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1. Introduction
Let X denote the B-space of all bounded and uniformly continuous functions

rom the real line E1 into the set C of all complex numbers. Suppose p is a
function from E1 into E which has uniformly bounded difference quotients,
and let F(p) denote the class of all functions from E into C whichare differ-
entiable at every non-zero of p. For eachx in F(p), letx* be defined onE by
$

Xx (s) (s) ifp(s) O,x*(s) 0ifp(s) O. LetDdenotethelinear
subspace of X consisting of all x in X such that x is in F(p) and px* is in X,
and let A denote the linear transformation from D into X defined by Ax px*.
Let D denote the linear subspace of X consisting of all x in D for which Ax is
in D, and let A denote the linear transformation from D into X defined by
Ax A(Ax). Various properties are developed for the transformations
A, A, A + Q, and A PA Q, where P and Q denote bounded linear trans-
formations from X into X, and the results have applications to partial and
ordinary differential equations. The results all carry over if X is taken to be
the B-space o f all bounded and uniformly continuous complex-valued functions
defined on an interval [a, b] if p(a) p(b) 0, [a, )if p(a) 0, or
(-- , b] if p(b) O.
[ost of the main results require that p be bounded and are obtained by

first establishing the fact that A is the infinitesimal generator of a strongly
continuous group [T(t), < < ] of bounded operators in X and giving
a simple formula for T(t). This yields the fact that A is the infinitesimal
generator of a strongly continuous semi-group [V(t), 0

_
< of bounded

operators in X and a formula for V(t). The theory of semi-groups of oper-
ators is discussed by Dunford and Schwartz in [2] and more completely by
Hille and Phillips in [4]. In this paper, as in [2], the term "strongly con-
tinuous" means belonging to the class (C, 0) of [4]. In some of the applica-
tions to differential equations, advanced calculus methods are used to sharpen
the results beyond what the semi-group theory alone would yield.
Glazman [3], Stone [5], and Weyl [6] have treated similar singular differ-

ential operators. They considered the differential operators as operators in a
Hilbert space of Lebesgue square-integrable functions and allowed singularites
to occur only at the end points of the domain of the functions in the space. In
this paper, singularities (even intervals of them) are allowed to occur within
the interval on which the functions considered are defined, but the results are
not as complete.
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2. An ordinary differential equation
Let K denote an upper bound for the difference quotients of p. E. denotes

the real number plane, and for any real or complex-valued unction defined on
a subset of E., the subscripts 1 and 2 denote partial derivatives. Let G(p)
denote the class of all functions from E2 into C such that gl(s, t) exists if
p(s) O, and for each g in G(p), let g’ be defined on E2 by g(s, t) g(s, t)
if p(s) O, g(s, t) 0 if p(s) 0. Observe that p satisfies the following
conditions.

(S, 1) If J is a bounded open interval containing no zeroes of p but having
a zero of p for one of its end points, then p- is not integrable on J.

(S, 2) If J is an unbounded interval containing no zeroes of p, then p- is
not integrable on J.

It is perhaps of intersest to compare these conditions with [5, Th. 10.11, p.
458] and [3, eq. (4), p. 10].

2.1 LEMMA. If S is in E then there is only one function f from E into E
such that f(O) s and f’ p(f).
unless p s O, and

Iff is such a function then p (f) has no zeroes

fy(t) P-(2.1.1)

for all if p(s) O.

Proof. Suppose s is in E. There is an open interval Q containing 0 such
that If(0) s, f’ p(f) has a unique solution on Q, [1, Th. 2.3, p. 10]. Let
J denote the maximal such open interval, and let f denote the function from J
into E which satisfies f(O) s, f’ p(f). If p(s) O, then J E and
f(t) s for all t. Suppose p(s) O. Then for sufficiently small t,

f(t)

0 p(f(t)) f’(t) and p-l= t.

Condition (S, 1) now shows that p(f) has no zeroes on j so that (2.1.1)
holds for all in J. If J is bounded on the right, then it follows from (2.1.1)
and (S, 2) that f(t) remains bounded as approaches b, the right endpoint of
J. Therefore, if a is a negative number in J, then the closure of f{ (a, b)} is
contained in an open interval on which p is bounded, so that J is not maximal
by [1, Th. 4.1, p. 15]. Similarly, J is not bounded to the left.

