THE INTEGRAL REPRESENTATION OF FUNCTIONS ON PARTS

BY
H. S. Bear!

1. Introduction

In his well known paper [7], R. 8. Martin considers the following question:
“One may ask how great generality in a domain is to be permitted if we are
to have for the domain a formula possessing the more significant features of
the Poisson-Stieltjes integral formula for the circle or the sphere.” This
question is then formalized by Martin as follows: “In a given domain is the
class of minimal functions [i.e., minimal harmonic functions] sufficiently wide
that, with a suitable normalization and a suitable definition of the linear
process involved, it contains a basis for the positive harmonic functions of
the domain.” Martin showed [7, see p. 139] that the answer is affirmative
and that the linear process can be realized by an integral, and further that
every positive harmonic function in the domain is the limit of convex combina-
tions of minimal functions.

In terms of the Krein-Milman theorem and the work of Choquet [4], we
can restate these facts as follows. For any domain, the convex set of nor-
malized positive harmonic functions H, is compact in the u.c.c. topology. If
E is the closure of the set of extreme points of Hy, then v ¢ H, if and only if
there is a positive measure u on E such that

(1) o(2) = [ Kz, e) dute),

where K(z, ¢) = e(z) for each extreme point (function) e of H, and each
point z of the domain.

Our purpose here is to extend these ideas from the class of harmonic func-
tions on a domain, to arbitrary linear spaces of bounded real functions on a
set. We first prove a theorem which outlines the topological structure in-
volved in an integral representation such as (1). We then turn to a space B
of bounded functions on a set Y, and show that Y decomposes into disjoint
“parts”’, and that there is an integral representation of the form (1) on each
part. We obtain in this way a general Poisson type of integral representa-
tion for linear spaces of bounded function.

2. A general Herglotz theorem

The classical Herglotz theorem which Martin generalized to arbitrary
domains states that % is a positive harmonic function in the open unit disc
of the complex plane if and only if there is some positive Borel measure u
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on the unit circle I' such that

(2) u(z) = [ P,0) du(o)

for all |z| < 1, where P(z, 6) is the Poisson kernel,
P(re®0) = (1 — r*)/[1 + ©* — 2r cos (6 — ¢)].

The functions P(z, 6) are continuous in 6 (8 e ') for fixed z (| 2| < 1), and
harmonic in z for fixed §. In this section we prove a purely topological version
of this theorem for an arbitrary compact set in place of T, and an arbitrary
separating set of continuous functions replacing the kernels P(z, 9).

Let E be an arbitrary compact Hausdorff space, and let A be a separating
family of continuous real functions on E. We give A the metric (sup-norm)
topology it has as a subset of C (E). We will say that E and A are paired
if these conditions hold, and write (8, s) = s(6) for s ¢ A and 0 ¢ E to em-
phasize that we also regard E as a family of functions on A. The
ideas of the next two lemmas are essentially known (cf. [6, p. 156]), but for
simplicity we assemble the necessary facts in the specific form we need here.

Lemma 1. If E and A are paired, then evaluation maps E homeomorphically
onto a subset of C(A) with the topology of uniform convergence on compact sub-
sets of A.

Proof. Let 6, — 6, in the given compact topology of E. We claim that
(0., s) — (8, s) uniformly for s in every compact subset of A. If 4 is a
compact subset of A, then A is equicontinuous [5, p. 233]. Hence there is a
neighborhood V of 6, such that | s(8) — s(6) | < eforallseA and all ¢ V.
In other words, if 6, ¢V, (6., s) is uniformly close to (6y, s) on A.

Lemma 2. Let E and A be paired, and S be the linear span of A in C(E), and
U* the strongly closed unit ball in S, with the w™ topology. Then U * A are
paired (and U*, S are paired) and the w* topology of U™ is homeomorphic to the
topology of uniform convergence on compact subsets of A (or S).

Proof. The set U™ is of course w* compact, and the functions in S (and
therefore A) are continuous on U™ in this topology. The sup-norm metric
that A or S has in C(E) is the same as that in C(U™). Therefore, the result
follows from the preceding lemma by replacing E by U*

We now make the additional assumption that A, hence S, contains the
constant function s, which is identically one: so(6) = 1.

Recall that evaluation maps E homeomorphically into a subset E* of U™
The space S is isomorphic to all w* continuous linear functionals on S*,
and this isomorphism is an isometry if the functionals are restricted to the
closed convex hull of E* in U™ [2]. We call this closed convex hull, 7y,
the carrier of S, and it is shown in [2], or it can be seen from the Hahn-Bénach
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theorem and the Riesz representation theorem, that
Ts = (B*Y = {(FeS*:F(1) = | F| = 1}.

