of [1], which we summarize
here. Let I be an H-group, and let po = %, p1, p2, -+ be the parabolic
cusps of I'. Define

(11) 4= 1 >0, A <1 0
i = s > 0; = .
=\ —p ) " \o 1
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If P; generates the cyclic subgroup of I' each element of which fixes p;, so
do —P;, £P;'. Then A; P A is a translation, and so also for the other
generators. Denote by P; that generator for which

1 A
A;P; AT = <0 j)y J>0

has \; > 0. This also defines ;.
Let v be a multiplier system belonging to I' and the dimension —r. Define
k; by
e(Kj) = ?)(Pj) ) 0 é Kj < 1.
Here and throughout
e(u) = exp 2miu.

Let R be a fundamental region of I' touching the real axis only in finite
points and such that each parabolic eycle consists of a single vertex [1, p. 270].
We denote the cycles in B by pi, -+, p.; all p; are finite. Since I' is an
H-group, s is finite.

Let F € {I' ,—r, v} be regular in the upper half-plane 3¢. In the expansion

(4) of F the finite sum

-1 *)
Y e

which may be empty, is called the principal part of F at py .

Fix k in the range 1 < k =< s. We shall find an asymptotic formula for
{a'P,m Z 1} in terms of the principal parts of F at the cusps p; ,j = 1,2, - - - , s.

3. For this purpose we put the transformation equation (3) into a dif-
ferent form (cf. [1, Ch. IX, 1B]). Let

a b
(12) M*=AfMA;;1=< d>’ Mer’ j:l’-..’s.
C

Note. In an effort to simplify the typography we are using the above
notation instead of’ M = (a’ b’ | ¢’ d’) as we did in [1].
Then with the f; of (4) we haveforj =1, -+, s
(13) file(w/M)) = v (M)(cw + d)e(k;w'/N — ke w/N)fi(e(w'/N)),
with
w = AT, w = M*w
provided b < 0,d > 0. Moreover, (13) is valid for j = 0 (i.e., po = ¢ )

and all M e T' if we admit a factor of absolute value 1 in the right member.
Cauchy’s theorem applied to (4) gives

(14) Mol = [ fuletw/n)e(=mwn) du,

where L is any horizontal line segment of length A lying in 3C.

§ We sometimes write (a b | ¢ d) for the matrix (Z Z)
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The particular L that we use, and its partition, are described in [1, Ch. IX,
2D-2F]. For h > 0 we construct the image K (M *Y of the horizontal line
Im r = h by M*". This is a circle of diameter 1/c’h tangent to the real
axis at —d/c:

(15) K(M*) : |7 — (d/c + i/2ch) | = 1/2¢h.

Let N > 0 be arbitrary, and suppose K(M™) cuts the horizontal line
Iy : Im 7 = N7 this implies ¢’» < N®. The intersection of K(M™*) and
ly is an interval

(16) I(M*): (=d/c 4+ iN" — 9, —d/c +iN "+ &),
where

(172) B(M*) = & = N1 — ¢h/N)™
Hence

(17b) 9 < 1/cNR™.

If h exceeds a certain positive constant depending only on T, the circles
K(M™) do not intersect. The system of circles is periodic modulo \; , and
we can select an interval on Iy of length N\, that meets a complete set of circles
belonging to one period. Call this interval k.

The circles meeting k can be characterized. Define

T={M*|0<d=Zcn,—c\jSa<0;5=1,---,s},

Ty = {M*eT|0 < ¢ < N3,

A circle K(M™) cuts k if and only if M* e Ty . Let
j=U{I") | M* e To};

j is a proper subset of k. The complement of j is partitioned by

k —j = {I(M)| M eTx}.
(In [1] we wrote M instead of M’.) Here I(M’) is a finite union of intervals,
M’ = MA3', and TY is a finite set for each N.

Since the sets of the partition are disjoint, we have
Dery | IM*) | 4+ Zweny | I(M) | = M,

| I | denoting the measure of I.
For future reference we note the following. Partition Ty into the sets

T = {M*]0 < c < 27'Nr%,

TS = {M*|27'NK"? = ¢ < NBTV%.

