CONGRUENCE SUBGROUPS OF POSITIVE GENUS OF THE
MODULAR GROUP

BY
M. I. Knorp AND M. NEWMAN

1. Introduction

Let T be the modular group, consisting of all linear fractional transforma-
tions
T, — ar + b
cr+d

where a, b, ¢, d are rational integers and ad — bc = 1. It is not difficult to
construet a sequence of subgroups @, of finite index in T such that (I':G,) — «
as n — o, but such that the genus of G, is 0. (See papers [1], [4] and [6].)
In conversation with the authors H. Rademacher conjectured that such a
construction was not possible using congruence subgroups of I, and in fact
that the number of congruence subgroups of I' having genus 0 is finite.
Whether this econjecture is true or not we do not know. It is both plausible
and difficult. In this note we make a contribution to this problem. In fact
we prove that a free congruence subgroup of T' of level prime to 2-3-5-7-13 s
necessarily of positive genus. We also prove inclusion theorems for certain
subgroups of I' which are of independent interest.

2. Preliminary results and definitions

We find it convenient to work with the representation of I' as the multiplica-
tive group of 2 X 2 rational integral matrices of determinant 1 modulo its
centrum {=I}, where I is the identity matrix. If n is a positive integer,
then T'(n) will denote the principal congruence subgroup of T of level n, which
consists of all elements of T' congruent modulo n to £I. TI'(n) is a normal
subgroup of I'. A subgroup of T' is a congruence subgroup if it contains a
group I'(n); it is of level n if n is the least such integer. We set

11 1 0
s=( 1) w-G 9
Then I may be generated by S and W;
T = {8, W}.

An element of T is parabolic if it is of trace =42; it is then conjugate over T’
to a power of S. If M ¢TI and commutes with a non-trivial power of S then
M itself is a power of S.
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Let G be a subgroup of T of finite index u. By a complete system of parabolic
representatives, abbreviated c.s.p.r., we understand a set of parabolic elements
Py, Py, ---, P, of G such that

(1) every parabolic element of G is conjugate over G to some power of a
P;,1 <1<

(2) no non-trivial power of P; is conjugate over G to a power of P;, 1 < 1,
JE L1

Then ¢ is the number of parabolic classes of G.

(It is easy to see that for a subgroup of finite index in T, ¢ is finite.)

It is an easy consequence of (1), (2) and of the properties of S that if M ¢ G
and commutes with some non-trivial power of P;, it is itself a power of P;,
1<:< .

The group @ is free if and only if it contains no elements of finite order (see
5]). In this case the genus g of G is given very simply by the formula

(3) g=1+p/12 —t/2.

(This is a straightforward consequence of the “hyperbolic area formula”,
which in turn can be deduced from [3, p. 185, excercise 2].)

The congruence subgroup generated by S, I'(n) will be denoted by T, :
(4) T, = {8, T (n)} = 2 8rn).

The congruence subgroup consisting of all elements (¢ §) of T' such that
¢= 0 (mod n) will be denoted by T'o(n), and the genus of I'y(n) by g.. The
genus g, has been computed explicitly (see [2]). We note only that if p is a
prime, then

gp= (p—13)/12, p=1 (mod 12)
(p—5)/12, p=5 (mod12)
= (p — 7)/12, =7 (mod 12)
= (p +1)/12, p = 11 (mod 12).

Hence g, > (p — 13)/12.
We set

(5)

p(n) = (T:T(n))

67 n = 2
= 3" [ (1 = 1/9%), n> 2.

(T:T%) = u(n)/n.

If G, H are subgroups of finite index in I' such that G D H, and if the genera
of G, H are g, h respectively then the genus formula for subgroups (see [3, p.
260]) implies that ¢ < h. In particular this implies that ga < g, whenever
djn.

Then (4) implies that
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3. An inclusion theorem

In this section we prove an inclusion theorem for subgroups of I' containing
T, , which is of interest in itself:

TuaEoREM 1. SupposethatT D G DT, . Theneither G =T or G C To(d)
d|n,d>1.

We break the proof up into a sequence of lemmas.

