TWIST-SPINNING SPHERES IN SPHERES

BY
W.-C. Hsiane AND B. J. SANDERsoON!

l. Introduction

Let 6™", n > 4, denote the group of h-cobordism classes of pairs of spheres
(8™, ="), where S™ denotes an m-sphere with its usual structure and =" de-
notes an embedded n-sphere which may have an exotic structure, [2], [9].

Our aim is to introduce an operation, which will be called twist-spinning;

é: 6™ X m(80(n) X SO(m — n)) — "+,

When m = n + 2, the operation is twist-spinning as defined by Artin-Zeeman
(1], [12], except that we have introduced tangential twisting by elements of
71(80(n)). The operation restricted to the embedded sphere =" of the pair
(8™, ") is equivalent to a pairing of Milnor-Munkres [5], [6] (also Novikov
[7]), except that the group = (SO(n — 1)) has been replaced here by
71(SO(n)). Another operation may be defined by replacing 6™ by I™™ the
group of regular homotopy classes of immersions of S" in S™.

In §2, the operation is described and defined. In §3 it is related to a rela-
tive version of the Milnor-Munkres—Novikov pairing;

mo(Diff o (™™, R"™)) ® m(S0(n — 1) X SO(m — n))
— mo(Diff ¢ (R™, R™ 7).
The resulting operation on normal bundles is investigated in §4 and found
to be related to the Whitehead product pairing,
s BSO(m — n) ® 7y BSO(m — n) — muy BSO(m — n).

- We are grateful to E. C. Zeeman for sending us a preprint of [12].

Il. Twist-spinning

Let (S™, 2") we a pair of spheres representing an element of §"". Let
D%, D™ denote the upper and lower hemispheres of 8™ respectively. Then
S™ = D} u D”. Now the pair (S, Z") is diffeomorphic to

(D™ u D™, D% u =" — Int D7)

where D} is a disc embedded in =" and the inclusion D} < DY is assumed to be
standard; further we may suppose the inclusion 2" — Int DI C DZ coincides
with the standard inclusion D < D™ near the boundary of 2" — Int DY .
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Now consider D™ () as the dise (8™, ¢, %) in the join sphere
Sm-l'l — Sm—-losl = Sm—l X DH‘IUDm x Sl

where 2, is a point of ' (Fig. 1).

The standard sphere 8" = 8(Z" — Int D}) bounds the standard disc
DZin D”. Let D™ " be the disc normal to DZ in DZ. As the point £ moves
along 8, the disc D™(z) = D X D™ ™" is twisted by a representative of an
element [y] = (e, 8) of

7(80(n) X 80(m — n)) = m(80(n)) @ m(SO(m — n)).

The trace of =* — Int D} is an embedded homotopy sphere =" in 8™

It is not difficult to see that the resulting operation, denoted by ¢, is well
defined.

We now give a more precise description of twist-spinning. This time we
begin with an immersion f : 8" — 8", m > n + 1.
Let 8* = D} u, D and 8™ = DY u; D” and now suppose
f:D}yuD:— DYuDZ
is standard on D} and on a neighborhood of the boundary of DZ. Let
Sn+l = Sn—l X DH-I U Dn X Sl
Sm+l = Srm—l X Dl+1 U Dm X Sl
be the standard decompositions of S™*' and 8™ respectively. For any
element [y] = (e, 8) in 7:,(SO(n) X SO(m — n)), an immersion
o(f,v) : 87— 8"
is defined by

S+ o(f,v) . gt
— Sn—l X Dl+l U1 Dn X Sl — Sm-1 X Dl+1 ™ Dm X S;
ll'-’(g'><1)'1°1’7'“1 lu(h’Xl)_loF_ll

aD~ X D! Urooxn D2 X S

incluf X1 aD™ X D' up.g+n D X S

Figure 1
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where &/, g’ are extensions of h, g respectively. The vertical maps are diffeo-
morphisms and

