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Introduction

In two preceding papers under the same title [2], [3], the writer has studied
nonlinear functional equations in reflexive complex Banach spaces involving
operators T mapping such a Banach space X into its dual X* and satisfying
inequalities of the type

(1) I(Tu Tv, u v)l >_ (u, v)h(ll u v II)
where (w, v) denotes the pairing between w of X* and v of X.
A representative result of this type is Theorem 1 of [2] which asserts that if

T is demicontinuous and saeisfies the two conditions"

(i) There exists a real function c(r) on R with c(r) -- as r -such that for all u of X,

(2) [(Tu, u)[ >_ c(ll u l])II u II;
(ii) For each N > 0, there exists a continuous strictly increasing real func-

tion/oN(r) on R with/oN(0) 0 such that for u <- N, v <- N
(3) Tu Tv, u v - Ic( u v II)11 u II;
then T maps X onto X*.

This theorem is an extension and generalization of a theorem of Zarantonello
[7] which asserts that if T is a continuous map of a Hilbert space H into H
which carries bounded sets into bounded sets and such that for a suitable
constant c > 0

I(Tu Tv, u v)l >_ c u v [[
then T maps H onto H.

Further extensions were given by the writer in [3] in which on the one hand
the inequality (3) of (ii) was modified to

(4) ](Tu Tv, u v)] _> (ll u v II) I(Cu c, u )I
where for each N > 0, C is some completely continuous map of X into X*,
and on the other, the demicontinuity of T was replaced by the condition that
T L G where G is demicontinuous and maps bounded sets of X into
bounded sets of X* while L is a closed densely defined linear map of X into X *
such that its adjoint L* is the closure of its restriction to D(L) D(L*).
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It is our object in the present paper to establish a different sort of extension
of Theorem 1 of [2], namely one in which the hypotheses are completely local
in character.
Our principal results are the following:

THEOREM 1. Let X be a reflexive complex Banach space, X* its dual, T a
mapping of X into X* which is demicontinuous (i.e. continuous from the strong
topology of X to the weak topology of X*). Let U be an open subset of X and
suppose that there exists a continuous strictly increasing real function k(r) on R
with k(O 0 such that

(5) I(Tu T, )1 > (11 u II)ll u

for all u and v in U.
Then T(U) is open in X* and T is an open, one-to-one mapping of U into X*.
THEOREM 2. Let X be a reflexive complex Banach space, T a continuous

mapping of X into X*. Suppose that both of the following conditions are

satisfied:
(1) For each point Uo in X, there exists an open neighborhood U of Uo in X

and a continuous increasing real function kv(r) on R with kv(O) 0 such that

(6) Tu T, v) > ( u u

for all u and v in U.

(2) There exists a positive continuous decreasivg function h(r) on R with

fo h(r dr +
and for each point Uo in X, an open neighborhood V of Uo in X such that

(7) Tu Tv >- h(l] Uo II)11 u

for all u and v in V.

Then T is a one-to-one bicontinuous map of X onto X*.
Section 1 is devoted to the proof of Theorem 1. Section 2 contains the

proof of Theorem 2.
Using the results of the present paper, we shall present elsewhere an ex-

tension to the elliptic, non-strongly elliptic case of the existence and unique-
ness theorems given by the writer in [1] for nonlinear strongly elliptic systems
of partial differential equations in generalized divergence form.

1. Proof of Theorem 1
It suffices to show that T(U) contains a neighborhood of T(uo) in X*. If

we replace T by T1 where TI u T u - Uo Tuo T satisfies the same
hypotheses as T and we may assume without loss of generality that u0 0
and Tuo O.
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It follows from the hypothesis of Theorem 1 that there exists r > 0 and a
continuous increasing function k(r) with k(O) 0 such that

(8) I(Vu Tv, u v)] >_ k(]] u v II)ll u v

for u - r, < r. In prticulr, setting v O, we hve

(9) [(Tu, uDf > (11 u II)ll u

for I[u[I -- r.
Let w be any element of Z* with ]lw]] < k(r). Then for ]lull r, we

have

[(Tu w, u)[ )_ [(Tu, u)[ w 11"[[ u )- l(r)r IIw II.r ) O.

If we replace T by T2, where T2 u Tu w, we have for T,

(10) I(ru T2v, u v) lc(l u v II)l[ u v

for]]u r, [v] g r, and

() (Tu, u)l > 0

for u r. To show that there exists u with u < r such that Tu w,
it suffices to show that there exists u with u < r with T u 0. We
may replace T by T, assume that T satisfies the inequalities (10) and (11)
imposed on T, and we need to prove under these assumptions that there
exists u0 with u0 < r such that Tuo O.