Then from (17a) we get

(20) & > 1/2cNh", M* e TP.

(18)

(19)
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4. In the estimations of the later sections we shall need the following
result.

LemMmA. Let v be real and 8 > a > 0. Let o5 denote a sum over those
pairs (¢, d) for which M* = (ablcd) e T and

asc=g
Then with B; = By(T, r) we have
2es” < BuB:fT — o) if r<2,
(21) < B; + 2log /e if r =2,
< By = Bs ) if r> 2.

Proof. The elements of T fall into s classes. It is therefore sufficient to
prove the result for a given class, say M* ¢ A, TAy' = I'y. The system of
matrices Ty, though not a group, has many properties of a discontinuous
group, of which the most important for us is the following : There is a disk
K, such that no two images of K, by distinct elements of Ty intersect. The proof is
immediate. Indeed, the group I' admits a disk with this property, say K;
we have only to select K lying entirely in the interior of a fundamental
region of I'. Set K; = Ay K. Then A, M, A7'K;, = A M, K cannot meet
A M, A7'Ky, = A; M,K; otherwise M; K would meet M,K.

Consider M* = (ab|cd) with ¢  0; let 7o = z0 + 5o ¢ K;. We have
by (18),

|Re M*TOI =

c \¢ ' /) (emo+ A + S

where [1, Ch. VIII, 2D]
<. ) eT,c> O} .
c .

(22) 0 < & = min {c
Hence the real parts of all M*r, are bounded. Moreover, the diameters of
K, and its images are also bounded, for the same noneuclidean area means
smaller euclidean area near the real axis. Thus there is a By such that the
strip | ¢ | < By contains the images of K by all M™ ¢ T'; with ¢ 5 0.

Write M *r = &’ 4 4y’. It is easily checked that for r ¢ K ,

Bif™* < Bsc' =y = Byc’ < Bya.

Hence the region
D:|z|£B;, Bsf "<y = Bya

contains all images of K; by transformations M ™ appearing in the sum under
consideration.
Let r < 2. Then

@) 5[ v aa < [[ vy = BuBusT - o).
a, *K1
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On the other hand we find, remembering the invariance of 3~* dz dy under
M*,

f = [ Jew+ d[7v" du dv,
M*Ky Ky
with 7 = M0, o = u + @. Since
B12§|cw—l—d|-c'1_$_Bla, weK1
uniformly in M*, this gives
> f v dedy > Bu ¢ f f o7 du dv
M*K; o, K

a,p
= By Z c.
a,p

This concludes the proof when r < 2, and the argument in the other cases
differs only in the evaluation of the integral in the right member of (23).

CororLrARY. With B = B(T, r) we have

D osc < BET, r <2
(24) D 0sc " < B(1 + log B),
> osc¢ < B, r> 2.

In particular the series ¥ 0.0 ¢ ", 7 > 2, converges. (C£.[6].)

Put & = ¢ > 0 in the lemma, and note from (22) that D zs = 2. 0s.

6. We return to (14) and have

Mol = 3 [ flelw/N)e(—mw/N) du
(25) M*eT JI(M*)

+ 2 [ flelw/n))e(—mu/n) dw = 8 + 8,
M'eTO JIr(Mm!)

where we have suppressed the parameter N in Ty and Ty . We recall from
(16) that
Imw = N7, weI(M¥).

At this point we introduce the assumption
r >0,

that is, we are considering forms of negative dimension only. We also assume
m = 1.
The estimation of S, is the same as in [1, Ch. IX, 2G] except at one point:

|¢"w + d” | = Im w/Im w” = N A7, w = MA7'w, h > 0.

Hence as in [1],
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(25a) | 82] < CN" exp(CmN?),

C denoting throughout a general positive constant independent of m and N.
We split up S; :

’ 14 ! "
Sl = Sl + Sl, Sl = ZM‘GT(I), Sl = ZM‘!T(Z)

(cf. (19)). In each integral of S apply the transformation equation (13)
and get

ST = > M) f (ew + d)Te(zw'/N; — (m + K)w/Ne)
M*eT(2) I(M*) ,
X file(w'/N;)) dw
Now with w = & + 9y, w' = M*w = 2’ + 4y, we have, since M* ¢ T,
y=N7 ¢ =y/((x+d)+ ) £1/y = 4h,
lew+d|* = &' = 47N
Hence?®
(26) |87 | < CN" exp(CmN ") X sweren | I(M*)| < CN™ exp(CmN™?).