With reference to the pairing of U™ and A, E* is also a subset of C(A) with
the u.c.c. topology, and this of course coincides with the embedding of E
in C'(A) from the pairing of E and A. Since the w™ topology in U™ coincides
with the u.c.c. topology in C(A), the w™* closed convex hull T is linearly
homeomorphic to the u.c.c. closed convex hull of E* (or E) in C(A). Let Ha
denote the closed convex hull of E or E* in C(A). That is, H, is the set of all
continuous functions on A which are u.c.c. limits of convex combinations v of

the form
o(s) = 2 Ni(B:,8) = 2 Nis(8))

where 6; ¢ E, \; > 0, and > \; = 1.
We have proved the following theorem.

TrrEorREM 3. If E and A are paired and S is the linear span of A in C(E),
then the carrier Ts of S is linearly homeomorphic to the u.c.c. closed convex hull
Hy of E in C(A). A continuous function veC(A) is in Ha if and only if
there is a unique F € S* such that F(1) = | F | = 1 and v(s) = F(s) for all
seA.

For se A and 6 € E, let us write K(s, ) = s(0) to emphasize the similarity
with (2). For each F ¢ 8¥, there is a positive Borel measure u on E which
represents F for S. Hence we have the following abstract form of Herglotz
theorem as a corollary of Theorem 3 (cf. {1 Thm 6]).

CororLARY. If E and A are paired and Ha is the u.c.c. closed convex hull
of E mn C(A), then ve Ha if and only if there is a positive Borel probability
measure u on B such that for all s € A,

(3) v(s) = LK(s, 0) du(6).

3. The parts of a set

Let Y be any set, and B a separating linear space of bounded real functions
on Y, containing the constants. In [2] we introduced the notion of a part
of a compact space X with respect to a linear subspace of C(X), and showed
that this was a generalization of the idea of Gleason part for a function
algebra. We now extend this idea to the space B of bounded functions on Y.

For points z, y e Y we write x ~ y(a) if and only if

(4) 1/a < u(z)/u(y) <a

for all positive functions u ¢ B. We write x ~ y if £ ~ y(a) for some number a.
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It is easy to check that

(i) z~2z(a)forala > 1
(ii) « ~ y(a) implies y ~ z(a)
(ili) « ~ y(a) and y ~ 2(b) implies x ~ z(ab).

It follows that ~ is an equivalence relation on Y, and we call the equivalenc
classes the parts of Y induced by B. For points z, y in the same part we defire

(5) R(z, y) = inf {a:1/a < u(z)/u(y) < a all positive u ¢ B}.
From (i), (i), (iii) above it follows that

(1) R(x,z) = land R(x,y) > 1ifz =y
(i) R(z,y) = R(y, z)
(ii) R(z, y)R(y,2) = R(x, 2).

We let
(6) d(z,y) = log R(z, y)

for  and y in the same part, and note that d is a metric on each part.
LEmMmA 4.  The functions in B are uniformly d-continuous on each part of Y.
Proof. First let u be a positive function in B, and « ~ y. Then

1 u(x)
SRy 'S

—[R(z — 1] 2\
Hence for v > 0, and z ~ y, we have

u@) _ |

o) < R(z, y) -1,

and consequently

(7) Ju(z) — u(y) | < u(y)B(z,y) — 1.

Now let u be any function in B and let M be a constant such that w + M > 0.
Then from (7) we obtain

[u(e) — u(y) | < [u(@) + MlR(z,y) — 1] < [|u] + MR(z,y) — 1].

This last says that « is uniformly continuous with respect to d.
Now fix a part A of Y, and a point z0e A. We consider the normalized
positive functions in B, restricted to A; let

H={u|A:ueB,u>0,u(z) = 1}.

A word of caution is necessary here. The set A is a part of ¥ with respect to
B as a subspace of C(Y). If we consider the restriction B | A, then A may
not be a single part with respect to B | A. For example, let B be all affine
linear functions on a plane set Y consisting of the vertices of a triangle, and a
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closed segment I in the interior of the triangle. The segment is then one part
of Y with respect to B, but there are three parts of the segment (the two end
points and the open segment) with respect to B | I.

LemMA 5. The topology of uniform convergence on d-compact subsets of A
coincides on H and H with the pointwise topology. The functions in H are
d-continuous, and H 1is compact.

Proof. We show that H is equicontinuous with respect to d at each z ¢ A.
If ueH, then 0 < u(z) < u(z)R(z, 20) = R(z, z0). For yeA, we obtain
from (7) (with z and y interchanged) that

[u(@) — u(y) | < w(@)[R(z,y) — 1] < B(z, 20)[E(, y) — 1].

Therefore H is d-equicontinuous on A, and the same is true for the pointwise
closure. Moreover, the u.c.c. (d) topology coincides with the pointwise
topology [5, p. 232]. It follows from the Tychonoff theorem that H is com-
pact, since H is contained in the compact product ®{[0, R(x, 20)] : = € A}.

