#### TWIST-SPINNING SPHERES IN SPHERES

 $\mathbf{B}\mathbf{Y}$ 

### W.-C. HSIANG AND B. J. SANDERSON<sup>1</sup>

### I. Introduction

Let  $\theta^{m,n}$ , n > 4, denote the group of h-cobordism classes of pairs of spheres  $(S^m, \Sigma^n)$ , where  $S^m$  denotes an m-sphere with its usual structure and  $\Sigma^n$  denotes an embedded n-sphere which may have an exotic structure, [2], [9].

Our aim is to introduce an operation, which will be called twist-spinning;

$$\phi: \theta^{m,n} \times \pi_l(SO(n) \times SO(m-n)) \to \theta^{m+l,n+l}$$

When m = n + 2, the operation is twist-spinning as defined by Artin–Zeeman [1], [12], except that we have introduced tangential twisting by elements of  $\pi_l(SO(n))$ . The operation restricted to the embedded sphere  $\Sigma^n$  of the pair  $(S^m, \Sigma^n)$  is equivalent to a pairing of Milnor–Munkres [5], [6] (also Novikov [7]), except that the group  $\pi_l(SO(n-1))$  has been replaced here by  $\pi_l(SO(n))$ . Another operation may be defined by replacing  $\theta^{m,n}$  by  $I^{m,n}$  the group of regular homotopy classes of immersions of  $S^n$  in  $S^m$ .

In §2, the operation is described and defined. In §3 it is related to a relative version of the Milnor-Munkres-Novikov pairing;

$$\pi_0(\operatorname{Diff}_{\mathcal{C}}(R^{m-1}, R^{n-1})) \otimes \pi_l(SO(n-1) \times SO(m-n)) \to \pi_0(\operatorname{Diff}_{\mathcal{C}}(R^{m+l-1}, R^{n+l-1})).$$

The resulting operation on normal bundles is investigated in §4 and found to be related to the Whitehead product pairing,

$$\pi_n BSO(m-n) \otimes \pi_{l+1} BSO(m-n) \rightarrow \pi_{n+l} BSO(m-n).$$

We are grateful to E. C. Zeeman for sending us a preprint of [12].

# II. Twist-spinning

Let  $(S^m, \Sigma^n)$  we a pair of spheres representing an element of  $\theta^{m,n}$ . Let  $D^m_+$ ,  $D^m_-$  denote the upper and lower hemispheres of  $S^m$  respectively. Then  $S^m = D^m_+ \cup D^m_-$ . Now the pair  $(S^m, \Sigma^n)$  is diffeomorphic to

$$(\textit{D}_{+}^\textit{m} \, \mathsf{u} \, \textit{D}_{-}^\textit{m} \, , \, \textit{D}_{+}^\textit{n} \, \mathsf{u} \, \Sigma^\textit{n} \, - \, \operatorname{Int} \textit{D}_{+}^\textit{n})$$

where  $D_+^n$  is a disc embedded in  $\Sigma^n$  and the inclusion  $D_+^n \subset D_+^m$  is assumed to be standard; further we may suppose the inclusion  $\Sigma^n - \operatorname{Int} D_+^n \subset D_-^m$  coincides with the standard inclusion  $D_-^n \subset D_-^m$  near the boundary of  $\Sigma^n - \operatorname{Int} D_+^n$ .

Received April 27, 1964.

<sup>&</sup>lt;sup>1</sup> During the preparation of this paper, the authors were partially supported by a National Science Foundation Grant.

Now consider  $D_{-}^{m}(x_0)$  as the disc  $(S^{m-1}, t, x_0)$  in the join sphere

$$S^{m+l} = S^{m-1} \circ S^l = S^{m-1} \times D^{l+1} \cup D^m \times S^l$$

where  $x_0$  is a point of  $S^l$  (Fig. 1).

The standard sphere  $S^{n-1} = \partial(\Sigma^n - \operatorname{Int} D^n_+)$  bounds the standard disc  $D^n_-$  in  $D^m_-$ . Let  $D^{m-n}$  be the disc normal to  $D^n_-$  in  $D^m_-$ . As the point x moves along  $S^l$ , the disc  $D^m_-(x) = D^n_- \times D^{m-n}$  is twisted by a representative of an element  $[\gamma] = (\alpha, \beta)$  of

$$\pi_l(SO(n) \times SO(m-n)) = \pi_l(SO(n)) \oplus \pi_l(SO(m-n)).$$

The trace of  $\Sigma^n$  — Int  $D_+^n$  is an embedded homotopy sphere  $\Sigma^{n+l}$  in  $S^{m+l}$ . It is not difficult to see that the resulting operation, denoted by  $\phi$ , is well defined.

