A MAPPING OF REGRESSIVE ISOLS'

BY
FrED J. SANSONE

1. Introduction

We assume familiarity with the principal definitions and results of [1] and
[7]. Denote the set of all non-negative integers by ¢, the collection of all
isols by A, and the collection of all regressive isols by Az . If fis a function, we
use the notation pf and §f to denote the range and domain of f respectively.
For a combinatorial function f, the notation f, is employed to denote its
canonical extension to A. In [1], it was shown that if f is a recursive, com-
binatorial function and T e Ar — &, then Y rf, = (s;)4(T), where s; is the
partial sum function of f. The main result of [7] states that for f strictly in-
creasing, recursive, combinatorial and T e Az — ¢, ®;(fa(T)) = T. One of
the purposes of this paper is to extend both of these results, the first to the
class of recursive functions and the second to the class of strictly increasing,
recursive functions. The principal result obtained states that for f strictly
increasing, recursive and TeAr — &, ®(T) = fa(T), where f(n) =

(w)lf(y) = nl.

2. The Generalized sum

In this section, we define and study an infinite series of integers, summed
with respect to a regressive isol 7. This sum is called a star-sum. It is
shown that if the terms of the series are given by a recursive function, then the
star-sum and the sum defined in [1] are equivalent.

Let f and g be recursive, combinatorial functions. It is well known that for
X eA,

(1) fa(X) + gu(X) = (F + 9)a(X),
(2) (X)) -gu(X) = (F-9)a(X).

ProrosiTioN 1. Let f and g be recursive, combinatorial functions. Then

for T e Az ,
ZTfn + ZT gn = ZT(fn + gu).

Proof. Denote the partial sum functions of f and g as defined in [1] by s;
and s, respectively. Then s; and s, are also recursive, combinatorial. For
T € Az , we have by Theorem 2 of [1],

ZTfn = (s)a(T), ZT gn = (85)a(T).
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Since s; + s, = 874y, and f + ¢ is recursive, combinatorial, the result follows
by (1) and another application of Theorem 2 of [1].

In the following, m(7, k) denotes the maximum of the two non-negative
integers 1, k.

ProposirioN 2. Let f and g be recursive, combinatorial functions. Then the
Sfunction

h, = Zm(i,k)-nfi (1)

18 also recursive and combinatorial. Moreover, for T ¢ Ag

(ZTfn)(ZTgn) = ZThn-
Proof. As in Proposition 1, D zfn = (s/)a(T) and D.rgn = (s,)a(T).

Hence by (2),
(2 fa)(Xrga) = (s7:50)a(T).

It is readily verified however, that for all

87(n)-s,(n) = su(n).

Since s;-s, is recursive, combinatorial, it follows that & is recursive, com-

binatorial and
(rfa) (X ga) = (5)a(T) = Xrha.

By a number-theoretic function, we mean any function defined on the non-
negative integers, having integral values. Every number-theoretic function
f can be written as the difference of the two combinatorial functions f* and
f~, called the positive and negative parts of f. We call a number-theoretic
function recursive if the functions f* and f~ are both recursive. For a re-
cursive, number-theoretic function f, we make use of the canonical extension
to A defined in [4]:

(X)) = Fi(X) — fx(X).

It follows that the extension of a recursive, number-theoretic function maps
A into A¥, the ring of isolic integers. It is easily shown that if f and g are
recursive, number-theoretic functions, then for X ¢ A,

(X) + ga(X) = (f + g)a(X),
fa(X)-ga(X) = (f-9)a(X).
DEerFINITION. Let f be a recursive, number-theoretic function. For T eAg,

Z’;'fn = Zrﬂ- - er;

This sum is referred to as the siar-sum. We note that for every recursive,
number-theoretic function f and every regressive isol T, D% f» e A*. Clearly,
if f is recursive, combinatorial, D g fn = 2 rfn.

The following two propositions are proved by decomposing the functions
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involved into their positive and negative parts and then applying Propositions
1 and 2. Their proofs will be omitted.

ProprosiTION 3. Let f and g be recursive, number-theoretic functions. Then
soisf + gand for all T € Ag

Drfat 2hgn = 2% (fa+ gn)-

ProrosiTioN 4. Let f and g be recursive, number-theoretic functions. Then

the function
h, = Zm(i,k)=n Jign
1s recursive, number-theoretic. Moreover, for T € Az ,
(T ) (Xt gn) = 2t ha.
The next result is obtained immediately from Proposition 3.

