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I. Introduction

Let t’, n > 4, denote the group of h-cobordism classes of pairs of spheres
(S, 27), where S denotes an m-sphere with its usual structure and Z" de-
notes an embedded n-sphere which may have an exotic structure, [2], [9].
Our aim is to introduce an operation, which will be called twist-spinning;

," 0"’’ X ’(SO(n) X SO(m n) ---> 0’n+’’+.
When m n + 2, the operation is twist-spinning s defined by Artin-Zeemn
[1], [12], except that we hve introduced tngentil twisting by elements of
-(SO(n)). The operation restricted to the embedded sphere 2? of the pir
(Sm, Y,’) is equivalent to piring of Milnor-Munkres [5], [6] (lso Novikov
[7]), except that the group ’(SO(n- 1)) hs been replaced here by
r(SO(n) ). Another operation my be defined by replacing 0"’n by I’’ the
group of regular homotopy classes of immersions of S in Sm.

In 2, the operation is described nd defined. In 3 it is related to a rela-
tive version of the Milnor-Munkres-Novikov piring;

r0(Diffc (R-, R-)) (R) r(SO(n- 1) X SO(m n))
--, r0(Diffc (R+-t, R+-) ).

The resulting operation on normal bundles is investigated in 4 nd found
to be related to the Whitehead product pairing,

",, BSO(m n) (R) ’+ BSO(m n) ---)-+ BSO(m n).

We are grateful to E. C. Zeeman for sending us a preprint of [12].

II. Twist-spinning

Let (S", 2;) we a pair of spheres representing an element of ’. Let
D, D_ denote the upper and lower hemispheres of S respectively. Then
S D u D_ Now the pair (S, 2;") is diffeomorphic to

(D u D_ 22D+ u Int D)

whereD is a disc embedded in 22 and the inclusionD D is assumed to be
standard; further we may suppose the inclusion 2; Int D D_ coincides
with the standard inclusion D_ D_ near the boundary of 2? Int D.

Received April 27, 1964.
During the preparation of this paper, the authors were partially supported by a

National Science Foundation Grant.

651



52 W.-C. HSIANG AND B. J. SANDERSON

Now consider D2(x0) as the disc (S-1, t, x0) in the join sphere

Sm+t Sm-lo S S-1 X Dt+lu D X S

where x0 is a point of S (Fig. 1 ).
The standard sphere S-1 0(22 Int D) bounds the standard disc

D_ in D2. Let D be the disc normal to D_ in D2. As the point x moves
along St, the disc D2(x) D X D is twisted by a representative of an
element [’r] (a, fl) of

,(O(n) x O(m n)) ,(80(n)) ,,(O(m n) ).

The trace of 2? Int D is an embedded homotopy sphere 27+ in S+t.
It is not difficult to see that the resulting operation, denoted by , is well
defined.
We now give a more precise description of twist-spinning. This time we

begin with an immersion f S" --+ S, m > n q- 1.
D2Let S" D2 D_ and S D2 u and now suppose

f" Dg u D D u D2

is standard on D and on a neighborhood of the boundary of D_ Let

S+ S-1 XD+luD XS

S+t S- X D+luD X S

be the standard decompositions of S"+ and S+t respectively.
element [] (a, ) in ’t(SO(n) X SO(m n)), an immersion

is defined by

nq-I

S"-1 XDt+luD XS

1 u (g’ X 1 F-1

OD- X Dt+l Uvo(ox)D_" X S
incl u f X 1

For any

ra--1 X Dt+l
ui D X S

l u h X 1)-1o F-1
D2 SOD2 X Dt+l

UVo(a+) X

FIGURE 1
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where h’, g’ are extensions of h, g respectively. The vertical maps are diffeo-
morphisms and

F’D_ XS--D- X S

is given by F(x, y) (’),(y)x, y). It is clear that the twist-spins of f, and an
immersion f’ regularly homotopic to f will be regulurly homotopic since as-
suming f’ is standard on D and on a neighborhood of OD we may suppose
the regular homotopy takes place in the interior of D since m > n W 1. It
is also readily seen that the regular homotopy class of the twist-spun immer-
sion is independent of the choice of representutive for [] (a, ). The cor-
responding description of twist-spinning h-cobordism classes of pairs (S, Z’)
is simpler, since we do not need to worry about maps but only sphere pairs. As
before suppose that the pair (S, Z) is decomposed into

D,(D D ( IntD
where h is a diffeomorphism of (0D, 0( Int D) onto (0D, OD).
Then the twist-spin of the pair is

D2(OD X D+ .() X S,
0(- IntD) X D+ .()(Z- IntD) X S)

which is the result of performing relative surgery on the pair

(S X S*, Z X S).
D SNow OD X D+1

u.(x) X is diffeomorphic to S+ since h extends
to diffeomorphism of D[ onto itself and F extends to D X S. The sub-
manifold is homeomorphic to sphere since " Int D is homeomorphic to a
disc [9] and so h OD extends to a homeomorphism of Z Int D onto itself
and F extends over (Z Int D)S similarly.

