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Introduction

The kernel of a characteristic function game was defined by M. Davis and
M. Maschler in [1]. It is proved in [1] that the kernel is a subset of the bargain-
ing set Mi); so each outcome in the kernel is "stable", in the sense defined
in [2]. Indeed, unlike the classical solution of yon Neumann and Morgen-
stern, in which a set of outcomes is considered as one solution, each particular
outcome of the bargaining set possesses its own stability. Thus, the ac-
cumulated theoretical and experimental evidence that iustifies the outcomes of
the bargaining set theory, iustifies a fortiori each single outcome of the kernel.
On the other hand there is an example (see [1, Section 6]) which indicates that
the outcomes of the kernel should not be considered as preferred to other out-
comes of Mi), since restricting the outcomes to the kernel may lead to the
omission of "reasonable" outcomes.

It would be very interesting to study the question of the exact location of
the kernel in the bargaining set M). Apparently, the kernel represents
either a specific extreme type of negotiation, or, perhaps, it can be interpreted
as a final stage of the negotiations, when the players are determined in forming
specific coalition structures. We refer the reader to [1, Section 6] and to
[5, Section 14] for heuristic information on this subject.
In addition to being a subset of M), the kernel has many interesting

mathematical properties (see [1] and [5]); for example the kernel is highly
sensitive to many possible symmetries that a game may possess [5]. This
makes the kernel a good "indicator" of certain symmetries that may exist in a
game. This paper and [6] show also that the kernel is sensitive to additive
structures of the game.
At present, however, the kernel should mainly be regarded as a tool for in-

vestigating the bargaining sets. As such it proves quite useful (see [5]). The
present paper is a contribution in this spirit. We investigate here the geo-
metrical structure of the kernels of certain classes of simple games. We con-
jecture that similar results are true for a wider class of games, and, moreover,
that they hold also for the bargaining set itself.
We now describe the contents of the paper. Section 1 supplies the necessary

definitions and Section 2 the proofs of the lemmas. The proofs of the main
results--(a) the main simple vector is an extreme point of the convex hull of
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the kernel (Theorem 3.5) and (b) the kernel of an n-person constant sum
simple game with exactly n minimal winning coalitions is star-shaped,
(Theorem 4.4)--are given in sections 3 and 4 respectively. We conjecture
that Theorem 4.4 can be generalized to cover all simple games.

Strong use is made of Isbell’s results on weighted majority constant-sum
homogeneous games in [3] and [4].
We are indebted to Professor R. J. Aumann for a stimulating discussion

concerning Theorem 3.5.

1. Definitions
A simple game is a pair (N, W), where N {1, 2, n} is a set with n

members, and W is a set of subsets of N. The members of N are called
players; subsets of N are termed coalitions. The elements of W are termed
winning coalitions. The set of the minimal winning coalitions is denoted by
Wm"
A simple game (N, W) is constant-sum if a coalition S e W :N S W.

A constant-sum simple game has homogeneous weights if there exist n positive
weights w, w and a number q, such that

SWc=swi => q and SWmt=*w q.

q is called a quota.
Constant-sum games with homogeneous weights were defined by Von

Neumann and Morgenstern in [7].
Let (N, W) be a constant-sum game with homogeneous weights. We shall

Mways assume that there are no dummy players, so that each player is in at
lease one minimal winning set. It is known (see [3]) that there exist minimum
integer homogeneous weights for (N, W), which are unique. We shall use
the notation [wl, w] for (N, W), where wl, w are the minimum
integer weights. We shll also assume that the weights are given in non-
decreasing order, i.e. that w _<_ <= w.
A quota that corresponds to w, w is 1/2(1 -t- = w)..
Let G (N, W) be a constant-sum game with homogeneous weights. The

characteristic function of G is the function v defined on the subsets of N by
v(S) lifSeW, andv(S) O if S W.
An imputation is an n-tuple of rel numbers that satisfies x >= 0,

i 1, ,n, and x 1il

Let x be an imputation and i and j different players. For S N we denote
e(S, x) e(S) v(S) s x Also we denote

W. {Q: QeW, ieQ and jQ} and

s.(x) s. max {e(T) T e W}.

i outweighs j, written i )> j, if x. > 0 and s. > s.. The imputation x is
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balanced if there exists no pair of players/ and such that/ > 1. The kernel
of the game G is the set of all balanced imputations.

2. Some properties of the s. functions
Let [w,..., w,] be an n-person constant-sum game with homogeneous

weights. Two players ure symmetric if and only if they have equal weights.
We denote by T, T the different classes of symmetric players, ar-
ranged in increasing order of weights.