F:Dr XS —>Dr XS

is given by F(z,y) = (v(y)x,y). Itis clear that the twist-spins of f, and an
immersion f* regularly homotopic to f will be regularly homotopic since as-
suming S’ is standard on D} and on a neighborhood of D2 we may suppose
the regular homotopy takes place in the interior of DZ since m > n + 1. It
is also readily seen that the regular homotopy class of the twist-spun immer-
sion is independent of the choice of representative for [y] = (o, 8). The cor-
responding description of twist-spinning h-cobordism classes of pairs (8™, ")
is simpler, since we do not need to worry about maps but only sphere pairs. As
before suppose that the pair (8™, Z") is decomposed into

(D} uy D2, D} us (2" — Int D}))

where h is a diffeomorphism of (8DZ, 3(Z" — Int DI)) onto (dD%, oDL).
Then the twist-spin of the pair is

(aDT X .DH-l Urs (hX1) DT X Sl,
(=" — Int D}) X D™ upgxyy (2" — Int D}) X 8)
which is the result of performing relative surgery on the pair
(8" x 8, 2" x 8h.

Now aD™ X D™ Up.axy D™ X S8 is diffeomorphic to S™* since h extends
to a diffeomorphism of D™ onto itself and F extends to D™ X S'. The sub-
manifold is homeomorphic to a sphere since =" — Int D} is homeomorphic to a
disc [9] and so & | D} extends to a homeomorphism of =" — Int DI onto itself
and F extends over (2" — Int D)8’ similarly.

lll. Bilinearity of twist-spinning and the operation of Milnor=Munkres

Let ¢ be the twist-spinning operation and let ¢,—; be defined by restricting
the range of ¢ to 6" =7, where 7" denotes the image of

m(SO(n — 1) X SO(m — n))
in
7 (SO(n) X SO(m — n)).

TaroreMm 1. The operation ¢ is linear on the second factor and ¢, is
bilinear.

Proof. Let (S™, Z") be a representative of the element ¢ in 6™" and let
vi: 8" — 80(n) X SO(m — n)
be a representative of the element [v,;] = (@, 8:) ¢ = 1,2 1in

m(S0(n) X SO(m — n)).
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We may assume that vy is equal to the identity on the hemisphere D of §*
while v, is equal to the identity on DL . The map

v : 8 — 80(n) X SO(m — n)
defined by
Y =% Ooh D-ll-

¥y =+ on D

represents the element [y] = [yi] + [v2]. It follows from the construction that
#((S™, ="), v|D%) and ¢((S™, =*), v|DL) are two relative disc pairs
(D, D), (DY, D™') with common boundary ¢((S™, ="), v| aD%).
Thus ¢(o, v) is represented by (8™, =**) defined by attaching (D7, D3
and (D™, D**') along their common boundary. Consider the relative disc
pairs

(Dm*, D2 = ¢((8", 2"), m1 | DL)

(DF*, DY) = ¢((8™, 2"), v2 | D).
Now (D™, D**Y) and (D7*, D% also have boundary
$((8", Z"), v | aD}).
Joining (D™, D** to (DT, DY) and (DT, D) to (D™, D) along
the common boundary we have the twist-spun pairs
(8™, 21" = ¢((8", 2", m) and (8", Z3") = ¢((S", 2", v).

Since (D7, D31 is obtainable from (D™, D**') by reflection, there exists
an h-cobordism between

(DY DRty u (DR DY # (D™, DY o (D7, DR,
which is (8™, 2,) # (S™", 2,), and
(Sm+l En+l) — (Dﬁ+l D2+l) u (Dm+l D2+l)

which cancels out the interior connected sum (D7, D% # (D™t Drthy.
This completes the proof of linearity of ¢ on the second factor.

Now let [y] = (a, 8) be in the image of m;(SO(n — 1) X SO(m — n)) under
the standard inclusion, then

v:8 - 80(n —1) X 80(m — n) < 80(n) X SO(m — n).

Let o1, o0 € ™" berepresented by (S, Z27) ¢ = 1,2. Without loss of generality
we may assume that (8™, Z7)((8", Z3)) is standard on the upper hemisphere
DY and the left (right) half DZ;(DZ,) of the lower hemisphere D™ (Fig. 2).