If X is of finite dimension, Theorem 1 follows immediately from the Brouwer
theorem on invariance of domain since the inequality (5) implies that T is
locally one-to-one. Hence we may assume without loss of generality that X
is of infinite dimension.
We proceed as in the proof of Theorem 2 of [3]. Let A be the directed set of

finite-dimensional subspaces F of X of dimension 2. For each F e A, letj be
the injection map of F into X, j the dual projection map of X* onto F*. We
form the continuous mapping Ts of F into F* by setting

T j Tj.

ForueF, Tr u, u) Tu, u). Inparticular, if}]u r,

I(T, ) I(T, u)l > 0.

Since F is of dimension 2, it follows from Theorem 1 of [3] that there exists
us in f with u r such that T us 0.
By the weak compactness of closed balls in the reflexive B-space X, the

directed set {us; F A} has at least one weak limit point u0 in X with

u0 r. As in the proof of Theorem 2 of [3], if F f with F, F e A, we
have

( u ) u u, i(Tu u)l
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or if q is the continuous increasing function which is the inverse function of
k(r)r,

Since u0 lies in the closure of the set {u]F + A, F1 c F} and since the function
of v on the ball {vii v -< r} given by

is lower semi-continuous in the weak topology, it follows that

Uo u <- q(l(Tu,, Uo)l).
On the other hand, if u0 e F1 we have

Tu,, Uo) (Tu, j Uo) (j*, Tu, u0) (T, u,, u0) 0.

Hence for such F, u0 u.
Let v be any element of X and let F be an element of A containing u0 and v.

Then

Tuo v) Tuo j v) (j* Tuo v) (j**, Tu v) T u v) O.

Hence Tuo 0, Q.E.D.

2. Proof of Theorem 2
We begin with the following useful lemma:

LEMMA 1. Let f be a local homeomorphism of the Banach space X into the
Banach space Y. Suppose that if C is an open curve in X mapped homeo-
morphically by f on an open segment in Y of the form

S {vlveY, v tvo,O <_ < to},
C must be of finite length.

Then f is a homeomorphism of X onto Y.

Proof of Lemma 1. The proof was given by Paul Lvy in [5], using an idea
applied for finite dimensional spaces by Hadamard ([4])

Proof of Theorem 2. By hypothesis (1) and Theorem 1, T is a local homeo-
morphism of X into X*. Suppose T is not a homeomorphism. Then by
Lemma 1, there exists a curve C of infinite length, an element v0 of X*, and
to > 0 such that f maps C homeomorphically onto S. Let C be given para-
metrically by

u u(t), 0 < < to
where T(u(t) tvo
We consider two cases: (a) C is bounded; (b) C is unbounded. In case (a),

it follows from hypothesis (2) that there exists a constant c > 0 and for each
point u0 of C a neighborhood V of u0 in X such that for u and v in U
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Since C is an open curve of infinite length, for a given M > 0, we may choose
tl < to such that the compact curve C1 given by {u u(t); 0 _< _< 6} has
length greater than M. In particular there must exist a sequence of parameter
values 0 < s < sr <... < s t with each pair usj_l, usj lying in some
neighborhood V as above such that

Hence -,- Tv, Tu,_l >_ cM.

However, Tus- Tu,_ (s- s_)vo. Hence
=i (s s_) v0 cM

which implies that

or M (t v0 ]]. Since we may choose M arbitrarily large, this yields a
contradiction for case (a).

In case (b), we may find an infinite sequence of parameter values

0 So < Sl < s2 < s3 < < to
such that for each j

u. J; u -< J for

We may then choose for each j, a finite sequence of parameter values
(i)s. t0() < t) < t) < < ()

such that for every k, the pair ut(), ut+ () lies in a single neighborhood V
as above. Then

>_ h(r) dr -t-

which is a contradiction for case (b). Thus the proof of Theorem 2 is com-
plete.

Remark. After the present paper was submitted for publication, the writer
received a mimeographed manuscript from George Minty entitled Postcript to
Zarantonello’s Theorem in which he obtains results in Hilbert space of the type
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considered here under local hypotheses. His hypotheses are considerably
more restrictive than those imposed above, since Minty assumes the existence
of positive constants c > 0, r > 0 such that

(Tu u > c u

in each ball of radius r in the Hilbert space H. It follows easily from the
latter hypothesis that T is a covering mapping of H onto H and hence a
homeomorphism. In the present paper, we show that T is a local homeo-
morphism and use Lemma 1 of Section 2 to prove that T is a homeomorphism.
For detailed studies of local homeomorphisms and covering mappings and
their interrelations, see the writer’s papers [8] and [9].
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