ProposrrioN 5. Let f and g be recursive, number-theoretic functions. Then
sotsf — gand for T e Az,

Z:’fn - ’;gn = Z?’ (fa — gn).

THEOREM 1. Let f be a recursive, number-theoretic function. Then for all

T € AR 3
Z?’fn = (sf)A(T)’
where s; 1s the partial sum function of f.

Proof. For all n, we have

sp+(n) — s;-(n) = sp+_y-(n) = s;(n).
Hence, if T € Az,

(8s+)a(T) — (87-)a(T) = (57)a(T).

2or e = 2nft = 2afn = (8)a(T) — (8-)a(T),
it follows that

Since,

S5 = (s)a(T).

In the next theorem, we give a representation of the canonical extension of a
recursive, number-theoretic function as a star-sum of integers. This repre-
sentation is then utilized to show that for f recursive, the star-sum and the sum
defined in [1] agree.

THEOREM 2. Let f be any recursive, number-theoretic function. Then for all

T € AR y
() = fo+ 2% O,
where A is the usual finite difference operator.

Proof. The function Af takes on values

(1) = f(0), (2) — f(1),7(3) — £(2), --- .
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Clearly, since f is recursive, number-theoretic, so is Af. Thus, by Theorem 1,
D % Afa = (sa7)a(T). The function sa; however, takes values

0, /(1) — 1(0), f(2) — (0), f(3) — f(0), ---.

Hence
(sar)a = (f(n) — f(0))x = fa — f(0).
It follows that for T e Az,
207 Afa = fa(T) — £(0).

THEOREM 3. Let f be a recursive function and let T ¢ Ar . Then
Z’;’fn = ZTfn .

Proof. 1In case T is finite, the result is clear. Let T be infinite. Let ¢, be
a regressive function such that pt, ¢ T. By the definition of the star-sum,

2 tfn = 2afh — Lrfu,
2 rfy = Req Ui oj(ta, »(f3))
>rfn = Req Uneoi(ta, v(fa))-

It therefore suffices to show

(1) Req Unooj(ta, »(fa)) + Req Urmoji(ta, v(f7)) = Req Unmoj(ta , v(f7)).
To prove (1), we note that: since f is recursive,

(2) Uneoita s v(Fa)) | Unmo i (ta, v(F7) — v(fa)),

and moreover,

(3)  Ueoi(tn, »(fa)) + Uncoi(ta, v(f2) — »(fa)) = Uneoi(ta, »(f3)).
Hence, it suffices to prove

(4) Unmoi(tn, (7)) = Uzeoi(tn , () — (fa))-

Denote the left hand side of (4) by « and the right hand side of (4) by 8.
Let p(x) be a regressing function of the regressive function ¢, . Furthermore,
let

where

and

fz) = j(k(z), Uz) + f,* k=),
g(2) = j(k(2), Uz) ~ f,* k(2)).

The function f(zx) is partial recursive, 1-1 on o and it maps & onto 8. The
function g(z) is partial recursive, 1-1 on 8 and it maps 8 onto «. Moreover
for z ea, gf(x) = xz. An application of Proposition 1 of [1] completes the
proof.

The corollaries below follow immediately from the preceding results.
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CoroLLARY 1. Let f and g be recursive functions. For T e Az,

ZTfn + ZT gn = ZT (fn + gn)-

CoROLLARY 2. Let f and g be recursive. Then for T € Az ,

(ern)( ZT gn) = ZT b

where h is defined as in Proposition 4.

CoroLLARY 3. Let f be an increasing, recursive, number-theoretic function.
Then for T € Ag ,
Fa(T) = fo+ 2r .
CoROLLARY 4. Let f be a recursive, number-theoretic function. Iff =g — h
where g and h are recursive functions, then for T € Ag ,

Z:fn = ZTgn - Zq'hn.

COROLLARY 5. Let f be a recursive function. Then for T € Ag ,

2orfa = (s)a(T),

where sy is the partial sum function of f.

3. The mapping &,
We recall the definition of the mapping ®; as given in [7].

DEeriNiTION. Let f be a one to one function from e into & and let
TeAr — €. Then
2:(T) = Req ptrw,

where ¢, is any regressive function ranging over a set in 7.