LemMa 1. Suppose that T D G D T',. Suppose further that G contains

an element
a b
M= (c d)

with (¢,n) = 1. Then G = T.
Proof. We have

_f(a+xc b+ xd
su= ("1 0,

Since (e, n) = 1, « may be chosen so that ¢ + z¢ = 1 (mod »n). Put
by =0b+xd. Then

1 —l— b1 c
S°M = wes™ (mod n).
Hence S°M = W°S"M,, M:eT'(n), and it follows that W°e@. Since
(¢,n) = 1 and W" e G, this implies that W e G. Hence G = T, since S, W ¢ G

and are generators of T'.
Lemma 1 implies

S°M = (:; by > (mod n),

Lemma 2. Letp be a prime,T D GDT,. Theneither G =T or @ C To(p).
Lemma 2 is the case n prime of the lemma that follows:

LemMma 3. Suppose that n is square-free, T D G D T, . Then either G = T
or G C Ty(d),d|n,d > 1.

Proof. The proof will be by induction on 2(n), the number of primes
dividingn. For @(n) = 0 the lemma is trivial, and for 2(n) = 1 the lemma is
true by Lemma 2. Assume the lemma proved for all square-free m such that
Q(m) < k, and let n be square-free with Q(n) = k, & > 2. Let p be the
smallest prime dividing n. Then n/p > 2 and

GT(n/p) D Tupp .
Since Q(n/p) = k — 1, the induction hypothesis implies that either



580 M. I. KNOPP AND M. NEWMAN

(6) GT(n/p) C To(d), dln/p, d>1
or
(D GT(n/p) = T.

Since (6) implies that @ C T'4(d), where d | n, d > 1 we may assume that (7)
holds. Then by one of the isomorphism theorems

(8) I'/T(n/p) = G/G n T(n/p).
Put p = (I':@). Since
G nT(n/p) D (8", T(n)},
(T:{8™%, T(n)}) = u(n)/p, and (p, n/p) = 1, it follows from (8) that

w(n/p) | 'L’;’i?

(9) plp" =1
Now let ¢ be the exponent of W moduloG. Since W" ¢ @, ¢ | n. Furthermore
the cosets G, WG, W’Q, ---, WG are distinct. Thus ¢ < . Combined

with (9), this implies that ¢ < p® — 1. Since 7 is square-free and since p is
the smallest prime dividing n, ¢ is either 1 or a prime. If ¢ = 1 then G = T,
since then W, SeG and W, S generate I'. Suppose then that ¢ is prime.
Either G < Ty(g), or there is an element (§ J) ¢ G such that (¢, ¢) = 1.
Assume the latter. Then

gz [ O b _ a b
w (c d)_<c+xqa d+mqb)’

and since (¢, ga) = 1, x may be chosen so that (¢ + zga, n) = 1 (for example,
by Dirichlet’s theorem on primes in arithmetic progressions). By Lemma 1,
G = TI'. Hence in all cases we have shown that either @ = T or G C Ty(d),
d|n, d > 1 and the proof of the lemma is complete.

LEmMmA 4. Suppose that n is square-free, and suppose that m is an integer
divisible only by primes dividing n. Then if

T'D GO Ty,
either G = T or G C Ty(d), d | mn, d > 1.
Proof. Assume that G % I'. We have that

GT(n) D T,.
By Lemma 3, either

(10) GT(n) < To(d), dln,d>1
or

(11) GI'(n) = T.
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If (10) holds, then G C Ty(d), d | mn, d > 1 and the proof of the lemma is
concluded. We need only show that (11) cannot hold. Since G # T,
it follows from Lemma, 1 that if

(& 5)eo

then (¢, mn) > 1; and hence (¢ n) > 1 since every prime dividing m also
divides n. Thus if (¢ §) e GT'(n) then (v, n) > 1 and so (11) can not hold.
The proof of the lemma is concluded.

Combining the previous lemmas, we obtain the theorem.

4. The parabolic class number formula

We are going to develop a formula involving parabolic class numbers for
subgroups of the modular group. The formula actually holds for subgroups of
finite index in an arbitrary H-group (see [3, p. 266] for the definition) but we
content ourselves with the statement for the modular group. We will prove

TurorREM 2. Let G, H be subgroups of finite index in Ty, H a normal sub-
group of G, (G:H) = p. Let Py, Py, + -+, P, be a c.s.p.r. for G, and suppose
that P; is of exponent m; modulo H,1 < © < t. Then the number = of parabolic
classes of H s given by

T = MZ$-1 1/m,~ .

