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This pper is solely devoted to n ppliction of the so clled Selberg trce
formula, which is generalized Poisson summation formul for the case of
non-commutative groups, to determine, in terms of certain integral, rela-
tive density of spectra for discrete subgroups which ct on symmetric spce.
Certain properties of discrete subgroups nd the notion of Selberg transform
which brings bout the trce formul will be indispensable in our discussion.

In obtaining the integral in question we shll select space of certain posi-
tive definite zonal spherical functions over the symmetric spce for our
domain of definition of Selberg transforms nd then use the Plncherel mes-
ure on this space for integration.

First we shall describe the problem to be solved and in (II) we prove our
main theorem in detail. Then in (III) we shall give an explicit example of the
theorem, which is hoped provides some insight into the problem. The ele-
mentary notions which might have slipped through our explanation may be
easily found in the beginning portions of the papers listed at the end of this
note, particularly in [7] and [10].

I. Explanation of the problem
Let X be a globally symmetric Riemnnian space of the no-compact type,

G the connected component of the identity of the Lie group of all the isom-
etrics on X in the compact open topology and U the isotropy subgroup of
G at x0 of X; then G is connected semi-simple Lie group which has no com-
pact normal subgroup other than the identity, U is a maximal compact sub-
group of G and, in fact, X is identifiable with. the quotient space G/U. Sup-
pose that F is a discrete subgroup of G, operating on X properly discontinuously
with the properties that F 11 has no fixed points in X and that the homo-
geneous space F\G is compact. The G-invarint metric on X is denoted by
ds _, g(x) dx dx where gi(x) are the real-valued C%functions with
respect to the local coordinates (x); the G-ivrint mesure on X is denoted
by dy or dx %/- dx/dx/.../dx, where g det (g(x)) and the ring
of all G-invarint differentinl operntors of finite order on X by L. Then it is
well known that the ring L is commutative, since X is a symmetric homo-

Received December 1, 1964.
For the commutativity of the ring L, which is necessary for our functional analysis,

in particular, for determining the zonal spherical functions, it is sufficient to assume
that X is "weakly symmetric" in the sense that we cn find n isometry u of X such
that tGu- G, u G and for any pair of points x and y in X, there exists g in G with
gx ty and gy tx.
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geneous space, and actually is, in our case, a polynomial algebra generated by
a finite set of fundamental differential operators, A1, A2, and/, where
is the rank of the symmetric space X, i.e., L C[A1, A2,
We denote by A the set of all subgroups F, of I’ with a finite index, and put

I a F, e A}, the set of indices of A. Then the index set I is directed by
the relation that if F

___
F, then a >_ , and similarly is A also directed. We

shall further assume one more condition on F, that F [1}. For
FeA and an/-tuple (h,),, -.., ,) inCof complex numbers
the space 93(F,, ) If C*-functions on X, f(,x) f(x) for all F,
and Af kf for i 1, 2, l} is always of a finite dimension, which is
callen the multiplicity of k for F as shown in [10]. A vector in C is said
to be a spectrum for F, if 93(F, ) /0}. Then from [9] and [10] we
know that the set A(") of all spectra for F, each appearing repeatedly
many times as its multiplicity, is an unbounded, countable discrete set in C .

For a function h(h) defined on C, we shall simply denote =0h(,.
with x(.).. A() by () h(). Let D be a fundamental domain in X of
F, and v(a) the volume of D measured by the G-invariant measure dx, i.e.,

(1) v(a) f) dx= fr dx.
\x

The main purpose of this note is to answer partially the question stated
below, which was originally raised by Prof. M. Kuga. Later, Prof. I. Satake
kindly provided its name for us and it now stands as the title of this paper.
Here the author would like to mention his sincere gratitude for the continuous
encouragement given by the above professors.
The problem is to obtain the following asymptotic density formula upon

finding a certain measure ft(X) d) on C:

(2) lim tva) () h(,)} fc h (h) 2 (},) dh,

for a "considerably wide" class of functions h defined on C. Here the limit
is taken in the sense of directed limit. Note that if F

_
F, that is, a >_ /,

then !l(F., ) _D I(F, )), A() __D A() and v(a) >_ v().