Then ®; is a well defined mapping from Az — ¢ into A — . Moreover, if f
is strictly increasing and recursive, ®;(T') e Az . The main result of [7] states
that if f is a strictly increasing, recursive, combinatorial function and
T e Ar — &, then ®(fu(T)) = T. We proceed to extend this theorem along
two different lines, both of which yield it as an immediate corollary.

Lemma. Let f be a recursive function. Thenfor T e Az, Dz fneAr .

Proof. For T finite, Y rf, is also finite and hence is a member of Ap. If
T is infinite, then Y rf, = Req Un—oj(ta, »(f)). Since f is recursive and
i, is regressive, it is clear that the function u, which takes on successive
values

j(tO’O)yj(tfH 1)> e )j(to’fo - 1):j(t1)0)7j(t1) 1)) e ’j(tl?fl - 1)’ e

is regressive. It is assumed that those values j(¢, , k) for which f, is zero are
omitted in the above enumeration. Since the range of w, is a member of
ZT fn , it follows that quf,, €Ar .
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THEOREM 4. Let f be strictly increasing and recursive. Then for T ¢ A — &,
(a) fa(T) eAr,
(b) &,(fu(T)) = T.

Proof. (a) By Corollary 3 of Theorem 3, it is seen that f4(7) has the
representation

FAT) = fo+ 2r&a.

Since f is increasing and recursive, Af is a recursive function. By the lemma
therefore, Dz Afn e Ar. Hence fo(T) € Ag .

(b) Let u, be a regressive function ranging over a set in 7 4+ 1. Denote
by v, , the function which takes on values of the array

j(uo,O) e j(u07f0_ 1)
J(u, 0) -+ jlu, i — fo— 1)
J(ugao) te j(u2’f:2 —fl - 1)

reading from left to right in each row and from the top row down. If fo = 0,
it is understood that the first row is to be deleted. Since f is recursive and »
is regressive, it is clear that the function v is regressive. Since puiie T, it
follows that

Unoj (s, v(Afn)) € 27 Afn -
pn efo + 2or Afn = fu(T).

q)f(T) = Req (j(ul,o)yj(u?’o)’ "') = T.

In the following theorem we make use of the well known canonical enumera-
tion {p,} of the class of all finite subsets of ¢ together with the recursive func-
tion r(n) = cardinality p, . A lemma due to Dekker, whose proof appears in
[7] states that if ¢, is a regressive function and

tn = 02"V + -+ 4 €4n2"7,
where €., * * - , énn 18 the sequence of zeros and ones such that
n =2+ -+ + ewm-2"
then t,, is also regressive. Moreover,
t'(2") = 2", prw = t(ps) and ot 2.

TaroREM 5. Let f be a strictly increasing, recursive, combinatorial function
with {c;} as its sequence of combinatorial coefficients. Define for each k > 0,

Hence,

Therefore,

ar(n) = the principal function of {x |r(z) = kj,

bi(n) = Z?’i(on)_l Cr(s) -
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Then we have for every number k such that both k and ¢, are positive,
(2) bi(n) is a strictly increasing function of n,

(b) for TeAr — &,
2 (i) = (7).

Proof. (a) Foreachk > 0, ar(n) is strictly increasing, since it is the
principal function of some infinite set. Assume for a fixed k that ¢, > 0. By
definition,

be(n + 1) = &M
Hence

(1) b(n + 1) = & 6 + 2EGE  aw,

where the last sum is non-vacuous, since ax(n) is strictly increasing. Hence
by (1),

(2) be(n + 1) = be(n) + Cramy + (non-negative terms, if any).

But ¢y = cx > 0. We thus see by (2), that bx(n + 1) > bi(n), and hence
bi(n) is a strictly increasing function. Clearly, bx(n) is recursive for each k.

(b) Assuming the hypothesis, since bx(n) is strictly increasing, ®,,(f1(7))
has meaning. Let 7 e T ¢ Az — ¢, and assume that ¢, is a regressive function
ranging over r. Put g(n) = ¢(n). By the above lemma, p,y = ¢(pn).
Hence, if n assumes successively the values

0,1,2,3,4,586,7 -,
Py (ny assumes successively the “values”
o, (), (), (to, t),(t2), (to, &), (tr, ta), (to, ta, ta), -+~ .
By definition we have
fa(T) = Req {j(2,9) | p: C 7, ¥ < i}

Since g(n) ranges without repetitions over {n | p, C 7}, and rg(z) = r(z), it
follows that

(3) fa(T) = Req {j(g(x), y) [zee, y < ).