We now give a more precise description of twist-spinning. This time we begin with an immersion  $f: S^n \to S^m$ , m > n + 1.

Let  $S^n = D_+^n \cup_q D_-^n$  and  $S^m = D_+^m \cup_h D_-^m$  and now suppose

$$f: D^n_+ \cup D^n_- \longrightarrow D^m_+ \cup D^m_-$$

is standard on  $D_{+}^{n}$  and on a neighborhood of the boundary of  $D_{-}^{n}$ . Let

$$S^{n+l} = S^{n-1} \times D^{l+1} \mathbf{u}_1 D^n \times S^l$$
  
 $S^{m+l} = S^{m-1} \times D^{l+1} \mathbf{u}_1 D^m \times S^l$ 

be the standard decompositions of  $S^{n+l}$  and  $S^{m+l}$  respectively. For any element  $[\gamma] = (\alpha, \beta)$  in  $\pi_l(SO(n) \times SO(m-n))$ , an immersion

$$\phi(f, \gamma): S^{n+l} \to S^{m+l}$$

is defined by

$$S^{n+l} \xrightarrow{ \phi(f,\gamma)} S^{m+l}$$

$$= S^{n-1} \times D^{l+1} \mathbf{u}_1 D^n \times S^l \qquad = S^{m-1} \times D^{l+1} \mathbf{u}_1 D^m \times S^l$$

$$\downarrow 1 \mathbf{u} (g' \times 1)^{-1} \circ F^{-1} \qquad 1 \mathbf{u} (h' \times 1)^{-1} \circ F^{-1} \downarrow$$

$$\partial D^n_- \times D^{l+1} \mathbf{u}_{F \circ (g \times 1)} D^n_- \times S^l \xrightarrow{\text{incl } \mathbf{u} f \times 1} \partial D^m_- \times D^{l+1} \mathbf{u}_{F \circ (h+1)} D^m_- \times S^l$$



FIGURE 1

where h', g' are extensions of h, g respectively. The vertical maps are diffeomorphisms and

 $F: D^{m}_{-} \times S^{l} \to D^{m}_{-} \times S^{l}$ 

is given by  $F(x, y) = (\gamma(y)x, y)$ . It is clear that the twist-spins of f, and an immersion f' regularly homotopic to f will be regularly homotopic since assuming f' is standard on  $D_+^n$  and on a neighborhood of  $\partial D_-^n$  we may suppose the regular homotopy takes place in the interior of  $D_-^m$  since m > n + 1. It is also readily seen that the regular homotopy class of the twist-spun immersion is independent of the choice of representative for  $[\gamma] = (\alpha, \beta)$ . The corresponding description of twist-spinning h-cobordism classes of pairs  $(S_-^m, \Sigma_-^n)$  is simpler, since we do not need to worry about maps but only sphere pairs. As before suppose that the pair  $(S_-^m, \Sigma_-^n)$  is decomposed into

$$(D_{+}^{m} \cup_{h} D_{-}^{m}, D_{+}^{n} \cup_{h} (\Sigma^{n} - \operatorname{Int} D_{+}^{n}))$$

where h is a diffeomorphism of  $(\partial D_{-}^{m}, \partial (\Sigma^{n} - \operatorname{Int} D_{+}^{n}))$  onto  $(\partial D_{+}^{m}, \partial D_{+}^{n})$ . Then the twist-spin of the pair is

$$(\partial D^m_- \times D^{l+1} \cup_{F \circ (h \times 1)} D^m_- \times S^l,$$

$$\partial(\Sigma^n - \operatorname{Int} D^n_+) \times D^{l+1} \cup_{F \circ (h \times 1)} (\Sigma^n - \operatorname{Int} D^n_+) \times S^l)$$

which is the result of performing relative surgery on the pair

$$(S^m \times S^l, \Sigma^n \times S^l).$$

Now  $\partial D^n_- \times D^{l+1} \cup_{F \circ (h \times 1)} D^m_- \times S^l$  is diffeomorphic to  $S^{m+l}$  since h extends to a diffeomorphism of  $D^m_-$  onto itself and F extends to  $D^m_- \times S^l$ . The submanifold is homeomorphic to a sphere since  $\Sigma^n - \text{Int } D^n_+$  is homeomorphic to a disc [9] and so  $h \mid \partial D^n_+$  extends to a homeomorphism of  $\Sigma^n - \text{Int } D^n_+$  onto itself and F extends over  $(\Sigma^n - \text{Int } D^n_+)S^l$  similarly.