II. The main theorem

As used in [9], a C-class function/(x, y) defined on X X X is said to be a
point-pair invariant if for any x and y in X, lc(gx, gy) lc(x, y) for all g in G.
Then the necessary and sufficient condition for an integral operator, defined

by

j2 k(x, y)f(y) dy(3)

to be G-invariant is that the kernel/c(x, y) is a point-pair invariant. Further-
more, if k(x, y) is a point-pair invariant on X X with X G/U, then we
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can consider the corresponding kernel function on G which is bi-invariant by
U, i.e., the kernel is invariant under the actions of the elements of U from both
sides, and so we have

(4) It(x, y)f(y) dy L q(g-l gl)f(g2) dg2

where gl and g2 are mapped on x and y respectively under the canonical
mapping of G onto G/U, and (g2-1gl) /c(g-lgl, 1).

DEFINITION. A point-pair invariant/c(x, y) is said to be of type (a)-(b),
if/c(x, y) is majorized by another non-negative point-pair invariant kl(X, y)
which satisfies the following"

I lcl(x, y) dy <(5) ()
Jx

(b) there exist positive numbers N and a such that for all x and y in X

(6) tc(x, y) <_ N fx ]Cl(X, y’) dy’
(y,a)

where N(y, a) denotes the disc centered at y with radius , which is determined
by the smallest geodesic distance.

By the convolution lc (1) /c(2) of/c and lc>, as usual, we mean

(7) (1) , lc() (x, y) (1) (X, Z) ]{;(2)(Z, y) dz.

DEFINITION. A function lc(x, y) on X )< X is said to be admissible if lc
is expressible as follows"

It(]C 1(1) ]C(2)At_ it(3)* ]C(4)

__ __
1c(2n-1) ,

where lc() /c(+1) is a convolution of a pair of point-pair invariants of type
(a)-(b).

It is an immediate consequence that an admissible function k(x, y), in
turn, is a point-pair invariant of type (a)-(b). Hereafter, we shall denote
by ?l the space of all admissible functions on X X X. Next we shall con-
sider certain complex-valued functions on X, called the (generalized) spherical
functions, which encompass those special functions appearing as the solutions
of second order differential equations, which were first used by Cartan as
’fonctions fondamental’ in connection with the theory of the irreducible
representations of compact Lie groups, and, in fact, are very closely related
with the irreducible unitary representations of non-compact semi-simple Lie
groups, and, even more so with those of the non-compact symmetric Rieman-
nian spaces.

DEFINITION. A complex-valued continuous function 0(x) on X G/U
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is to be called a zonal spherical function or an elementary spherical function
if it satisfies the following conditions:

(i) oa(ux) oa(x) for all u of U.
(iN) (x0)= 1.
(iii) 0 is an eigen-function of all G-invariant integral operators i.e.,

for all point-pair invariants k(x, y), we have fx k(x, y)(y) dy ),(k)(x)
with (lc) C.

A function on X with the condition (i) is frequently called a spherical
function as in [2] and [8], or a radial function as in [5].

It should be noted that in the above definition of the zonal spherical func-
tions the condition (iii) may be replaced by the following one:

(iii)’ is a C-function on X and an eigen-function of all G-invariant
differential operators (of finite order) on X, i.e., we have, for all A of L,

A (A) with ),(A) in C,

or, what is the same, for a base, A, A, kz of L over the complex num-
bern C, k ,: with of C.

Thus a zonal spherical function defines a ring-homomorphism,

a- a(a)

of L C[&, k=, ..., Az] onto the complex numbers C; in other words, a
zonal spherical function determines a point (hi, , ),) in C. On the
other hand, we know from [2], [7] and [8] that each ring-homomorphism of L
onto C, in turn, gives rise to a zonal spherical function on X. Therefore the
space of all zonal spherical functions on X is bijective to the space A of all
ring-homomorphisms of L onto C, which is actually identified with C, i.e.,
we have (R) C A.

After [9] we shall now define a generalized Fourier transform for the case
of non-commutative groups.

DEFINITION. A complex-vMued function h defined on is said to be the
Selberg transform if it is expressible as follows:for some point-pair invariant
lc(x, y)on X X X.

(8) h(oa) Jx k(Xo y)oa,(y, xo) dy,

where cox(y, x0) w(y) which corresponds to ), under the bijection mentioned
above.

We notice immediately that the Selberg transform is nothing but the eigen-
value determined in the condition (iii) above: i.e.,

(9) f k(x0, y)ox(y, xo) dy
x
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where wx o. The corresponding notion over G then is

(lO) () (g)(-) d.

