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1. Introduction
We assume familiarity with the principal definitions and results of [1] and

[7]. Denote the set of all non-negative integers by e, the collection of all
isols by A, and the collection of all regressive isols by AR. Iff is a function, we
use the notation pf and tif to denote the range and domain of f respectively.
For a combinatorial function f, the notation fA is employed to denote its
canonical extension to A. In [1], it was shown that if f is a recursive, com-
binatorial function and T e AR , then rf (sl) A(T), where sl is the
partial sum function of f. The main result of [7] states that for f strictly in-
creasing, recursive, combinatorial and T e AR , s(fA(T)) T. One of
the purposes of this paper is to extend both of these results, the first to the
class of recursive functions and the second to the class of strictly increasing,
recursive functions. The principal result obtained states that for f strictly
increasing, recursive and TeAR , s(T) ]A(T), where ](n)
(y)(y) >_ n].

2. The Generalized sum

In this section, we define and study an infinite series of integers, summed
with respect to a regressive isol T. This sum is called a star-sum. It is
shown that if the terms of the series are given by a recursive function, then the
star-sum and the sum defined in [1] are equivalent.

Let f and g be recursive, combinatorial functions. It is well known that for
XeA,

(1) fA(X) + g,(X) (f + g),(X),
(2) fA(X).g(X)= (f.g)(X).

PROPOSITION 1. Let f and g be recursive, combinatorial functions. Then
for

+ +
Proof. Denote the partial sum functions of f and g as defined in [1] by

and s respectively. Then s and s are also recursive, combinatorial. For
T e AR, we have by Theorem 2 of [1],

rf (ss)A(V), rg (so)A(V).
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Since s/-t- sg ss+g, and f -t- g is recursive, combinatorial, the result follows
by (1) and another application of Theorem 2 of [1].

In the following, m(i, ]) denotes the maximum of the two non-negative
integers i, k.

PROPOSITION 2. Let f and g be recursive, combinatorial functions. Then the
function

is also recursive and combinatorial. Moreover, for T e A

Proof. As in Proposition 1, rf (s])A(T)and rg, (s)A(T).
Hence by (2),

It is readily verified however, that for MI n

Since s]. s, is recursive, combinatorial, it follows that h is recursive, com-
binatorial and

(_,rf,)(_rg,) (s)(T) r
By a number-theoretic function, we mean any function defined on the non-

negative integers, having integral values. Every number-theoretic function
f can be written as the difference of the two combinatorial functions f+ and
f-, called the positive and negative parts of f. We call a number-theoretic
function recursive if the functions f+ and f- are both recursive. For a re-
cursive, number-theoretic function f, we make use of the canonical extension
to A defined in [4]:

A(x) =fi(x)
It follows that the extension of a recursive, number-theoretic function maps
A into A*, the ring of isolic integers. It is easily shown that if f and g are
recursive, number-theoretic functions, then for X e A,

A(X) -b gA(X) (f - g)(X),

f(X).gA(X)- (f.g)A(X).

DEFINITION. Let f be a recursive, number-theoretic function. For T e A,,

This sum is referred to as the star-sum. We note that for every recursive,
A*.number-theoretic function f and every regressive isol T, *rf e Clearly,

if f is recursive, combinatorial, *rf rf.
The following two propositions are proved by decomposing the functions
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involved into their positive and negative parts and then applying Propositions
1 and 2. Their proofs will be omitted.

:PROPOSITION 3. Let f and g be recursive, number-theoretic functions.
so is f + g and for all T

+

Then

:PROPOSITION 4. Let f and g be recursive, number-theoretic functions.
the function

h,

is recursive, number-theoretic. Moreover, for T

Then

The next result is obtained immediately from Proposition 3.

:PROPOSITION 5. Let f and g be recursive, number-theoretic functions.
so is f g and for T e AR

Then

THEOREM 1.
TEAR,

Let f be a recursive, number-theoretic function.

*rf (ss)(T),

Then for all

where s] is the ?aartial sum function of f.

Proof. For all n, we have

s/(n) s-(n) s/_-(n) s(n).
Hence, if T e AR,

(ss+)(T)- (ss-)(T) (s)(W).
Since,

E*fn- E’f+n- E’f: (8$+)t(T)- (s]-)(T),
it follows that

*rf (s)A(T).

In the next theorem, we give a representation of the canonical extension of a
recursive, number-theoretic function as a star-sum of integers. This repre-
sentation is then utilized to show that forf recursive, the star-sum and the sum
defined in [1] agree.

THEOREM 2. Let f be any recursive, number-theoretic function. Then for all
TEAR,

f(T) fo - *r
where A is the usual finite difference operator.

Proof. The function Af takes on values

f(1) f(0), f(2) f(1), f(3) f(2), ....



MAPPING OF REGRESSIVE ISOLS

Clearly, since f is recursive, number-theoretic, so is f. Thus, by Theorem 1,
*r Af. (sas)A(T). The function sas however, takes values

0, f(1) f(0),/(2) f(0), f(3) f(0), ....
Hence

(s])A (f(n) f(0)) f f(0).
It follows that for T e A,

*f A(T) f(0).