Since H is convex and compact in a locally convex topology, H has extreme
points and is the closed convex hull of these extreme points. Let E be the
(compact) closure of the extreme points of H. The set E is of course d-equi-
continuous on A, and therefore K (x, ¢) = e(x) is jointly continuous on A X E,
where A has the d-topology [5, p. 232].

TuEOREM 6. The d-topology on A is homeomorphic to the sup-norm topology
A has as a subset of C(E).

Proof. The statement is that d(z,, ) — 0 if and only if e(z,) — e(x)
uniformly for ¢ e E.

First assume that | e(z,) — e(zx) | < eforallee Eif n > N. Let ue(E):
sayu = D Ne;with\; > 0, D, \; = 1, and e;e E. Then if n > N,

@) — u(@) | = | 2 Neza) — 20 Nei(®) |
< Dnilen) —ex) | < 2 Nie = e
If ve H = (E)”, then for each n there is u, ¢ (E) such that
| un(zn) — v(zn) | < & and |u.(z) —ov(z)| < &

It follows that | v(2,) — v(z) | < 3¢ if » > N. Thus uniform convergence
of x, on E implies uniform convergence on H. Since for the fixed point z,
v(z) > 0 for all v in the compact space H, it follows that v(z) > ¢ > 0 for
all ve H. Hence v(x,) > c¢/2 for all sufficiently large n and all v ¢ H, and
v(x,)/v(xz) — 1 uniformly forv e H. For any positive w ¢ B, w/w(z) ¢ H and

w(@a) _ w@)/wz)

w)  w@)/w(z) ’
and the convergence is independent of w. Hence R(z,, ) — 1,and
d(x, , ¢) — 0 if z, — « uniformly on E.
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Now suppose that d(z,, ) — 0. For u e H we have from (7)
[u(@a) — u(x) | < uw(@)[B(2n, x) — 1] < B(x, 20)[R (20, 2) — 1],

and z, — z uniformly on H, and clearly also on H, and therefore on E C H.

Now we are in a position to return to the setting of Theorem 3. We have a
compact Hausdorff space E, and a separating family A < C(E). The func-
tion identically one is in A, since e(29) = 1foralle e E. The set A comes with a
metric d defined in terms of B. This metric d is topologically equivalent to
the sup-norm metric A has in C(E), and it is this latter topology which is
assumed for A in Section 2. The u.c.c. (d) closed convex hull of E in C(A)
is H by the Krein-Milman Theorem. From Theorem 3, we also know that A
is linearly homeomorphic to Ts, where S is the linear span of A in C(E), and
T is the set of positive linear functionals of norm one on S. The correspond-
ence is given as follows: v ¢ I if and only if there is F ¢ Ts such that v(s) = F(s)
for all seA < S < C(E). As usual we can extend each FeTs to C(E)
without changing the norm, and represent it with a measure u on E. In
this way we obtain for each part A of ¥ an integral representation of the type
sought by Martin.

TueoreM 7. If B s a separating linear space of bounded real functions
onasetY,and 1 eB, and A is a part of Y determined by B, and
H={u|A:ueB,u>0,u(z) =1}

for some zye A, and H 1is the pointwise closure (or u.c.c. closure) of H, then
veH if and only if there is some positive Borel probability measure u on the
closure E of the set of extreme points of H such that

o(s) = [ (5,0 du(e)
for all s e A.
In particular, the development above includes the case considered by

Martin, since the defining condition (4) for a part is simply Harnack’s
inequality for positive harmonic functions in a domain.

4. The parts of a compact space

Suppose now that X is a compact space, and B is a separating linear space
of continuous real functions on X, with 1 e B. The parts of X with respect
to B have been characterized in [2] as the minimal faces of the closed convex
hull in B* of the natural embedding of X. Let us consider the case where
X = T'u A, with T the Silov boundary of B in X, and A is a single part of X.
Each s € A is represented by a measure u, on I': for all u e B,

uls) = f w(6) dus(0).

It follows from recent results of Bishop [3] that these representing measures



THE INTEGRAL REPRESENTATION OF FUNCTIONS ON PARTS 55

can be taken to be mutually absolutely continuous. (Bishop shows this for
the parts of a function algebra, but the argument works equally well here.)
If wo represents the fixed point zoe A, then du, = g, duo for some bounded
Borel measurable function ¢, . If each function g, is continuous on T', and if
B | T is uniformly dense in C'(T'), then it follows from the type of argument in
[1] that the extreme points of H are homeomorphic to T, and the functions
gs(0) act as the kernel, and that the d-topology coincides with the given
topology.

It would be interesting to know in general when the extreme points of H are
homeomorphic to T', and when the d-topology is the given topology on each
part.
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