We shall henceforth restrict ourselves to the case of ?1, the space of all the
admissible kernels, in order for the sum A(-)h(X) to be absolutely con-
vergent. Then from [9] and [10], we have the following Selberg trace formula:

(11.) A(-) h(X) r. . lc(x,/x)dx.

The equality holds because/c(x, y) is an admissible function on X X X and
the fundamental domain D, is compact. Hereafter we shall denote by g) the
space of all Selberg transforms h(X) h(0x) of k(x, y) in [. For this class
@ of functions we are going to show the density formula in question. In the
case of the upper half complex plane, . is a considerably wide class of func-
tions.
For a function h of .9, we shall consider the following sum over the spectra

for r, eA:

(12) 1 E h(X).

By the Selberg trace formula (11), we rewrite the above sum (12) as follows:

(13)

1 h(X)
)(c)

1
v(a) r. f)lc(x, "x) dx

if. 1
v()

c(x, x) x + v-
Then the integrand of the first term of the last part of the above equation
becomes constant, since k(x, x) ]c(gx0, gxo) k(xo, Xo) where x0 is the
predetermined fixed point of X and gxo x for some g in G. Therefore it
follows that

E h(x)} (Zo,o)(14) 1.i v- (.)

if we prove the following"

PROPOSITION. For an admissible function tc(x, y) on X X X the ,following
directed limit equation holds:

(15) lim I((l)),r.x fv tc(x, x) dx} O.

Proof. We recall 5C(x, R) to be the circle with radius R centered at x,
and let d(x, y) be the distance between x and y, measured by the Riemann
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metric ds. Define
f(x, F.) minr.,l d(x, "x) for x of X

It is obvious that f(x, r.) is a well defined positive continuous function, since
P {11 does not have fixed points.

LEMMA 1. If "y is an element of the normalizer of r., then we have that
f(x, F.) f(’x,

In fact, we havef(x, P.) f(gx, gF. g-i) for any g of G, because d(x, "x)
d (gx, g’yx) d (gx, g/g-i, gx).

Define ti(F.) minxx f(x, F.).

LEMMA 2. For a given positive number M, there exists a normal subgroup
F. of F such that (F.) > M and the index IF F.] < .

Proof. Let Do be a fundamental domain of I’ containing x0 with
mesh (Do) v0. Then the set {,er:(D0) nX(x0, M + no) 0} is
a finite set, and denoted by {’0 1, ,1, /2, ’m}. Since l,r r. {1},
we can easily choose a P. in A, which is normal in r and does not contain any
of/’sexeept,0 1. Thismeans that D0 is thrown outside of 5C(x0, M + v0)
by the action of any non-identity element of r,.
On the other hand, by the previous lemma we have f(x, r,) f(’vx, r,)

for any , of F, for P is a normal subgroup of F. Therefore the continuous
function f(x, P) certainly takes its minimum value (r,) at a point y in Do,
i.e., f(y, P) (r.).
Now combining these two facts, we see explicitly that for any non-identity

d(y, .. y) > d(Xo, ". y) d(xo, y) > M + o o M,

and so we conclude the proof of this lemma by noting

(r.) f(y, r.) min.r.,./ d(y, ". y) >_ M.

LEMMA 3. For a point-pair invariant l(x, y) on X X X and a fixed con-
stant R, the integral

(16) / k(z, y) dy
(x,R)

is independent of x in X.

Proof. For a given x’ of X, there exists g in G with gx x’. Then we can
find z in X such that gz y. Now observe that

f(x’,R) tc(x’, y) dy tc(gx, gz) d(gz) J lc(x, z) dz.
(x,R)

Before proceeding to the next lemma, we recall that a point-pair invariant

This is the only place where we have to use the condition that f’l.I’. {1}. How
ever this lemma may be true under a much weaker condition on r.
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denoted by /cx(x, y) was introduced in way of defining a function of type
(a)-(b), namely, as a positive function, /el(X, y) satisfies the conditions (a)
and (b) with the equations (5) and (6).

LEMMA 4. Let Kl(x, y) be a point-pair invariant of type (a)-(b). Then
for a given > O, there exists a in I such that

(17) i.., k(x, "rx) < for all x in X.