2.2. DEFINITION. Let y denote the function from E2 into E which satisfies
y p(y), y(s, O) s.

2.3. LEMMA. y is continuous, and

(2.3.1) ]y(s,t) y(so,t)l

_
Is-- so[exp(K[tl) for all S, so,t.
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If p is bounded, then

(2.3.2) y(s,t) y(s, to)l

_
P ll’l to for all s, t, to

Proof. (2.3.1) follows from [1, Th. 2.1, p. 8]. The continuity of y follows
from (2.3.1) and the fact that y(so, ") is continuous for all so. (2.3.2) is
trivial.

2.4. LEMMA. f p s O, then p y s, )) has no zeroes, and
y(s’t)

(2.4.1) p- for all

Proof. This follows from Lemma 2.1 and the definition of y.

2.5. LEMM. y is "in G(p), and

(2.5.1) y(s, t) p(s)y(s, t) for all (s,

If p (s) 0 and p’ (s) exists, then

yl(s, t) exp (tp’ s for all t.

Proof. If p(s) 0, then y(s, t) s for all t. Suppose p(so) 0; let
denote the maximal open interval containing so but no zeroes of p, let a be de-
fined on J by

(8) p-l,

and let fl denote the inverse of a. By (S, 1) and (S, 2), has domain
has a continuous nonvanishing derivative on J, so that has a continuous
derivative on E1. Let M denote the strip consisting of all (s, t) with s in J.
By (2.4.1),

a(y(s,t) a(s) and y(s,t) (a(s) + t)

for all (s, t) in M. Therefore, yl(S, t) exists for all (s, t) in M. (2.51) now
follows from (2.4.1).

If p(u) 0, and p’(u) exists, then

(y(s, t) u)/(s u) exp tp’(u) q- e(y(s, .))

for all and all s u, where

e(v) p(v)/(v u) p’(u)
for v u, e(u) 0.

2.6. LEptA. y(y(s, u), t) y(s, U + t) for all s, u, t.

Proof. Let
g(t) y(y(s, u), t), h(t) y(s, u q- t).
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Then

and

g’(t) y2(y(s, u)t) p(g(t)),

h’(t) y2(s, u + t) p(h(t)),

g(O) y(y(s, u), O) y(s, u) h(O).

2.7. Remarl. If J is an interval [a, b] with p(a) p(b) O, an interval
[a, with p(a) O, or an interval (- , b] with p(b) O, then Lemma 2.4
shows that y(s, t) is in J for all if s is in J. In the theorems to follow, it may
be noted that this fact makes the theorem carry over for functions defined on
J rather than on E1 or on J X E1 rather than

3. A partial differential equation

Here the results of Section 2 are applied to a partial differential equation.
This is the only one of the main results which does not depend on the semi-
group theory and the only one which does not require that p be bounded.

3.1. THEOREM. If X is in F(p) and px* is continuous, then there is only one

function g in G(p) such that g2 is continuous and

t) t)

.for all s, g s, O) x s for all s.

Proof. The function g defined on E2 by g(s, t) x(y(s, t) is as required.
Suppose and are two such functions, and let -7. Then is in

G(p), 42 is continuous,
42(s, t) p(s)O(s, t)

for all (s, t), and 4(s, 0) 0 for all s.
If p(s) 0, then (s, t) 0 for all t. Suppose p(so) O, and take J, a, ,

and M as in the proof of Lemma 2.5. Let

O(u, t) O((a(u) t), t)

for all (u, t) in M. Since 1 and 2 exist and are continuous on M, then 01 and
02 exist and are continuous on M. Also,

(s, t) O(y(s, t), t)

for all (s, t) in M. Some applications of the chain rule for partial derivatives
yields the fact that is identically zero on M.

3.2. Remarlc. The function g (s, t) x (y (s, t) is bounded if x is bounded
and continuous if x is continuous. Moreover, g (s, t) exists if x’ (s) and p’ (s)
exist, even if p (s) 0.



4. Semi-groups
For the rest of the paper, p is assumed to be bounded. For each real t, let

T(t) denote the transformation with domain X defined by T(t)x x(y(., t) ).
By (2.3.1), T(t)x is in X for each x in X and in E. Clearly, T(t) is a
bounded operator in Z and T(t)11 -< 1 for each real t.