Proof. Let P by any parabolic element of H. Since PeG, P = AP A™
where A ¢ @, o is a non-zero integer, and 1 < ¢ < t. Since H is a normal sub-
group of G, P¥ e H;andso a = Bm;. Hence P = APT™A™. Now API™A™
and APT*A™ belong to the same parabolic class, since APT*A™ ¢ H. Thus
we need only determine for each ¢, 1 < 7 < ¢, the number of expressions

Q = APTA™Y, AeG,

which are not conjugate over H. (Because of (2), two expressions @ cor-
responding to different subseripts 7 cannot be conjugate over G and so are
certainly not conjugate over H.)

Suppose that

G = DhiHR,

is a right coset decomposition of @ modulo H. Then A may be written as
BR;, where BeH and 1 < k < u. Thus

Q = AP? A™ = BR, P¥R;'B™,
and so @ is conjugate over H to
R, PTRy .

Furthermore the group G/H has the cyclic subgroup K; = {HP;} of order m; .
Hence we can write

HR, = HS; P
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where HS;,1 < j < u/m; runs over the coset representatives of G/H modulo
K and n; is an integer. It follows that @ is conjugate over H to

(12) S; PriS7H, 1<j < p/ms.
The expressions (12) for a fixed ¢ are not conjugate over H. For suppose
that
S; PPS;t = TS, PPSy T,
TeH,1 < 34,1 < u/m;. Put M = S;'TS;. Then M commutes with
P?* and so must be a power of P;,. Thus for some integer v

TS, = 8S; P!.

But this implies that j = [, since the HS;s are distinct modulo K;. It
follows that the number of parabolic classes in H arising from P, is just u/m; ,
and the theorem follows by summation.

Easy corollaries of Theorem 2 for normal subgroups of T follows:

CororLLARY 1. Let G be a normal subgroup of T such that (T':G@) = u and
such that S is of exponent m modulo G. Then the number of parabolic classes
t of G is given by t = u/m.

CoROLLARY 2. The number of parabolic classes of T'(n) is u(n)/n.

5. The principal results

We assume now that G is a congruence subgroup of T' of level n. We
continue to denote the number of parabolic classes of G by ¢, and (I':@) by

p. Let Py, Py, -+, P;be a cs.p.r. for G and assume that P; is of exponent
m;modulo T'(n), 1< 7 < ¢.  Then the results of Section 4 imply that

p(n) _ p(n) 5= 1 _ .51
(13) = . ;’m@" p,—n;mi.

Since the n-th power of any parabolic element of T' is in I'(n), each m; is a
divisor of n. For each divisor d of n let r(d) be the number of P, for which
m; =d,1 <7<t Then

2amr(n/d) = t,
(14) 2amdr(n/d) = p.

Assume now that G is free. Then (3), (13) and (14) imply that the genus
g of G is given by

(15) g = (1/12) 2 a1 (d — 6)r(n/d) + 1.

Assume further that (n, 2.3.5) = 1. Let ¢ be the smallest prime dividing
n. Suppose first that r(n) = 0. Then (15) implies that

g=21+ (¢g—6)/12 = (¢ + 6)/12.
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Now suppose that 7(n) > 0; i.e. that some conjugate of S, say ASA™, be-
longs to G. The groups G and A™'GA being conjugate subgroups of I' are
simultaneously free, of level n, and of the same genus. There is no loss of
generality therefore in assuming that S ¢ G, so that G D I, . Then Theorem 1
implies that G@ C To(d), d|n,d > 1. Hence

g 2 ga = Milyn gp
and so by (5),
g > min,, (p — 13)/12 = (¢ — 13)/12.

It follows that in either case

g = ming. g, = (¢ — 13)/12.

We have proved therefore

TueoreMm 3. Let G be a free congruence subgroup of T' of level n, where
(n, 2:3-5) = 1. Let q be the least prime dividing n. Then the genus g of G
satisfies

g = miny. g, = (¢ — 13)/12.

Theorem 3 and (5) readily imply the result mentioned in the introduction:
TaEOREM 4. A free congruence subgroup of T of level prime to 2:3-5-7-13
1s of positive genus.
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