LEMMA 2.1. Let x be an imputation in the ternel; if i e T, j T and
k >_ h, then x >-_ xi.

Proof. Suppose x > x.. Let
then S e W and s >- e(S) > e(S); so j outweighs i, which is impossible.
Hence we conclude that x. >= x.
A proof of a more general result is given in [5].
Let i and j be two different players; we denote

W. {Q QeW", ieQ and JQI.

LEMMA 2.2. If i and j are two different players then W. is not empty.

A proof of this result cn be found in [4, p. 438]. See also [5].

LEMMX 2.3. Let x be an imputation in the kernel; if i e T, j T_ and
either x 0 or s is attained by a coalition S e W’ then there exist players

andp, p such that w, w, u 1, t, w -’= w,,
Xi Eu--1 Xpu

Proof. Let Q S if x. > 0, nd n rbitrry set in W. otherwise. Let
R= (Q- {j})u{i}. ReW.. SinceQ- {j}W, RcontinssetReW’}.
Letp, ...,pbetheplyersofQ-- R. w =wndw < w,
u 1, ..., . Ifx. 0 then by Lemm 2.1, x 0, u 1, ..., , nd
x > 0 Ifx. > 0thenwehvee(Q) s s > e(R),u=l Xp

follows.nd the inequality x >= =_ x,

Let Se We denote d(S) min {h" TnS )} A coalition
WPe is obtained from S by substitution if P (S- lit) Q, where

ieT(s)SandQ U{T’g < d(S)}. We remark that ifS, P, ReW,
P is obtained from S by substitution, nd R is obtuined from P by substitu-
tion, then R is obtained from S by substitution. These definitions and
remarks will be useful in whut follows.

LEMMA 2.4. Let x be an imputation; if i and j are different players, then
either there is an Se W. such that s e(S), or there is an R Wi],

WR {i} u Ro, Ro and wt > w for all Ro, such that s e(R)

The proof, which is straightforward, is omitted.
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LEMMA 2.5. Let x be an inputation in the ternel, and let Ta+l, ...,
a ->- O, be the classes of the players that are assigned positive payments, in x.
If i e Th and j Tk a + 1 <= h < l, then both si and sj are attained by minimal
winning coalitions.

Proof. If m 1 >= a + 1, i e Tm_l and j e Tm then, by Lemma 2.4, either
si. is attained by a coalition in W’., or there is an R e W., R {i} u R0,
R0 e Wn, R0 c T, such that s e(R). If the second possibility holds
then, since the players of T are symmetric, we have that

si >= e(Ro) > e(R)

which is impossible; so si. is attained by a coalition in W’.. The proof that
s. is attained by a minimal winning coalition follows directly from Lemma 2.4.
We continue the proof by induction on h. We assume that if h > h ->

a + 1, /c > h, i Th and j e Tk, then both s. and s. are attained in W;
we shall show that this is true also for i e T and j e T, where k > h. This
will be done by induction on/. So we assume now that if h + 1 _< /c < /%
i e T and j f/’, then s. and s. are attained by minimal winning coalitions.
We shall prove now that if i e T and j e T, then s is attained in W’..
Suppose there is no R e W’. such that si e(R); by Lemma 2.4 there is an
S such that s e(S) S {i}uS0 and S0e From the existence of
such an S we shall derive a contradiction. Denote e(S) and e(So) .

+ x. Our first step will be to show

(2.5.1) If QeW, e(Q) >- t and Qn(ToTo... oT) 0, then

Q Ta+ u Ta+2 u J T.
To prove (2.5.1) we shall show firstly that Q n (T u Tk) 0. Assume,

perabsurdum, thatQn(ThuT) . LetreQnT() ;ifd(Q) =< h- 1
then (Q r} {i} contains a set P e W. such that e(P) s, contradicting
our assumption that s is not attained by a minimal winning coalition. If
d(Q) h + 1 let p e T()_ by our induction hypotheses s, is attained by
a coalition in W. It follows from Lemma 2.3 that there exist players