# III. Bilinearity of twist-spinning and the operation of Milnor-Munkres

Let  $\phi$  be the twist-spinning operation and let  $\phi_{n-1}$  be defined by restricting the range of  $\phi$  to  $\theta^{m,n}$   $\pi_l^{n-1}$ , where  $\pi_l^{n-1}$  denotes the image of

$$\pi_l(SO(n-1) \times SO(m-n))$$

in

$$\pi_l(SO(n) \times SO(m-n)).$$

THEOREM 1. The operation  $\phi$  is linear on the second factor and  $\phi_{n-1}$  is bilinear.

*Proof.* Let  $(S^m, \Sigma^n)$  be a representative of the element  $\sigma$  in  $\theta^{m,n}$  and let

$$\gamma_i: S^l \to SO(n) \times SO(m-n)$$

be a representative of the element  $[\gamma_i] = (\alpha_i, \beta_i)$  i = 1, 2 in

$$\pi_l(SO(n) \times SO(m-n)).$$

We may assume that  $\gamma_1$  is equal to the identity on the hemisphere  $D_-^l$  of  $S^l$  while  $\gamma_2$  is equal to the identity on  $D_+^l$ . The map

 $\gamma: S^l \to SO(n) \times SO(m-n)$ 

defined by

$$\gamma = \gamma_1$$
 on  $D_+^l$   
 $\gamma = \gamma_2$  on  $D_-^l$ 

represents the element  $[\gamma] = [\gamma_1] + [\gamma_2]$ . It follows from the construction that  $\phi((S^m, \Sigma^n), \gamma \mid D_+^l)$  and  $\phi((S^m, \Sigma^n), \gamma \mid D_-^l)$  are two relative disc pairs  $(D_+^{m+l}, D_+^{n+l}), (D_-^{m+l}, D_-^{n+l})$  with common boundary  $\phi((S^m, \Sigma^n), \gamma \mid \partial D_+^l)$ . Thus  $\phi(\sigma, \gamma)$  is represented by  $(S^{m+l}, \Sigma^{n+l})$  defined by attaching  $(D_+^{m+l}, D_+^{n+l})$  and  $(D_-^{m+l}, D_-^{n+l})$  along their common boundary. Consider the relative disc pairs

$$(\bar{D}_{-}^{m+l}, \bar{D}_{-}^{n+l}) = \phi((S^m, \Sigma^n), \gamma_1 \mid D_{-}^l)$$
  
 $(\bar{D}_{+}^{m+l}, \bar{D}_{+}^{n+l}) = \phi((S^m, \Sigma^n), \gamma_2 \mid D_{+}^l),$ 

Now  $(\bar{D}_{-}^{m+l}, \bar{D}_{-}^{n+l})$  and  $(\bar{D}_{+}^{m+l}, \bar{D}_{+}^{n+l})$  also have boundary

$$\phi((S^m, \Sigma^n), \gamma \mid \partial D_+^l).$$

Joining  $(\bar{D}_{-}^{m+l}, \bar{D}_{-}^{n+l})$  to  $(D_{+}^{m+l}, D_{+}^{n+l})$  and  $(\bar{D}_{+}^{m+l}, \bar{D}_{+}^{n+l})$  to  $(D_{-}^{m+l}, D_{-}^{n+l})$  along the common boundary we have the twist-spun pairs

$$(S^{m+l}, \Sigma_1^{n+l}) = \phi((S^m, \Sigma^n), \gamma_1)$$
 and  $(S^{m+l}, \Sigma_2^{n+l}) = \phi((S^m, \Sigma^n), \gamma_2).$ 