4.1. THEOREI. [T(t), --m < < ] is a strongly continuous group of
operators with infinitesimal generator A.

Proof. By Lemma 2.6, [T(t)] is a group, and by (2.3.2), [T(t)] is strongly
continuous. For each h > 0, let Ah (T(h) I)/h.

If x is in D and p(s) 0, then

[Ax](s) [Ax](s) O.

If x is in D, p(s) O, and h > 0, then

[Ax](s) -[Ax](s) Re [[Ax](y(s,h))} + iIm {[Ax](y(s,h))} -[Ax](s)

for some h, h in (0, h) by the mean vlue theorem for derivatives.
Therefore, by (2.3.2),

limlldx- Ax 0
for all x in D.

Conversely, if x is in X, z is in X, nd

limllAnx- zl] 0,

thenz(s) 0ifp(s) 0, andforp(s) 0,

lim [x(y(s, h) x(s)]/[y(s, h) s]

exists and is equal to z(s)/y:(s, 0), so that z px* x is in D, and z Ax

4.2. THEOREM. f Re (k) 0, then k is in the resolvent set of A,

]1R(, A)I] _< IRe (k)[-1,
and R(, A is given by

A)z](s) fo e-Xtx(y(s’ t) dtJR(X,

for Re (h) > 0, and

for Re ()) <: 0.

Proof. [T(t), 0 _< < ] is strongly continuous semi-group with in-
finitesimu generator A, [T(--t), 0 _< < ] is strongly continuous semi-
group with infinitesimal generator A, and , in p( A implies that is in
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p(A) and R(),, A) --R(--k, --A). Thus [2, Th. 11, p. 822] implies every-
thing but the inequality, which follows from the formulas.

4.3. THEOREM. If Q is a bounded operator in X, then A Q is the in-
finitesimal generator of a strongly continuous group [T(t, Q), < < ] of
operators in X such that

T(t, Q)ll exp (] I’ll Q
for all t, the resolvent set of A + Q includes all such that Re ()[ > Q ]l, and

R(, A + Q)l (I Re (h)l- Q ])-
for IRe ()[ > Q ]l.

Proof. If IRe ()] > Q [[, then

I- A Q (I- QR(, A))(XI- A)

so that I A Q is invertible nd

R(, A + Q) R(h, A)(I QR(, A))-1,
R(X, A)]] IRe (X)l-i(1 Q II’[ Re (h)l-) -1

([ Re ()[ Q [)-.
Since A is closed and D is dense by [2, Lemma 8, p. 620], the rest follows from

[2, Cor. 17, p. 628].

4.4. Remark. [2, Th. 19, p. 631] gives a construction for T(t, Q). Also, see
(E) through (El0) [4, p. 354]. Aside from the formula given for R (k, A + Q)
in the bove proof, one has the series

R(k, A) [QR(, A )]

for the formula of [2, Th. 11, p. 622].

4.5. THEOREM. A is the infinitesimal generator of a strongly continuous semi-
group of operators (which we shall denote by [V(t), 0 < ]) such that
V l fort O, and

(.5.1) V(r)z (4r)-/ exp (--t/4r)T()z d

for r > 0, z i X. The reolven e of A inclde all X ch ha Re X > 0,
R(X,/)ll Re (x)-1 for e (k) > 0, and

(4.5.2) R(X, A)z (X)-/ exp (-i1 x)()z

for X > O, z i X.

Proof. D is dense in X by [, Th. 10.a., p. a08] and A is closed by
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[2, Th. 7, p. 602]. If h > 0, then a/h and -a/h are in p(A) and

hi-- A -(hI- A)(-hI-- A)

so that I A is invertible and

R(k, A) -R(-, A)R(, A),

R(X, A)
Therefore, by [2, Cot. 14, p. 626], A generates a strongly continuous semi-

group[V(t),0 < ]suchthat V(t)[[ l fort 0. By[2, Th. 11,
p. 622] we have that is in p(A) and R(, A)[] Re ()- if Re () > 0.
The integral operator U of (4.5.2) is simply

U (4)-[R(V, A) R V, A )]

(see Theorem 4.2), so that U AU I, U R(, A). Consulting a
tble of Laplace transforms, one obtains

(X)-z= exp --! Va) exp Xr) exp t14r) (r)-z= dr.