E Ep, Pt such that w =w, x > =x and w < w
u 1, ..., t. Let Q (q- {r})o{p, ..., pt}. e(Q) e(Q) and
Q n T , so Q n T is impossible. Also, by what we have already
shown d(Q) h + 1. d(Q) > d(Q). We can continue and construct a
sequence of sets Q, g 1, 2, having the same properties as Q, such that
d(Q+) < d(Q), which is absurd. So we conclude that Q n (T T) .
We proceed now to show that Q TaoT. IfQnTandT- Q,
then we can, by interchanging symmetric players, obtain a set Q that satisfies
e(Q) e(Q), i e Q and j Q. Since e(Q) > e s, this is impossible.
HenceifQnT thenQ T. Inasimilarwaywecanshowthatif
TnQ then Q Ta. Since Qn (To T) , it follows that
Q T T. We are able now to complete the proof of (2.5.1). Suppose
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there is a p (Ta+l tl tl Tk) Q. Since j e Q and x > 0 we have that
s,,j sj,, >= e(Q). Let s,, e(U). Since sij e. < e(U), iU.
If w > w then, by our first induction hypothesis, we can choose U e Wm.
But, by what we have already shown, U must contain Tk, which is absurd.
So w < w. Let U1 (U {p})u{i}. UIWi and

e(U.,) e(U) + x,- x >= + x,,- x > x e= s,

again a contradiction. Hence Q D T+ u u T and the proof of (2.5.1)
is complete. Our second step will be to show

(2.5.2) There is no coalition Q e that satisfies

Let
e(Q) >= and QD T+u...uT.

D {Q" QeW’,e(Q) >= and Q D T,+u...uT}.

We shall show that if Q e D then Q Ta+ tJ tJ T,. This will prove that
D is empty, since if Q D T+ u u T then e(Q) 0, while > 0. Assume
that each P e D contains T+ u u T+o_, and let Q e D. If T+o Q 9,
let ce Tk+o Q. s. >= e(Q), so there is a coalition U e W’. such that
si e(U) >= e(Q). SincejcU, by(2.5.1), Un(Tu...uT) I. Let
r e. U n Te(v) and p e Te(v)_l. Since s is attained by a minimal winning
coalition there exist, according to Lemma 2.3, players pt, p, w < w,
u 1, ..., such that

wmU (U {r})u{pt, ..., pt} e and e(U) ->_ e(U)

We can continue, using this method of substitution, and obtain eventually
Wcoalition U0 e such that

e(U0) >- ti and U0n(Ttu...uT) 9.

By (2.5.1), Uo Ta+. u’" u T. Now, if d(U) < lc + g then

Uo Ta+. tl tJ T+a_l

contradicting our assumption that each P eD contains this set. If
d(U) k + g then we have U0 D T+u...uT+o_; using Isbell’s in-
equality [3, p. 185] w,. <- w(T.) nu nt- w(Tk+o_- {p}) nu 1, we have

w((Tu.., uT)- Uo) >= w,- 1 >= w.
Hence (U0 {i})uTu’..uTcontains a coalitionReW. SinceiR
and e(R) >= , this contradicts (2.5.1). So we can proceed to show by in-
duction that each Q e D contains T+ u... u T, and complete the proof
of (2.5.2).
We conclude from (2.5.1) and (2.5.2) that there is no Q e W that satisfies

e(Q) >- and Q n (T u u T) . But, starting with So and using our

If F is a coalition then w(F) _.,byW.
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first induction hypothesis and Lemma 2.3, we can apply the method of sub-
stitution and obtain an S e W, such that

e(S) _-> ti and Sa(To...uT) .
So we reached the desired contradiction, and thus proved that s- is attained
by a minimal winning coalition. The proof that s. is attained in W is
similar. The proof of Lemma 2.5 is now complete.

LEMMA 2.6. Let x be a balanced imputation and let

E {S:SW",e(S) >= e(Q) forallQNI;

then S S eE} .
Proof. Suppose M l {S S e E} 0. If i e M and j M then s. > s..

Since x is balanced, x 0 for M. It follows that max {e(Q) Q e W} 0,
which is impossible since [w, ..., w] has an empty core.
A detailed proof of a more general result is given in [5].

LEMMA 2.7. Let x be a balanced imputation, and let Ta+, ’’’, T, be the
classes of the players that are assigned positive payments in x. If i e T h <- a,
and j e T k >-_ a 1, then s s and s is attained by a minimal winning
coalition.

Proof. Let E be as in Lemma 2.6. There is an SeE such thatjS.
We have that s. >- e(S u i} e(S) >= s. since x > 0, s. >= s., and there-
fore s s-. Also, if there is no R e W, such that s e(R), then, by
Lemma 2.4 there is a P {j} t P0, P0 e W, such that s e(P). Since
e(Po) <- e(S) and x > 0, e(P) < e(S) s, contradicting the equality
s. s. so s. is attained in W.
LEMMA 2.8. Let x be a balanced imputation. If i and j are different players

then s. s.
Proof. If x > 0 and x. > 0 then s. s. since x is balanced. If x 0,

let E be as in Lemma 2.6. There is an SeE such thatjS.

s. >_- e(S u {i} e(S) >_-

If x > 0 then by Lemma 2.7, s s if x. 0, the same argument shows
that s -> s., and therefore s s..
LEMMA 2.9. Let x be a balanced imputation and let T T be the classes

of the players that are assigned a zero payment in x. If i e Ta j e T h < <- a,
then s is attained by a minimal winning coalition.