We shall use u, to denote the function which for 0, 1, 2, --- , takes on the
values of the array,

3(g(0), 0), - -+, 3(g(0), cry — 1)
J(g(1),0), --- ’j(g(l); o — 1)
J(g(%),0)7 e 7.7(9(2)7 0'1'(2) - 1)

reading from left to right in each row, and from the top row down. It is
understood that every row which starts with j(g(k), 0), for some k with
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¢ = 0, is to be deleted. The function g(n) = ¢'(n) is regressive by the
above lemma. Since ¢; is recursive, it readily follows that u, is a regressive
function. In view of (3) we have pu, e fa(T). It therefore suffices to prove
that for k > 0, with ¢, > 0, pubk(n) € (). We recall that

(’{) = Req {z|p. C 7 and r(z) = k}.
Hence

(4) (,'f) — Req {g(a) |r(z) = k).
Since bi(n) = D %™ ¢, , we have
bx(0) = ¢y + +* + Cr@mo-1
b(1) = ¢ + -+ + Craw-n
b(2) = ey + -+ + CGr@e-1

Since ¢; > 0, we can be assured that the rows of the array used to define
u, which begin with j(gax(0), 0), 7(gax(1), 0), - - - are not deleted. Hence

ubi(0) = j(gax(0),0),  wbi(1l) = j(gar(1),0), ---.
We conclude that uby(n) =~ gar(n). By a further transformation of (4)
however, we see that

(%) = Rea to(@) I (@) = £} = Req st

pubr(n) e (f;c’) .

4. The representation of &; as an extension

Let f be a strictly increasing recursive function. We wish to prove that
the mapping ®; has an interpretation as the canonical extension of a particular
recursive function f to A.

Hence

DeriniTiON.  For f strictly increasing and recursive, f(n) = (uy)[f(y) > nl.

Clearly, f is recursive since it is everywhere defined and partial recursive.
Let g(n) = c,s(n) where c,s is the characteristic function of the range of f.
Then g is also recursive.

LemMA. Let f be a strictly increasing, recursive function. Let § and g be de-
fined as above. Then s,(n) = f(n), where s, is the partial sum function of g.

Proof. We proceed by induction on n.
n = 0.

F(0) = (ulf(y) = 0] = 0.
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$,(0) = 0, by definition of the partial sum function.
Assume s,(k) = F(k).
so(k + 1) = s,(k) + g(k),
Jk+1) = (ulf(y) 2k + 1 =F0k) +0 if ff(k) 2k+1
=Jfk) +1 if ff(k) = k.
It only remains to show that
g(k) =0 if fi(k) >k +1
=1 if ff(k) = k.
But,
g(k) = cpy(k) =0 if kepfe ff(k) 2k + 1
=1 if kepof o ff(k) = k.
Hence s,(n) = f(n) for all n.

THEORE_M 6. Let f be a strictly increasing, recursive function. For T e Ap — ¢,
®(T) = f(T).

Proof. Let g be defined as above. It readily follows from the definition of
> rg(n), that ®(T) = D> .rg(n). Applying Corollary 5 of Theorem 3,
>.rg(n) = (s,)a(T). Hence, by the preceding lemma, ®;(T) = f,(T).

5. Remarks

With the use of the star-sum and the mapping ®, it becomes a relatively
simple matter to prove the existence of non-trivial idempotents in A*¥ the ring
of isolic integers. Another proof is given in [2, Theorem 95]. It is shown
there that there exists an infinite, regressive isol T such that neither
B2, (T) = Pypta(T) nor ®o,(T) = ®9,14(T) + 1 holds. This, together with
the fact that ®5,(T) — ®2,11(T) is an idempotent element, leads to the exist-
ence of non-trivial idempotents in A*. The second of these two results follows
immediately upon consideration of the star-sum, Y » (—1)". From Corol-
lary 4 of Theorem 3, it follows that,

Z’; (=" = Zq-ce(n) - cho(n),

where c,(n), co(n) are the characteristic functions of the even numbers and
odd numbers respectively. Clearly,

2orc(n) = &, (T), Dorco(n) = Bppa(T).

From Proposition 4, we have
(27 (=D"M(XZF (=D = X7 (="
Hence, for every regressive isol T,

(an(T) - <I:'2n+1<T) )2 = <I>2n(T) - @2n+1(T)-
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