Proof. Let N and 5 be the positive numbers for which Kl(x, y) satisfies
the condition (b). Since fx k,(x, y)dy < m, we can find a sufficiently
large number R (> 5), which depends on x with the property that

f k(x, y) dy < /N(18)
-(x,.)

for a given x in X. However, by virtue of Lemma 3, we can choose such R
once for all x of X. If we take a number 5’ with R > 5’ > 5, then Lemma 2
provides the existence of a F, in A which is a normal subgroup of F and satisfies
the inequality ti(F,) > R -I- 5’.
Now we have a situation where all the discs of the family

{G(vx, 5) for all ver and v 1}

are mutually disjoint and scattered outside of (x, R).
that we have

Therefore it is clear

lc(x, "x) dx <_ N.e/N e.

In order to complete the proof of our proposition, we first note that if
a >_/ in I, then 5(F) >_ 5(F), simply because F F. Hence

_r k(x, Vx) < e implies r./c(x, Vx) < e.

Finally, from Lemma 4 and from the fact that/el(X, y) is admissible, it follows

1 dx}1 {r.f).llc(x,.x),dx}< v-{r.f)lc(x,/x)v()

that

1 f.<_v-. e dx "
Thus we have completed the proof of the proposition.
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As for a suitable measure for which the integral of the original density
formula (2) holds, we shall consider the following notions.

DEFINITION. A zonal spherical function is said to be positive definite
if it satisfies the inequality:

fo fo o(xy-1)f(x)f’ dx dy >_0

for all continuous spherical functions f on G with compact support.

Let Z be the subspace of (R), consisting of all positive definite zonal sphericM
functions on X. Then Z is identified with the space of all equivalence classes
of irreducible unitary representations I’ of G for which the trivial representa-
tion of the compact subgroup U occurs in its restriction T on U. We shall
denote by P a subspace of Z which is bijective to the space of all irreducible
unitary representations of the first kind and of the principal series. By
making use of another parametrization of the ring L C[A, a, ..., A] of
all G-invariant differential operators on X, we shall be able to identify P with
a familiar space.

Let G U.AN be an Iwasawa decomposition of G, A* the dual of the
vector space A, and W the restricted Weyl group of G with respect to A,
i.e., W N(A)/Z(A), operating on A and also on A* in a natural mnner.
Then fixing a basis of A and the corresponding dual basis of A*, we have that
A t( A*, where R is the field of all real numbers, and that, by Harish-
Chandra, the algebra L is isomorphic to the algebra of all W-invariant poly-
nomial functions on A* over the complex numbers C, denoted by

C[X, X, X].
Under this parametrization of L, we can easily establish

Horn (L, C) C/W
by the properties of the functionals of C[X, X=, X].
Using the notations of [8], for a given a of Horn (A, C*), we shall define

a Hilbert space ae" of all complex-vMued measurable functions f on G with
the conditions:

(1) f(gan) a(a)f(g) for all g e G, a A, n N,
(2) f fv f(u) du,

and with the inner product, defined by

(f j) ff"f(u) du.

Now we shall define a representation T of G into 3C" by

(T .f)(g’) f(g-lg,) for f e 3C".

Then it follows that the representation T is of the first kind, since, for f, of
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3 with f,(uan) a(a), we have T, .f f for all u of U, and that o"(g)
defined by

(f,, T f,} f,(g u) du

is a zonal spherical function of G with the property that "(g) 0"’(g) if
atu2 --- a’ti1/2 mod (W), where ti is defined in the volume-element, d(ana-1)
(a) dn. However, we know Horn (A, C*) C from the correspondence:

(19)
where

Eg1/2
’-) s:Hom (A, C*) C

for a (a, a., a) and s (s, s, st). Thus we certainly have
C/W and o"(g) - ,(g) by (19).

The necessary and sufficient condition for the representation T to be
unitary is that [a [ 1, because

V.f[l fv f(u,)I .1 a(a) l.8(a) du’.

But la I: lif and onlyif exp= as} 1. Therefore we can iden-
tify P with (iR)/W R/W.

In summary, we have the following relation:

LC[X,X, ...,X]C[X,X, ...,X]

h Hom (L, C) C C/W Horn (A, C*)/W

Z

P A*/W (iR)*/W the principal series.