D™ and D™, meet in the dise D™ = D™ n D™, . Since [y] is in the image
of 7;(8O(n — 1) X SO(m — n)) under the standard inclusion, the trace

(27 n D%, , v), (o(Zf n D2y, 7))
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in ¢(DZ, | v), (¢(DZ;, v)) is a relative disc pair
(DY, Dy, (D=, D).

The disc pairs (D7, D) and (D™, D*') have common boundary
(¢(D™, v), ¢(D™ " n 27, ~)) which is diffeomorphic to the standard pair
(8™ 81, The element ¢(o; + 02, v) is represented by the twist-spun
pair (8!, ="*") obtained by joining (D7, D) and (D™, D**') along
their common boundary. Now using arguments analogous to those used in
the proof of the first half of the theorem we conclude that ¢,_; is bilinear.

Remark. One can prove similarly that ¢ is linear and ¢, is bilinear when
6™" is replaced by I™".

The following corollary is an immediate consequence of Theorem 1.

CoroLLARY 2. The spin of a sphere pair (S™, Z"), without twist, s h-co-
bordant to the standard pair and the result of twist-spinning the standard pair
(8™, 8*) by an element [v] e 77" is h-cobordant to the standard pair.

We now show that in general ¢ is non-trivial. Let m(Diff¢ (R™, R*™))
denote the group of path components of orientation-preserving diffeomor-
phisms, of the standard pair (R™™, R"™) onto itself with compact support, in
the C* topology. An operation

¥ : mo Diff¢ (R™, R*™) X m(80(n — 1) X 80(m — n))
— m Diff ¢ (R™', ™)
is defined as follows. Let [h] € mo Diff¢ (R™, R"™) and let
[v] = (&, B) em(SO(n — 1) X 8O(m — n))
be represented by the map
fi+R'— 80(n — 1) X SO(m — n)
with compact support. Let
F:R"™'XR —-R"'XR'
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be given by F(z,y) = (f(y) -z, y). The operation ¢ is defined by
Y(A, ) = (A X 1) eFo(h X 1) F .

Now let m Diff o (RY, R}) denote the abelian group of path components of
orientation-preserving diffeomorphisms with compact support of the closed
half space pair (R}, R}) onto itself. Let

ix : m Diff ¢ (R?, R?) — m Diff ¢ (R™™, R™™)

be induced by restriction. Let 6" denote the group of h-cobordism classes of
pairs (=", Z").

TaEOREM 3. Supposem — n > 2 andn > 4. Then

mo lefc (Rm—l’ R"—l)
?:* mo Diffe (Ri‘, R—'f-)

is isomorphic to 6™, and the operation ¥ induces a pairing

g0 ® m(S0(n — 1) X SO(m — n)) — §mHH,

Proof. It follows from Corollary 3.2 of [10] that §™™ is just the group of
diffeomorphism classes of sphere pairs, if m — n > 2 n > 4, and any sphere
pair is representable as a union (D™, D*) u (D™, D") where (D™, D™) denotes
the standard dise pair. To see this consider an arbitrary sphere pair (2™, Z")
as the union of two standard disc pairs and a third manifold pair. Smale’s
Corollary (3.2 of [10]) allows us to eliminate the manifold pair. The following
theorem gives us the relation between § and ¢.

THEOREM 4. Suppose m — n > 2 andn > 4. Then
6=9]60"" ® mS0(n — 1) X SO(m — n).

Proof. Consider the relative surgery description of twist-spinning given in
§1. Since F is defined on D™ X 8’ and b X 1 is defined on 8D™ X D' the
twist-spin is diffeomorphie, and hence h-cobordant, to the pair

(D™ X D™ Ugin-1eretnyer-1 D™ X S,
6(2” — Int D.?.) X DH-1 Ut1)=1o Fo (h+1) o F—1 (En — Int Di) X Sl))

But now (A + 1) o Fo (b4 1) o F'|dD™ X 8" = 1 and the result follows
from the isomorphism of Theorem 3.