Since  $(\bar{D}_{+}^{m+l}, \bar{D}_{+}^{n+l})$  is obtainable from  $(\bar{D}_{-}^{m+l}, \bar{D}_{-}^{n+l})$  by reflection, there exists an h-cobordism between

$$(D^{m+l}_-,\ D^{n+l}_-)\ \mathbf{U}\ (\bar{D}^{m+l}_+,\ \bar{D}^{n+l}_-)\ \#\ (\bar{D}^{m+l}_-,\ \bar{D}^{n+l}_-)\ \mathbf{U}\ (D^{m+l}_+,\ D^{n+l}_-),$$

which is  $(S^{m+l}, \Sigma_1) \# (S^{m+l}, \Sigma_2)$ , and

$$(\boldsymbol{S}^{m+l},\,\boldsymbol{\Sigma}^{n+l}) \; = \; (\boldsymbol{D}_{-}^{m+l},\,\boldsymbol{D}_{-}^{n+l}) \; \mathbf{U} \; (\boldsymbol{D}_{+}^{m+l},\,\boldsymbol{D}_{-}^{n+l})$$

which cancels out the interior connected sum  $(\bar{D}_{+}^{m+l}, \bar{D}_{+}^{n+l}) \# (\bar{D}_{-}^{m+l}, \bar{D}_{-}^{n+l})$ . This completes the proof of linearity of  $\phi$  on the second factor.

Now let  $[\gamma] = (\alpha, \beta)$  be in the image of  $\pi_l(SO(n-1) \times SO(m-n))$  under the standard inclusion, then

$$\gamma: S^l \to SO(n-1) \times SO(m-n) \subset SO(n) \times SO(m-n).$$

Let  $\sigma_1$ ,  $\sigma_2 \in \theta^{m,n}$  be represented by  $(S^m, \Sigma_i^n)$  i = 1, 2. Without loss of generality we may assume that  $(S^m, \Sigma_1^n)((S^m, \Sigma_2^n))$  is standard on the upper hemisphere  $D_+^m$  and the left (right) half  $D_{-l}^m(D_{-r}^m)$  of the lower hemisphere  $D_-^m$  (Fig. 2).

 $D_{+}^{m}$  and the left (right) half  $D_{-l}^{m}(D_{-r}^{m})$  of the lower hemisphere  $D_{-}^{m}$  (Fig. 2).  $D_{-l}^{m}$  and  $D_{-r}^{m}$  meet in the disc  $D^{m-1} = D_{-l}^{m} \cap D_{-r}^{m}$ . Since  $[\gamma]$  is in the image of  $\pi_{l}(SO(n-1) \times SO(m-n))$  under the standard inclusion, the trace

$$\phi(\Sigma_1^n \cap D_{-r}^m, \gamma), \qquad (\phi(\Sigma_1^n \cap D_{-l}^m, \gamma))$$



FIGURE 2

in  $\phi(D_{-r}^m, \gamma)$ ,  $(\phi(D_{-l}^m, \gamma))$  is a relative disc pair

$$(D_{+}^{m+l}, D_{+}^{n+l}), ((D_{-}^{m+l}, D_{-}^{n+l})).$$

The disc pairs  $(D_+^{m+l}, D_+^{n+l})$  and  $(D_-^{m+l}, D_-^{n+l})$  have common boundary  $(\phi(D^{m-1}, \gamma), \phi(D^{m-1} \cap \Sigma_i^n, \gamma))$  which is diffeomorphic to the standard pair  $(S^{m+l-1}, S^{n+l-1})$ . The element  $\phi(\sigma_1 + \sigma_2, \gamma)$  is represented by the twist-spun pair  $(S^{m+l}, \Sigma^{n+l})$  obtained by joining  $(D_+^{m+l}, D_+^{n+l})$  and  $(D_-^{m+l}, D_-^{n+l})$  along their common boundary. Now using arguments analogous to those used in the proof of the first half of the theorem we conclude that  $\phi_{n-1}$  is bilinear.

*Remark.* One can prove similarly that  $\phi$  is linear and  $\phi_{n-1}$  is bilinear when  $\theta^{m,n}$  is replaced by  $I^{m,n}$ .

The following corollary is an immediate consequence of Theorem 1.

COROLLARY 2. The spin of a sphere pair  $(S^m, \Sigma^n)$ , without twist, is h-cobordant to the standard pair and the result of twist-spinning the standard pair  $(S^m, S^n)$  by an element  $[\gamma] \in \pi_l^{n-1}$  is h-cobordant to the standard pair.