III. Bilinearity of twist-spinnin9 and the operation of Milnor-Munkres
Let be the twist-spinning operation and let

_
be defined by restricting

the range of to 0’" - "-v where v denotes the image of

n
rt(SO(n 1) X SO(m n)

-(SO(n) X SO(m- n)).

THEOREM 1. The operation is linear on the second factor and ,-1 is
bilinear.

Proof. Let (Sm, 2;) be a representative of the element in 0m’n and let

, S-- SO(n) X SO(m n)

be a representative of the element [] (a,/) i 1, 2 in

(SO(n) ZO(m n) ).
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We may assume that 5"1 is equal to the identity on the hemisphere D of S
while 5"2 is equal to the identity on D. The map

defined by
5" S SO(n) X SO(m n)

5" 5’1 on. on D

_
represents the element [5"] [5"1] - [5"2]. It follows from the construction that
((Sm, 27), ]D) and ((S, %n), 7IDa) are two relative disc pairs
(D+, D+), (D+, DI+) with common boundary ( (S, ), OD).
Thus (a, ) is represented by (S+, %+) defined by attaching (D+, D+)
and (D+, DI+) along their common boundary. Consider the relative disc
pairs

(D+’, D+’) ( (S, Zn), v
(D+, D+) ((S, ), IDa).

Now (D2+, D+) and (D+, D+) also have boundary

((, ), oD).
Joining (D2+, D+ to (D+, D;+ and (D+, D+ to (D2+, DI+ along
the common boundary we have the twist-spun pairs

(+, zr+’) ((, z), ) and (+, Z+’) 4((, z), ,).

Since (D;+, D+) is obtainable from (D2+, D+) by reflection, there exists
an h-cobordism between

(D2+, D+) u (D+, D+) : (D2+, D+) u (D+, D+),
which is (S+, ) (S+, ), and

(S+, +) (D2+, D+) u (D;+, DI+)
which cancels out the interior connected sum (D;+, Dg+) (D2+, D+).
This completes the proof of linearity of 4 on the second factor.
Now let [] (a,) bein theimage of (SO(n 1) X SO(m n)) under

the standard inclusion, then

:S SO(n i) SO(m n) SO(n) SO(m n).

0’ 2. Without loss of generalityLet, e berepresented by (S Z)i 1,
we may assume that (S, (S, is standard on the upper hemisphere
D and the left (right) half D2(D2,) of the lower hemisphere D2 (Fig. 2).
D2 and D2, meet in the disc D- D2 n D2,. Since [] is in the image

of (SO(n 1) SO(m n) under the standard inclusion, the trace

(2:[’ n D_,, 5"), ((2: n D_z, 5"))
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FIGURE 2

in (D_r, 3"), ((D_, 3’)) is a relative disc pair

(D+*, D+’), ((D_+*, D_+’ ).

The disc pairs (D+*, D+) and (D_+, D_+) have common boundary
((D"-1, 3"), (Dm-1 n 2;’, 3’)) which is diffeomorphic to the standard pair
(Sm+*-, Sn+Z-). The element (al + as, 3") is represented by the twist-spun
pair (S"+, 27+) obtained by joining (D+, D+*) and (D_+, D_+) along
their common boundary. Now using arguments analogous to those used in
the proof of the first half of the theorem we conclude that -1 is bilinear.

Remark. One can prove similarly that is linear and

_
is bilinear when

0"’ is replaced by I"’.

The following corollary is an immediate consequence of Theorem 1.

COROLLARY 2. The spin of a sphere pair (S’, ), without twist, is h-co-
bordant to the standard pair and the result of twist-spinning the standard pair
Sm, S by an element [3"] e r’-1 is h-cobordant to the standard pair.

We now show that in general is non-trivial. Let r0(Diffc (R"-, Rn-)
denote the group of pth components of orientation-preserving diffeomor-
phisms, of the standard pair (R-, R-) onto itself with compact support, in
the C topology. An operation

r0 Diff c (Rm-l, Rn-) X ’(SO(n 1 X SO(m n)

--* 0 Diff c (R+-, Rn+l-1)
is defined as follows. Let [h] e r0 Diff c (R-1, R-) and let

[3"] (a, ) ’,(SO(n 1) X SO(m n)

be represented by the mp

f: R---, SO(n 1) X SO(m n)

with compact support. Let

F :R- ( R-- R- R
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be given by F(x, y) (f(y).x, y). The operation is defined by

([h], []) (h X 1)-1o F o (h 1)o F-1.
Now let 0 Diff c (R, R) denote the abelian group of path components of
orientation-preserving diffeomorphisms with compact support of the closed
half space pair (R, R_) onto itself. Let

i, 0 Diff c (R, R) 0 Diff c (Rm-l, R"-1)
be induced by restriction. Let m. denote the group of h-cobordism classes of
pairs (2", 22).