Substituting nd interchanging the order of integration, one obtains

exp {: expR(k, A=)x (-kr) (--t=/4r) (4rr)-=T(t)x d dr.

(4.5.1) now follows from [2, Cor. 16, p. 627].

4.6. THEOREM. U P and Q are bounded operators in X, then

A+PA +Q

is the infinitesimal generator of a strongly continuous semi-group of operators in
X (which we shall denote by IV(t, P, Q), 0 < m ]).

Proof. Ur > 0 and x is in D, then

AV(r)z (4r)- (/2r) exp (-/4r)T(t)z d,

AV(r)X X (4r)-/ t/2r [exp (-te/4r) dt

The conclusion follows from [2, Th. 19, p. 631].

4.7. THEOriES. If P and Q are bounded operators in X, > P [, and

)-V(t, P, Q)[1 (1 exp (t[ + Q ]](1 )-])

fort O, and if P O, we may talce w 0, O.
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Proof. For each r > 0, PAV(r) has a unique extension to a bounded oper-
ator (which we shall denote by W(r)) defined on all of X. For > 0, let
x(t) V(t)[I, p(t)
Then x(t)

_
1 and (t) P (t)-1/2 for > 0. Let () ,

(n+l) (n) * , X(0) X, X
(n) ’b(n)x *, where (.) denotes convolution, see

[2, Def. 23, pp. 633, 634].
By [2, Th. 19, p. 631], V(t, P, 0) is given by

V(t, P, O) S,(t),

where by [2, eq. (iii), p. 636], S,(t)]] x(n)(t).
If w > I]P , P -/, then

e-t(t) at P ()-/ e-tC/ dt

-1/][P[[ y < 1.

(o) (t) yet. If x(n) (t) net, then

ntx("+" t) < e-"(s) ds "+e.
Therefore S,(t)[[ ynet for each n and each 0, so that

v(t, P, o)1 5 (1 )-et.
If Re () > w, then is in o(A + PA), and

R(, A + PA)" 5 (1 )-(ne (X) )-" for n , Z, ,...
by [2, Lemma 12, p. 623].

If Re (X) > + Q 1 )-1, then

XI A- PA Q (I- QR(X, A + PA))(XI- A- PA)

so that XI A PA Q is invertible and

R(x, A + PA + Q) n(x, A + PA)( QR(x, A + PA))-.
II( QR (x, A + ON) )-n (1 Q ]](Re (x) )- 1 )-)-’
so that

R(X, A + PA + Q)" (1 )-1[ (X) Q I1(1

The inequality for V(t, P, Q)]I is now established. If P 0, then an argu-
ment similar to the one given for Theorem 4.3 may be applied to show that we
may takex= 0,= 0.

.8. TEORM. f P and Q are bounded oprator in X, > P ,
= P I-/,andRe() > + Q I1(1 -)-,hen isinp(Ae+ PA +Q)

and
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]l R(, A + PA + Q)n <_ (1 5,)-1IRe (}) 0 Q II( 1 5’)-’]
for n 1,2,3, .... If P O, we may take w 0, O.

Proof. This follows immediately from Theorem 4.7.

4.9. THEOREM. [f P and Q are bounded operators in X, then

R(, A + PA) R(, A)(I PAR(, A))-
R(, A) [PAR(, A)]

> P Ii ;
R(, A + PA + Q) R(, A)[I- (PA + Q)R(, A)]-

R(k, A) [(PA + Q)R(h, A)]"

if Re () > Q + p Re ()/; and

R(,A+ PA + Q)= R(X, A + PA)[I- QR(, A + PA)]-
R(, A + PA) [QR(, A + PA)]

if > P , -/,]P]] Re () > + ]]Q](1 )-,andifP =0,
we can tae w 0, O.

Proof. The range of R(h, A) is D, so that the domain of AR(k, A)
isallofX. If Re(k) > IP],then

PAR(h,A)x e-XtW(t)x dt P x Re (h) -1/.

This establishes the first and the second formula. The inequalities of Theorem
4.8 establish the third formula.

4.10. Remark. The perturbed semi-groups can be constructed as in [2,
Th. 19, p. 631] and then used to get the perturbed resolvents as in [2, Th. 11,
p. 622]. Also, the perturbed resolvents may be constructed as in Theorem
4.9 and then used to get the perturbed semi-group by means of one of the
formulas (E) thru (El0) [4, p. 354].