We now show that in general  $\phi$  is non-trivial. Let  $\pi_0(\operatorname{Diff}_C(R^{m-1}, R^{n-1}))$  denote the group of path components of orientation-preserving diffeomorphisms, of the standard pair  $(R^{m-1}, R^{n-1})$  onto itself with compact support, in the  $C^{\infty}$  topology. An operation

$$\psi: \pi_0 \operatorname{Diff}_{\mathcal{C}}(R^{m-1}, R^{n-1}) \times \pi_l(SO(n-1) \times SO(m-n))$$

$$\to \pi_0 \operatorname{Diff}_{\mathcal{C}}(R^{m+l-1}, R^{n+l-1})$$

is defined as follows. Let  $[h] \in \pi_0 \operatorname{Diff}_{\mathcal{C}}(\mathbb{R}^{m-1}, \mathbb{R}^{n-1})$  and let

$$[\gamma] = (\alpha, \beta) \epsilon \pi_l(SO(n-1) \times SO(m-n))$$

be represented by the map

$$f: \mathbb{R}^l \to SO(n-1) \times SO(m-n)$$

with compact support. Let

$$F: R^{m-1} \times R^l \to R^{m-1} \times R^l$$

be given by  $F(x, y) = (f(y) \cdot x, y)$ . The operation  $\psi$  is defined by

$$\psi([h], [\gamma]) = (h \times 1)^{-1} \circ F \circ (h \times 1) \circ F^{-1}.$$

Now let  $\pi_0$  Diff  $_C(R_+^m, R_+^n)$  denote the abelian group of path components of orientation-preserving diffeomorphisms with compact support of the closed half space pair  $(R_+^m, R_+^n)$  onto itself. Let

$$i_*: \pi_0 \operatorname{Diff}_C(R_+^m, R_+^n) \to \pi_0 \operatorname{Diff}_C(R_-^{m-1}, R_-^{n-1})$$

be induced by restriction. Let  $\hat{\theta}^{m,n}$  denote the group of h-cobordism classes of pairs  $(\Sigma^m, \Sigma^n)$ .

THEOREM 3. Suppose m - n > 2 and n > 4. Then

$$\frac{\pi_0 \operatorname{Diff}_{\mathcal{C}}(R^{m-1}, R^{n-1})}{i_* \pi_0 \operatorname{Diff}_{\mathcal{C}}(R^m_+, R^n_+)}$$

is isomorphic to  $\hat{\theta}^{m,n}$ , and the operation  $\psi$  induces a pairing

$$\hat{\psi}: \hat{\theta}^{m,n} \otimes \pi_l(SO(n-1) \times SO(m-n)) \to \hat{\theta}^{m+l,n+l}.$$

*Proof.* It follows from Corollary 3.2 of [10] that  $\hat{\theta}^{m,n}$  is just the group of diffeomorphism classes of sphere pairs, if m-n>2 n>4, and any sphere pair is representable as a union  $(D^m, D^n)$   $\cup$   $(D^m, D^n)$  where  $(D^m, D^n)$  denotes the standard disc pair. To see this consider an arbitrary sphere pair  $(\Sigma^m, \Sigma^n)$  as the union of two standard disc pairs and a third manifold pair. Smale's Corollary (3.2 of [10]) allows us to eliminate the manifold pair. The following theorem gives us the relation between  $\hat{\psi}$  and  $\phi$ .

Theorem 4. Suppose m - n > 2 and n > 4. Then

$$\phi = \hat{\psi} \mid \theta^{m,n} \otimes \pi_l SO(n-1) \times SO(m-n).$$

*Proof.* Consider the relative surgery description of twist-spinning given in §1. Since F is defined on  $D^m \times S^l$  and  $h \times 1$  is defined on  $\partial D^m \times D^{l+1}$  the twist-spin is diffeomorphic, and hence h-cobordant, to the pair

$$\begin{split} (\partial D_{-}^{m} \times D^{l+1} \, \mathsf{U}_{(h+1)^{-1} \circ F \circ (h+1) \circ F^{-1}} \, D_{-}^{m} \times S^{l}, \\ \partial (\Sigma^{n} - \operatorname{Int} D_{+}^{n}) \times D^{l+1} \, \mathsf{U}_{(h+1)^{-1} \circ F \circ (h+1) \circ F^{-1}} \, (\Sigma^{n} - \operatorname{Int} D_{+}^{n}) \times S^{l})). \end{split}$$

But now  $(h+1)^{-1} \circ F \circ (h+1) \circ F^{-1} \mid \partial D_{-}^{m} \times S^{l} = 1$  and the result follows from the isomorphism of Theorem 3.