In 8i, on the other hand, it is necessary to introduce the Fourier series of
fi, for its principal part will make an essential contribution. So we write

L7 .
Si= > M) Z al) f (ew + d)"e( —v; w' — my w) dw
y=1 I(M*)

M*eT(1)

(27) + Z v—-l(M) ‘/;(M*) (C'w + d)—r 1;2:0 a;j)e((n -+ Kj)'w’/>\j — My w) dw

MAeT(1)
= Su + 8%,
where in the first sum we replaced n by —», and where we have set
vi= (v —)/N, mu=(m+ )/ .

We estimate Sy, .

On the path of integration we have y = N7, as before. Moreover y’ = h,
for I(M™) lies within K (M ™), and reference to the lines preceding (15) shows
that the interior of K(M™) is the image by M™*™" of the half-plane Im 7 > h.
Therefore

| Si2] < Cexp(CmN~*) X | a | exp(—Chn)
n==0

(28) |ew 4+ d |7 dw

M“;(l) v[I(M“')

IA

Cexp(CmN?) 2 fz(w) | ew + d | duw,

M*eT(1)

6 We also have y’ = h—see the paragraph immediately preceding (28). From h < ¥’
=< 4h we can conclude that f;(e(w’\))). is bounded.
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since the infinite series converges to a sum independent of N. Setting
w = —d/c + iN"* 4+ x, we can write

b3
. —r 2 —4\—r/2
(29) f,m = 2 fo (2 + N9 da,

with the ¢ of (17a). The sum over M™ in (28) can be expressed as a sum
over ¢, d, where
0<c<2'NK™ 0<d=cen.

We shall bound the sum of the integrals.
From (29) we get

f < 20_’{ f
1% o

There are now two cases to consider; in each case we use the inequality (17b)
for ¢ and estimate the sum over ¢, d by means of (24). The function g(N?, r)
is defined in (1). We call attention to the fact that the case r = 1 was
incorrectly handled in [5].

i) 0<r<2

Since 2° + N™* = 2eN *and —r/2 + 1 > 0, we have

N—2

2r ¢ —r .
N7 dx + x  dx ;.
N—2

3
/ < CN'¢c" f x " dx < ON"¢ M
I(M*) 0

< CNBr/Z—lc—rﬂ-—l;
since /2 + 1 < 2, this gives

> < NN — OV = GV, 1),

) r=2

Z‘/ < 2 Z c—r(NZr—Z + C(NZr—-2 _ 0—r+l))
cd JYI(M*)

log N, r=2

—r AT2r—2 2r—2
<CY ¢c'N*? < CN {1, r> 2

= Cg(N’, 7).
In every case, then, we obtain

(30) Zf < Cg(N% r), r > 0.
T* JI ()

Insertion of this result in (28) yields
(31) | Siz| < Cg(N* r) exp(CmN™®).

6. The next step is to treat the integrals of St (cf. (27)). Let w+ d/c = 2,
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and note that
w = M*w = a/c — 1/c(ew + d) = afc + i/cz.
We then have

f = ¢ "e((mpd — vja)/c) I,
I(M¥*)

N=24i8
I =c¢" 2" exp {2r(myz + v;/c2)} de.

N—2-i9

(32)

In order to handle the many-valued function 2z~ we cut the plane along
the negative real axis and require that | arg 2| < m. Then

(33) I.=L — {J.+ - + J¢},

where L, is a loop integral that starts from — « on the lower side of the real
axis, circles about 0 in the positive sense, and ends at — e on the upper side.