When m = n, § reduces to the operation used for investigating Diff $™, of
Milnor [5], Munkres [6] and Novikov [7]. From Theorem 4 and examples
given in their work we deduce the non-triviality of ¢. The following corollary
is an immediate consequence of Theorem 4.

CoROLLARY 5. Suppose the Milnor—Munkres—N ovikov operations applied to
=" gives =" and suppose =" is embeddable in S, Then ="' is embeddable
in
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IV. Twist-spun normal bundles

In this section we shall show how the normal bundle of a twist-spun sphere
is determined by the normal bundle of the original sphere and the normal twist.
Let BSO(m — n) be the classifying space of SO(m — n), and let

wa(BSO(m — 1)) ® 7131(BSO(m — 1)) —V s 71,u(BSO(m — 1))
be the Whitehead product pairing.

TueoreM 6. The following diagram is commutative:

™" X 7 (80(n) X SO(m — n)) gt
(or I™™) (or I+

ln Xp l’?
72(BSO(m — n)) ® m1(BSO(m — n)) =", Tati+1(BSO(m — n)).

Here n assigns to each embedding (or tmmersion) its normal bundle and p is pro-
jection followed by the transgression isomorphism

o m(SO(m — n)) = 1a(BSO(m — n)).

It is well known that the Whitehead product is related to the Samelson
product by the following diagram,

7(80(8)) ® ;(80(1)) ———S 5 1us(80(2))

lu ® o la-
ren(BSO() ® ma(BSO(R)) — W, s (BSO(),
where S denotes Samelson product [8].

A non-triviality of the Samelson product of the characteristic class of the
normal bundle of the embedded (immersed) sphere with an element
v em(SO(m — n)) will lead to a twist-spun sphere with non-trivial normal
bundle. As the condition on the characteristic class of the normal bundle of
an embedded sphere is very restrictive [3], we are unable to produce any ex-
ample, but there are several examples in the case of immersions. For instance
it follows from [4], that there always exists an immersion S* < 8% such that

the result of twist-spinning by some element in 741 (SO(4k — 1)) has non-
trivial normal bundle.

Proof of Theorem 6. Let the embedding =" < 8™, which is the standard in-
clusion D} — D7 on the upper hemisphere, be a representative of the element
ced™™. Let v be the normal bundle of this embedding. The classifying map
f:2"— BSO(m — n) of v can be described as follows. Let Fy be the stand-
ard normal frame over D} and let F; be a normal frame on E* — Int DY .
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The difference between Fo and F; determines a map
g:8" = 9(=" — Int D}) — 8O(m — n).

Consider SO(m — n) as the fibre of the universal bundle;

S0(m — n) — ESO(m — n) —2— BSO(m — n).
Since ESO(m — n) is contractible, § extends to a map
g: (D= (2" — IntD}), 8" = 4(=Z" — Int D}))
— (ESO(m — n), SO(m — n)).

Thenf = pog. Nowlet 2" < ™" be the result of spinning =" in 8™ around
S'. Then we have induced frames Fy , Fy on the two halves D" X D" and
D™ % 8 of 2" in §™*" and the difference is given by the map

gopi:aD: X 8 — aD™ — SO(m — n).
Now the frame Fy induced from F; by twist-spinning differs from Fg by the

map
hopy: oD X 8 — 8 — 80(m — n),

where £ is a representative for the element 8 of
v = (&, B) em(SO(n) X SO(m — n)).
Thus extending § o py , h o p, to maps
G: (D2 X 8, D2 X 8') — (ESO(m — n), BSO(m — n))

and
H: (8D X D', oD X 8" — (ESO(m — n), 8O(m — n))

we are able to define a map,

k: =" — BSO(m — n)
by
k=pG@ on DX &

k=pH on 9D X D',

It follows from [11, p. 102] that k is the classifying map for the normal bundle
of the embedding ="** = §"*'. On the other hand, it follows from the defi-
nition of the Whitehead product that k is a representative of [v, —o(8)] =
—[», p(v)]. This completes the proof of our assertion for embeddings. The
proof for immersions goes through in the same way.
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