When m = n,  $\hat{\psi}$  reduces to the operation used for investigating Diff  $S^{m-1}$ , of Milnor [5], Munkres [6] and Novikov [7]. From Theorem 4 and examples given in their work we deduce the non-triviality of  $\phi$ . The following corollary is an immediate consequence of Theorem 4.

COROLLARY 5. Suppose the Milnor-Munkres-Novikov operations applied to  $\Sigma^n$  gives  $\Sigma^{n+l}$  and suppose  $\Sigma^n$  is embeddable in  $\Sigma^{n+l}$ . Then  $\Sigma^{n+l}$  is embeddable in  $\Sigma^{n+l+t}$ .

## IV. Twist-spun normal bundles

In this section we shall show how the normal bundle of a twist-spun sphere is determined by the normal bundle of the original sphere and the normal twist. Let BSO(m-n) be the classifying space of SO(m-n), and let

$$\pi_n(BSO(m-n)) \otimes \pi_{l+1}(BSO(m-n)) \xrightarrow{W} \pi_{l+n}(BSO(m-n))$$

be the Whitehead product pairing.

Theorem 6. The following diagram is commutative:

THEOREM 6. The following diagram is commutative: 
$$\theta^{m,n} \times \pi_l(SO(n) \times SO(m-n)) \xrightarrow{\qquad \qquad } \theta^{m+l,n+l}$$

$$(\text{or } I^{m,n}) \qquad \qquad (\text{or } I^{m+l,n+l})$$

$$\downarrow \eta \times p \qquad \qquad \downarrow \eta$$

$$\pi_n(BSO(m-n)) \otimes \pi_{l+1}(BSO(m-n)) \xrightarrow{\qquad -W} \pi_{n+l+1}(BSO(m-n)).$$

Here n assigns to each embedding (or immersion) its normal bundle and p is projection followed by the transgression isomorphism

$$\sigma: \pi_l(SO(m-n)) \to \pi_{l+1}(BSO(m-n)).$$

It is well known that the Whitehead product is related to the Samelson product by the following diagram,

$$\pi_{i}(SO(t)) \otimes \pi_{j}(SO(t)) \xrightarrow{S} \pi_{i+j}(SO(t))$$

$$\downarrow \sigma \otimes \sigma \qquad \qquad \downarrow \sigma$$

$$\pi_{i+1}(BSO(t)) \otimes \pi_{j+1}(BSO(t)) \xrightarrow{(-)^{i}W} \pi_{i+j+1}(BSO(t)),$$

where S denotes Samelson product [8].

A non-triviality of the Samelson product of the characteristic class of the normal bundle of the embedded (immersed) sphere with an element  $\gamma \in \pi_l(SO(m-n))$  will lead to a twist-spun sphere with non-trivial normal bundle. As the condition on the characteristic class of the normal bundle of an embedded sphere is very restrictive [3], we are unable to produce any example, but there are several examples in the case of immersions. For instance it follows from [4], that there always exists an immersion  $S^{4k} \subset S^{8k-1}$  such that the result of twist-spinning by some element in  $\pi_{4k-1}(SO(4k-1))$  has nontrivial normal bundle.

Proof of Theorem 6. Let the embedding  $\Sigma^n \subset S^m$ , which is the standard inclusion  $D_+^n \subset D_+^m$  on the upper hemisphere, be a representative of the element  $\sigma \in \theta^{m,n}$ . Let  $\nu$  be the normal bundle of this embedding. The classifying map  $f: \Sigma^n \to BSO(m-n)$  of  $\nu$  can be described as follows. Let  $F_0$  be the standard normal frame over  $D_+^n$  and let  $F_1$  be a normal frame on  $E^n$  – Int  $D_+^n$ . The difference between  $F_0$  and  $F_1$  determines a map

$$\hat{g}: S^{n-1} = \partial(\Sigma^n - \operatorname{Int} D^n_+) \to SO(m-n).$$

Consider SO(m-n) as the fibre of the universal bundle;

$$SO(m-n) \rightarrow ESO(m-n) \xrightarrow{p} BSO(m-n)$$
.