THEOREM 3. Suppose m n > 2 and n > 4. Then

0 Diffc (Rm-l, R-1)
i, r0 Diffc (R, R)

is isomorphic to ’", and the operation b induces a pairing

" ’" (R) (SO(n 1) X SO(m n) --, +"+.
Proof. It follows from Corollary 3.2 of [10] that ’" is just the group of

diffeomorphism classes of sphere pairs, if m n > 2 n > 4, and any sphere
pir is representable as a union (D, D") u (D, D") where (D, D") denotes
the standard disc pair. To see this consider an arbitrary sphere pair (2, Z’)
as the union of two standard disc pairs and a third manifold pair. Smale’s
Corollary (3.2 of [10]) allows us to eliminate the manifold pair. The following
theorem gives us the relation between and .
THEOREM Suppose m n > 2 and n > 4. Then, !0"’’ (R) rt SO(n 1) X SO(m- n).

Proof. Consider the relative surgery description of twist-spinning given in
1. Since F is defined on D_ X S and h X 1 is defined on OD

_
D+ the

twist-spin is diffeomorphic, and hence h-cobordant, to the pair

D_(OD- X Dt+l
u(+)-oo(+l)o,- X St,

0(Z- Int D) X D+ u(+)-oo(+l)o- (Z- Int D) X

But now (h - 1 )-1 o F o (h - 1 o F-1 OD- X S 1 and the result follows
from the isomorphism of Theorem 3.
When m n, reduces to the operation used for investigating Diff S-, of

Milnor [5], 5/Iunkres [6] and Novikov [7]. From Theorem 4 and examples
given in their work we deduce the non-triviality of . The following corollary
is an immediate consequence of Theorem 4.

COROLLARY 5. Suppose the Milnor-Munres-Novilcov operations applied to
Z gives Z+ and suppose Z is embeddable in S+. Then Z’+ is embeddable
in Z++.



TWIST-SPINNING SPHERES IN SPHERES 657

IV. Twist-spun normal bundles
In this section we shall show how the normal bundle of a twist-spun sphere

is determined by the normal bundle of the original sphere and the normal twist.
Let BSO(m n) be the classifying space of SO(m n), and let

W’n(BSO(m n) (R) r+l(BSO(m n) r+,(BSO(m n)

be the Whitehead product pairing.

THEOREM 6. The following diagram is commutative:

,(SO(n) SO(m- n))
(or Im’’)

vXp

-,(BSO(m n) (R) r+l(BSO(m n)

om+l
(or Im+’’+)

r,++(BSO(m n)).

Here assigns to each embedding (or immersion) its normal bundle and p is pro-
jection followed by the transgression isomorphism

(r r(SO(m n) -+(BSO(m n) ).

It is well known that the Whitehead product is related to the Samelson
product by the following diagram,

r(SO(t) (R) r(SO(t)

r+t(BSO(t) (R) r+(BSO(t) .-......)IW

r+(SO(t)

r++(BSO(t) ),

where S denotes Samelson product [8].
A non-triviality of the Samelson product of the characteristic class of the

normal bundle of the embedded (immersed) sphere with an element, (SO(m n)) will lead to a twist-spun sphere with non-trivial normal
bundle. As the condition on the characteristic class of the normal bundle of
an embedded sphere is very restrictive [3], we are unable to produce any ex-

ample, but there are several examples in the case of immersions. For instance
it follows from [4], that there always exists an immersion Sk c S8k-1 such that
the result of twist-spinning by some element in m_(S0(4] 1)) has non-
trivial normal bundle.

Proof of Theorem 6. Let the embedding 2? c S, which is the standard in-
clusion D D on the upper hemisphere, be a representative of the element
a e 0’. Let be the normal bundle of this embedding. The classifying map

f Y,’ - BSO(m n) of can be described as follows. Let F0 be the stand-
ard normal frame over D_ and let F1 be a normal frame on E Int D.
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The difference between F0 and F1 determines a map

Sn-1 0 (2 Int D_) ---. SO(m n).

Consider SO(m n) as the fibre of the universal bundle;

SO(m n) ESO(m n) P BSO(m n).

Since ESO(m n) is contractible, extends to a map

g" (D_ (2- IntD),S-1 0(Z- IntD))
---. (ESO(m n), SO(m n) ).

Thenf p o g. Now let 2+ c Sm+ be the result of spinning 2 in S around
St. Then we have induced frames F, F’ on the two halves OD

_
) D+ and

D- X S of’2+z in Sm+ and the difference is given by the map

o p OD X S-- OD ---. SO(m n).

Now the frame F induced from F by twist-spinning differs from F by the
map

p. OD

_
X S --* S - SO(m n),

where is a representative for the element 3 of. (, ) ,(SO(n) x SO(m n) ).

Thus extending 0 o pl, o p2 to maps

G" (D2 X St, OD X St) ---* (ESO(u n), BSO(m n)
and

H (OD2 X D*+, OD X S) -- (ESO(m n), SO(m n)

we are able to define a map,

k" Zn+, _., BSO(m n)
by

k pG on D X S

k pH on OD X D+.
It follows from [11, p. 102] that k is the classifying map for the normal bundle
of the embedding Z+g c S+g. On the other hand, it follows from the defi-
nition of the Whitehead product that k is a representative of Iv, -()]
--[v, p()]. This completes the proof of our assertion for embeddings. The
proof for immersions goes through in the same way.
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