By a point-pair invariant l(x, y) on X X X with compact support we
obviously meun thut for fixed x’ or y’ in X, either k(x’, y) or k(x, y’) has com-
pact support.
Godement showed in [1] the unique existence of the Plancherel measure on

the space Z of all positive definite zonal spherical functions, by which the
Plancherel formula for the point-pair invariants with compact support holds.
In [2], Harish-Chandra calculated the explicit form of the Plancherel measure
on R*/W, namely, for s in R*/W, and in A ,
(20) ’() d [e(s) - ds

where c(s) is a function, which occurs in the leading term of the asymptotic
expansion of the corresponding positive definite zonal spherical function

and ds is the Euclidean measure on R*/W. With this measure, the inverse
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of the Selberg transform holds for a certain class, I0 of point-pair invariants
on X X X. Let J be the largest class of functions for which the inverse of
the Selberg transform holds with respect to the explicit Plancherel measure
(20). Thus for the functions k(x, y) in .I n J, we shall have the inverse
transform:

y) c(s) - ds/(x, y) n /w

h(),) wx(x, y) 2 (),)

where n is the order of the Weyl group W, t(k) dh (1/m)gt’(k) dh and

(s) h(a) f ]C(Xo y)oo,(y, Xo) dy.

Using this inverse form, the equation (14), resulted from the proposition,
and the fact that x(x0, x0) x(x0) 1, we obtain the required integral
formula:

(21)
lim{ 1A(-)h(h)}av- h(X)(Xo, x0)e(X) dX

h(h)2(h)

In summary, we have established a density theorem on spectra of the
ollowing kind:

THEOREM. Let G, F and A(") be defined as in (I), and @r the space of all
the Selberg transforms of t nJ. Then for a given function (s) of defined
on C/W, it follows that

limIva),i A(-)
(s).] c(s)[-2ds.

III. Example
Let X {Z x + iy:y > 0} be the upper complex half plane. For

G SL(2, R)/{_-+-E} and U S0(2, R)/I+-E}, which is the isotropic sub-
group of i of X, X is identified with the homogeneous space G/U, since G
operates transitively on X from the left by

g(z) (az + b)/(cz + d)

for z in Z and g ( ) in G. Then the G-invariant Riemannian metric on
X is ds (dx - dy:)/y, hence the corresponding G-invariant measure is

See the footnote on p. 68 of [9]. As shown by Harish-Chandra in [2], the inverse
transform of the functions in the class I0 (= Io(A) in his notation) is established by using
the explicit measure (20). For the further information, see p. 780 of [5].
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dz dx dy/y and the G-invariant Laplaeian operator on X is

A y2(O/Ox + O/Oy),

which, in fact, generates the ring L of all G-invariant differential operators
onX.
The geodesic distance ’0(z, z’) between z and z’ on X is

(22)
’0(z, z’) log yy

+ 2 + (I z-- z") + 4
z-- z’l)/2

which is a point-pair invariant on X X X. Then as shown in [1] and [4],
for " ’0(i, z),

1 f02(23) cos(z) (eosh + sinh f.eos 0) "-1/2 dO

is a zonal spherical function. Incidentally, the equation (23) justifies
(R) C/W C/{:t=1} C. Since the eigen-values {X} of the Laplacian
operator zX, having the positive definite zonal spherical functions as the eigen-
functions, are the non-positive real numbers, the equation, s -} X,
which comes from

Acos y (O:cos/Ox + Ocos/Oy2) (s- -}) cos X. co

gives us the correspondence

and
IX} (-, 0] +- {cos} [-1/2-, 1/21 u JR,

in other words, the space Z of the positive definite zonal spherical functions
on X is identified with [-1/2, 1/2] u iR and the subspace P of Z which corresponds
to the principal series is bijective to iR/W.

If we restrict ourselves to the correspondence

then we actually have the equation X -r -} where r Is I. Any
point-pair invariant ]c(z, z’) on X X is to be of the form k(t), where

]z-- z’[/yy’withImz yandImz’ y’. Leth(X) be theSelberg
transform of ]c(t) and put (r) h(-r 1/4). Then as shown in [9], we
have the following relation" for r log y’/y),

(24) lc(t) --1 dg(rt)/X/’w- t,
7

where g() (1/2r)f2. exp (-irn).h(r) dr and w e -t- e-’ 2. Now
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using the fact that ( r) (r) and substituting 0 in (24), we obtain
the density formula

(25)

1 (r) .r.tanh (vr) dr

h(X).tanh (.// X --) dX.
471" 1/4
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