Here
—N—2 ~N"2—i3 N2—33
T AT oa N N
0 —N—2 —N"2—i¢

—N=24i3 —N—2 —
Jsy = f ) Jy = f ) Ji= f ,
N—2449 —N"2458 ~N—2

all paths are straight, and the integrands are all the same as in I,. We
must estimate the J’s.
We recall that m; > 0. We shall assume » = 1 so that »; > 0. InJ.
and J we have
2= —N7? + 1y, Re (1/2) <0,
and this gives

D3
| Ja ], | Js] < ¢ fo o + N7 dy,

which is the same as (29). Hence by (30),
(34) 2ealdzl, Zealds| < Co(N%, 7).
On the path of J3, J4 we have z = x = 49, respectively, with
Rez=2 < N?%  Re(l/c2) = z/d(a® + &) < N?/&-4¢’N°h™ = 4h.
Hence o
| Jsl, | Ja| < 2¢ exp(CmN~?) fo @+ &) de
< Cexp(CmN ) -¢ "N 9,
which, because of (20) and (24), yields
(35) S il Jsl, ealJs] < CN" exp(CmN7?).
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Next,”
J1+ Je = ¢ "2 sin 7 f \ 27 exp {—2m(miz + v;/¢2)} de,
-
N2/c?

| Ji+ Js| = Zcr'zf ¥ exp {—2n(mi/y + viy)} dy.

0
Later we shall make the choice

(36) N = 2(mh)"?;

hence we have, since ¢ < 27 'Nh ™2,

| Ty + Jo| < O f Y exp {—2n(Cly + Cy)} dy = €,
0
and so by (21),

(37) 2ealJi+Js| < CN*O7 = CN.
Finally the loop integral equals [7, p. 181]
(38) L. = 2mic " (ma/v;) " Iy (47 \/v; ma/c),

with I,; the Bessel function of the first kind of pure imaginary argument.
Combining all results from (25) on, we get

Meay = 25" s v (M)e((mid — via)/e)

(39) X ¢ mu/v;) T La(dr /s mu/c)
+ Cyg(N?% r) exp(CmN~?), m > 0.
7. The right member of (39) can be simplified somewhat [1, Ch. IX,
2K]. Define
Ojk = {C (é :>6AjI‘Ak—l},
(40) \

D, = D.(j, k) = {d ‘ <c é) e A;TAy,0 <d = cxk}.
The summation over M™ can now be written
=2 X .
M* J=1 ceC ik deD,
0<e<2—14=1/2x
The summation over d can be carried out by defining

(4:1) A(c, my , Vj) = Zdwcv_l(M)e((mkd ol Vja)/c), M = A;IM*Ak

7If r is an integer, J1 + Js = 0, since the integrand is single-valued. It is unnec-
essary to cut the plane in this case.
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Also let

(42) M(c,a,p,7) = (a/p) ™" La(4r V/ap/e), s >0.

Inserting these new notations in (39) and fixing N as in (36), we obtain
Theorem 1.

We observe that the sum on ¢ in the right member of (5) can be extended
over all ¢ ¢ Cjz, ¢ > 0, provided r > 2. Indeed, the elementary estimate

La(u) < Clul™, lu] <w, r>1
combined with (24), shows the sum over ¢ = /m to be O(m™™).

8. Ifallkj,7 =1, -+,sare > 0rather than only = 0, we can improve
the error term to O(m™*), as in Theorem 2. Obviously we need consider
only r = 2. Tt is necessary to replace all O(N**) or O(N” " log N) terms
by O(N").

The first such term occurs in the estimation of Siz (cf. (27)). Since
k; > 0, we can replace the integral in (28) by

f | ew 4+ d [ exp(—2mx;y’/N;) dw
I(M*)
4\ —1/2 - 1
f (2> + N exp{ 27rN202)\ x2+N—4}d$

Replace the integrand by its maximum:

f < 2¢7"HCON %)™ < ONTICTL
I (M‘)
Hence

> [ <oNiN =,

c,d JI(m*)

as promised.

The second and last error term requiring improvement arises in connec-
tion with J, and Js—cf. (34)—and is handled in the same way. This com-
pletes the proof of Theorem 2.

Note added in proof. The division of S; into S and S7 is unnecessary
(cf. the lines following (25a)). The estimates used in the treatment of St
apply also to S7.
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