THEOREM 3. Let f be a recursive function and let T e A, Then

Proof. In case T is finite, the result is dear. Let T be infinite. Let t be
a regressive function such that pt, e T. By the definition of the star-sum,

X*f XTf+- XTf-,
where

and
rf Req U:=0j(t., ,(ff))

r Req O:=oj(t,, (f)).

It therefore suffices to show

(1) Req U:=0j(t., (A)) + Req U:=oj(t, ,()) Req U:=0j(t, ()).
To prove (1), we note that: since f is recursive,

(2) U:_0j(t, (A)) U::0j(t,, () (A)),

and moreover,

(3) U:_0j(t., ’(h)) + U:=0j(t, () (f.)) U:=0j(t,, ()).
Hence, it suffices to prove

(4) U:_oj(t., ()) U:_0j(t,, () (A)).

Denote the left hand side of (4) by a and the right hand side of (4) by .
Let p(x) be a regressing function of the regressive function t. Furthermore,
let

+ *
h*

The function f(x) is partial recursive, 1-1 on a and it maps a onto . The
function g(x) is partial recursive, 1-1 on and it maps onto a. Moreover
for x e a, gf(x) x. An application of Proposition 1 of [1] completes the
proof.
The corollaries below follow immediately from the preceding results.
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COROLLARY 1. Let f and g be recursive functions. For T A
Z f. + Z (f. +

COROLLARY 2. Let f and g be recursive. Then for T e A

where h is defined as in Proposition 4.

CoaoAnv 3. Let f be an increasing, recursive, number-theoretic function.
Then for T e A

A( T) fo + f
CooAuv 4. Let f be a recursive, number-theoretic function. Iff g h

where g and h are recursive functions, then for T e A

ConoAav 5. Let f be a recursive function. Then for T e A

where s] is the partial sum function of f.

3. The mppin9
We recafi the definition of the mapping ] as given in [7].

DEFINITION. Let f be a one to one function from into and let
TEA.-- e. Then

el(T) Req

where t is any regressive function ranging over a set in T.

Then ] is a well defined mapping from A into A . Moreover, if f
is strictly increasing and recursive, ](T) e A. The main result of [7] states
that if f is a strictly increasing, recursive, combinatorial function and
T e A e, then ](f(T)) T. We proceed to extend this theorem along
two different lines, both of which yield it as an immediate corollary.

LEMM. Letf be a recursive function. Then for T

Proof. For T finite, rf is also finite and hence is a member of A,. If
T is infinite, then rA Req O:=j(t, (A)). Since f is recursive and
t, is regressive, it is clear that the function u which takes on successive
values

j(to, O),j(to, 1),--. ,j(t,]o 1),j(h, O),j(t, 1), ,j(t,f 1),

is regressive. It is assumed that those values j(t., ) for which f is zero are
omitted in the above enumeration. Since the range of u is a member of

rA, it follows that r.A e
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THEOREM 4. Let f be strictly increasing and recursive.
() f(T) A,
(b) f(f(T)) T.

Then for T e h e,

Proof.
representation

By Corollary 3 of Theorem 3, it is seen that fA(T) has the

f(T) f0 +
Since f is increasing and recursive, Xf is a recursive function. By the lemma
therefore, r Af. e A. Hence f(T)

(b) Let u be a regressive function ranging over a set in T + 1. Denote
by v., the function which takes on values of the array

j(uo, O) j(uo,fo 1)

j(ul, O) j(ul,f fo 1)

j(u., O) j(u, f f 1)

reading from left to right in each row and from the top row down. If f0 0,
it is understood that the first row is to be deleted. Since f is recursive and u
is regressive, it is clear that the function v is regressive. Since pu,+ T, it
follows that

Hence,
pv, fo + hf, f( T).

Therefore,
el(T) Req (j(u, O),j(u, 0),...) T.

In the following theorem we make use of the well known canonical enumera-
tion {p.} of the class of all finite subsets of e together with the recursive func-
tion r(n) cardinality p.. A lemma due to Dekker, whose proof appears in
[7] states that if t. is a regressive function and

t’ 2() 2(’),e.0. + + end"

where e0, e. is the sequence of zeros and ones such that

n eo.2 + + e.

then t’ is also regressive. Moreover,

t’(2) 2t(), p,() t(p) and pt’e2r.
THEOREM 5. Let f be a strictly increasing, recursive, combinatorial function

with {c} as its sequence of combinatorial coecients. Define for each ]c > O,

ak (n) the principal function of {x r(x) k},

bk(n) (o Cr i)
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Then we have for every number k such that both ] and cA are positive,
(a) bk(n) is a strictly increasing function of n,
(b) for T e h ,

Proof. (a) For each 1 ) O, a(n) is strictly increasing, since it is the
principal function of some infinite set. Assume for a fixed k that c ) O. By
definition,

bk(n + 1) _,.(o’+)-
Hence

’ak n+l)--Ib(n- 1) .(0")-1 cr(i)-}- .,-,(,) c(),

where the last sum is non-vacuous, since a(n) is strictly increasing.
by (1),

Hence

(2) b(n - 1) b(n) - c,a(,,) + (non-negative terms, if any).