Since ESO(m-n) is contractible,  $\hat{g}$  extends to a map

$$g:(D_{-}^{n}=(\Sigma^{n}-\operatorname{Int}D_{+}^{n}),\,S^{n-1}=\partial(\Sigma^{n}-\operatorname{Int}D_{+}^{n}))$$

$$\rightarrow (ESO(m-n), SO(m-n)).$$

Then  $f = p \circ g$ . Now let  $\Sigma^{n+l} \subset S^{m+l}$  be the result of spinning  $\Sigma^n$  in  $S^m$  around  $S^l$ . Then we have induced frames  $F'_0$ ,  $F'_1$  on the two halves  $\partial D^n \times D^{l+1}$  and  $D^n \times S^l$  of  $\Sigma^{n+l}$  in  $S^{m+l}$  and the difference is given by the map

$$\hat{g} \circ p_1 : \partial D^n_- \times S^l \longrightarrow \partial D^n_- \longrightarrow SO(m-n).$$

Now the frame  $F_0''$  induced from  $F_0'$  by twist-spinning differs from  $F_0'$  by the map

$$\hat{h} \circ p_2 : \partial D^n_- \times S^l \to S^l \to SO(m-n),$$

where  $\hat{h}$  is a representative for the element  $\beta$  of

$$\gamma = (\alpha, \beta) \epsilon \pi_l(SO(n) \times SO(m-n)).$$

Thus extending  $\hat{g} \circ p_1$ ,  $\hat{h} \circ p_2$  to maps

$$G: (D_{-}^{n} \times S^{l}, \partial D_{-}^{n} \times S^{l}) \rightarrow (ESO(m-n), BSO(m-n))$$

and

$$H: (\partial D^n_- \times D^{l+1}, \partial D^n_- \times S^l) \to (ESO(m-n), SO(m-n))$$

we are able to define a map,

$$k: \Sigma^{n+l} \to BSO(m-n)$$

by

$$k = pG$$
 on  $D_{-}^{n} \times S^{l}$   
 $k = nH$  on  $\partial D_{-}^{n} \times D^{l+1}$ .

It follows from [11, p. 102] that k is the classifying map for the normal bundle of the embedding  $\Sigma^{n+l} \subset S^{n+l}$ . On the other hand, it follows from the definition of the Whitehead product that k is a representative of  $[\nu, -\sigma(\beta)] = -[\nu, p(\gamma)]$ . This completes the proof of our assertion for embeddings. The proof for immersions goes through in the same way.

#### REFERENCES

- E. Artin, Zur Isotopie zweidemensionalen Flächen im R<sub>4</sub>, Abh. Math. Sem. Univ. Hamburg, vol. 4 (1926), pp. 174-177.
- 2. A. Haefliger, Knotted (4k 1)-spheres in 6k-space, Ann. of Math. (3), vol. 75 (1962), pp. 452-466.

- 3. W. C. HSIANG, J. LEVINE AND R. H. SZCZARBA, On the normal bundle of a homotopy sphere embedded in euclidean space, Topology, vol. 3 (1965), pp. 173-181.
- I. M. James and E. Thomas, Which Lie groups are homotopy abelian?, Proc. Nat. Acad. Sci., vol. 45 (1959), pp. 737-740.
- 5. J. MILNOR, Diffeomorphisms of a sphere, unpublished.
- 6. J. R. Munkres, Killing exotic spheres, unpublished.
- S. P. Novikov, Homotopy properties of the group of diffeomorphisms of a sphere, Dokl. Akad. Nauk SSSR, vol. 148 (1963), pp. 32-35.
- 8. H. Samelson, A connection between the Whitehead and the Pontryagin product, Amer. J. Math., vol. 75 (1953), pp. 744-752.
- 9. S. SMALE, Generalized Poincaré's conjecture in dimensions greater than four, Ann. of Math. (2), vol. 74 (1961), pp. 391-406.
- 10. ——, On the structure of manifolds, Amer. J. Math. (3), vol. 84 (1962), pp. 387-399.
- 11. N. E. Steenrod, The topology of fibre bundles, Princeton, Princeton University Press, 1951. to appear.
- 12. E. C. ZEEMAN, Twisting spun knots, Trans. Amer. Math. Soc., to appear.

YALE UNIVERSITY

NEW HAVEN, CONNECTICUT