5. Applications
Here the results of Section 4 are applied to a partial differential equation,

some ordinary differential equations, and an abstract Cauchy problem [4,
pp. 617-622].

5.1. THEOnE. U q is in X and x is in D, then there is only one function g
in G(p) such that g and g are continuous and

g:(s, t) p(s) 7(s, t) + q(s)g(s, t)

for all (s, t), g (s, O) x (s) for all s.
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Proof. Let Q denote the operator defined on X by Qx qx, and let

[T(t,Q),- < < ]
denote the group generated by A + Q. The function g defined on E2 by
g(s, t) [T(t, Q)X](s) is as required. The uniqueness claim may be es-
tablished by an argument similar to the one given for Theorem 3.1.

5.2. THEOREM. If Z is in X, q is in X, and Re (q) is bounded away from
zero, then there is only one bounded function x in F(p) such that px* + qx z.

Proof. Let d denote g.l.b. [Re (q)]. If is a real number having the
same sign as Re (q) and > q [12/2 d, then q ), < ] I. Let Q denote
the operator defined on X by Qx qx Xx for some such . Then

x -R(-h, A + Q)z
is as required.
Suppose and are two bounded functions in F(p) satisfying

p* + q z and Pv* + qv z,

and let 7. Then is a bounded function in X(p) and pO* + q 0.
If p(x) 0, then (s) 0. Suppose p(so) # O, and let J denote the

m.ximM ooen interval containing So but no zeroes of p. Then

(s) (s0) exp q/p

for all s in,/. Conditions (S, 1) and (S, 2) now show that (s0) 0.

5.3. THEOREM. If q and z are in X, and q has a negative real part which is
bounded away from zero, then there is only one function x in D such that
p(px*) * + qx z.

Proof. Let d denote g.l.b. Re (q) I. If X > q [12/2 d, then q + X < k.
Le Q denote the operator defined on X by Qx qx + kx for some such .
Then x -R(X, A + Q)z is the only function in D having the required
property.

5.4. THEOREM. If U and v are functions in X, and there exist numbers,
o > ]1u r > O, > oo + r(1 )-1, whereat u llo-1/2such that the
values of v all lie in the circular dislc with center --, radius r, then there is only
one function x in D such that p(px*) * + upx* + vx z.

Proof. Let P and Q denote the operators defined on X by Px ux,
andqx vx + Xx, respectively. ThenX > 0 + IIQI[(1 /)-1, so that
x -R(X, A + PA + Q)z is the only function in D having the required
property.

5.5. THEOREM. If P and Q are bounded operators in X and x is in D,
then there is only one function from [0, into D such that f is strongly con-
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tinuously differentiable as a function from [0, into X, f(O) x, and

f’(t) (A + PA + Q)f(t) for all >_ O.

Proof. f(t) V(t, P, Q)x is the only such function; see the corollary of
[4, Th. 23.8.1, p. 622].

5.6. Remarlc. The results of Section 4 give properties and constructions of
the solutions to the equations considered in this section.

:BIBLIOGRAPHY

1. E. A. CODDINGTON AND N. LEVINSON, Theory of ordinary differential equations, New
York, McGraw-Hill, 1955.

2. N. DUNFORD AND J. SCHWARTZ, Linear operators, Part I, New York, Interscience Pub-
lishers, 1958.

3. [. M. GLAZMAN, On the theory of singular differential operators, Amer. Math. Soc.
Trans., no. 96; Uspehi Mat. Nauk, vol. 5, no. 40 (1950), pp. 102-135.

4. E. HILLE AND [. S. )HILLI1)S, Functional analysis and semi-groups, revised ed., Amer.
Math. Soc. Colloquium Publications, vol. XXXI, 1957.

5. M. H. STON, Linear transformations in Hilbert space and their applications to analysis,
Math. Soc. Colloquium Publications, vol. XV, 1932.

6. H. WEv, ber gewShnliche differential-gleichungen mit singularitdten und die zugehO-
rigen entwic]clungen, Math. Ann., vol. 68 (1910), pp. 220-269.

LOUISIANA STATE UNIVERSITY
BATON ROUGE, LOUISIANA