But c,a(.) ck > 0. We thus see by (2), that b(n - 1) > b(n), and hence
b(n) is a strictly increasing function. Clearly, b(n) is recursive for each k.

(b) Assuming the hypothesis, since b(n) is strictly increasing, b(f(T)
has meaning. Let r e T e As , and assume that t is a regressive function
ranging over r. Put g(n) t’(n). By the above lemma,
Hence, if n assumes successively the values

0, 1, 2, 3, 4, 5, 6, 7,

assumes successively the "values"

r, (to), (tl), (to, t),(t.), (to, t), (t, t), (to, t, t.),

By definition we have

f(T) Req {j(x, y)IP r, y < c()}.
Since g(n) ranges without repetitions over {n p r}, and rg(x) r(x), it
follows that

(3) f(T) Req {j(g(x), y) x e , y < cr()}.

We shall use u. to denote the function which for 0, 1, 2, takes on the
values of the array,

j(g(O), 0),..., j(g(O), C(o) 1)

j(g(1), 0), ..., j(g(1), c() 1)

j(g(2), 0), ,j(g(2), c() 1)

reading from left to right in each row, and from the top row down. It is
understood that every row which starts with j(g(]), 0), for some k with
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cr) 0, is to be deleted. The function g(n) t’(n) is regressive by the
above lemma. Since c is recursive, it readily follows that u is a regressive
function. In view of (3) we have pu erA(T). It therefore suffices to prove
that for k > 0, with c > 0, pub(n) e ("). We recall that

Hence

(4) ;)= Req {g(x)

Since b(n) _,=(o-1 c) we have

b(O) C,<o> +... + c,<o<0)_>,

b(1) c(0)W""-t-c((1)_),

b(2) c(0) +"" + c(()_)

Since c > 0, we can be assured that the rows of the array used to define
un which begin with j(ga(O), 0), j(ga(1), 0), are not deleted. Hence

ub(O) j(ga(.O), 0), ub,(1) j(ga(1), 0), ....
We conclude that ub(n) ga(n).
however, we see that

Hence

By a further transformation of (4)

Req {g(x) lr(x) k} Req pga(n).

pub(n) e (Tk)
4. The representation of c as an extension

Let f be a strictly increasing recursive function. We wish to prove that
the mapping ] has an interpretation as the canonical extension of a particular
recursive function ] to A.

DEFINITION. Forf strictly increasing and recursive, ](n) (y) [f(y) >_ hi.
Clearly, ] is recursive since it is everywhere defined and partial recursive.

Let g(n) c](n) where c is the characteristic function of the range of f.
Then g is also recursive.
LEMMA. Let f be a strictly increasing, recursive function. Let ] and g be de-

fined as above. Then s(n) ](n), where s is the partial sum function of g.

We proceed by induction on n.

](0) (zy)[f(y) >_ 01 0.
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s(0) 0,

Assume sg ] ] k ).

by definition of the partial sum function.

sg(/c + 1) s(k) - g(k),

](1-}- 1) (y)[f(y) >_ ] + 1] =](]) +0 if f](]) >_ -t- 1

]() + 1 i f]() .
It only remains to show that

g(k) 0 if f](]) >_ l + 1

But,
1 i f]() .

g(]) cps(]) 0 if ] pf c:: f](] >_. k + 1

=1

Hence s(n) ](n) for all n.

i f f]() .
THEOREM 6. Let f be a strictly increasing, recursive function. For T e AR ,

+s( T) ]( T).

Proof. Let g be defined as above. It readily follows from the definition of
r g(n), that ](T) r g(n). Applying Corollary 5 of Theorem 3,
rg(n) (s)(T). Hence, by the preceding lemma, ](T) ](T).

5. Remarks
With the use of the star-sum and the mapping ,, it becomes a relatively

simple matter to prove the existence of non-trivial idempotents in A*, the ring
of isolic integers. Another proof is given in [2, Theorem 95]. It is shown
there that there exists an infinite, regressive isol T such that neither
.(T) 2+1(T) nor )2(T) O+I(T) -}- 1 holds. This, together with

the fact that :.(T) .+(T) is an idempotent element, leads to the exist-
ence of non-trivial idempotents in A*. The second of these two results follows
immediately upon consideration of the star-sum, *r (-1). From Corol-
lary 4 of Theorem 3, it follows that,

E --1)n E c.(n) E. Co(n),
where c,(n), co(n) are the characteristic functions of the even numbers and
odd numbers respectively. Clearly,

_,r ce(n) .(T), r co(n) +(T).
From Proposition 4, we have

(*r (--1))(*r (--1)) *r(--l).
Hence, for every regressive isol T,

(+2(T) ++(T)) +2(T) +2n+(T).
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