Proof. We assume that if h < h < ] =< a, ieTa andjeT then s.
is attained in W, and we shall show that the same is true if i e T and j e T,
k > h. This will be done by induction on k. So we assume now that if
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h </c < /1 =< a, i e Th and j e Tkl, then s. is attained in W, and shall prove
that if i e Th and j e Tk then s. is attained by a minimal winning coalition.
If s is not attained in W, then there is a coalition S, S {j} S0, S0 e W,
such that s e(S). We shall show that the existence of a coalition S
with the above properties leads to a contradiction. Let e(S) . Our
first step is to prove

(2.9.1) If QeW, e(Q) and Q(To...oT) then Q T.
Suppose that T Q 9. By interchanging symmetric players, if

necessary, we can obtain a Q e such that iQ and e(Q) e(Q)
jQ since s is not attained in W. Let ueQn T where b
(Q {u}) {j} contains a coalition Q: e W that satisfies e(Q) e(Q),
contradicting our assumption that s is not attained by a minimal winning
coalition. Hence we conclude that Q T.
The next result that we need is

W(2.9.2) There is no Q e such that Q T and e(Q) .
Let D {Q’QeW, e(Q) and Q T}. We shall show that if

Q D then
Q T+ u T.

This will prove that D is empty, since if Q T+ u T then e(Q) O,
while we know (see the proof of Lemmas 2.6 and 2.8) that

max{e(P) "PeW} > 0.
Let

b min{g’g + 1, QeD such that T Q

and letPeD such that T P 9. If ceT Pthen, by Lemma2.7
or our second induction hypothesis, there is a coMition U in W, such that
s= e(U) e(P). SinceiU,U(To...oT) =. Letr
and p e T(v)_ then either x 0, or, by Lemma 2.5, s is attained by a
minimM winning coalition. So, according to Lemma 2.3, there exist players
p, "", p,, Wu < w, u 1, ..., t, such that

U (V- {r})o{p, ...,p,}e and e(V) e(V).

We can continue, using this method of substitution, and obtain eventually
Wa coalition U0 e such that

e(U0) and U0(To.’.oT) 0.

By (2.9.1), U0 D Ta. Now, if d(U) < b then U0 T,+o T_,
contradicting the definition of b. If d(U) b then U0 D T+I T_
using Isbell’s inequMity we have

w((To.., o T) Uo) w- 1 wi.
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Wm"Hence (U0oTlo..oTk) i} contains a coalitionRe SinceicR
and e(R) >= , this contradicts (2.9.1). This completes the proof of (2.9.2).

WIt follows from (2.9.1) and (2.9.2) that there is no Q e such that
e(Q) _>_ /t and Qn(Tlo...oTk) 0. But, starting with So and using
Lemmas 2.5 and 2.3, we can obtain by substitution a coalition $1 e Wm,
such that e(S) => ti and $1 n (T o o T) 0. So we reached the desired
contradiction and the proof is complete.

LEMMA 2.10. Let x be a balanced imputation and let TI_ ..., Ta be the
classes of the players that are assigned a zero payment in x. If for each i T
] > 1, sli is attained in W", then for all 1 < h <= rain (a,/ 1) and for each
j e Th, sji is attained by a minimal winning coalition.

Proof. Let si e(S) S e We know (see the proof of Lemmas 2.7
and 2.8) thate(S) =max{e(Q) QeW}. IfjeTh,1 <h=<min(a,k-- 1),
and j S, then S (S {1} o [j} contains a coalition S. e W. such that
e(S) e(S). sii-= e(S).

3. Extremeness of the main simple vector

Let Ewe, ..., w] be an n-person constant-sum game with homogeneous
weights. The normalized main simple vector is the vector

X (Wl, Wn)/’in---l Wi.
In this section we shall prove that x is an extreme point of the convex hull
of the kernel.

IEMMA 3.1. The normalized main simple vector x is balanced.

Proof. Since w, ..., w are homogeneous weights,

e(S) max {e(Q) Q e W}

Wm"for each S e By Lemma 2.2, for each pair of distinct players i and j
there is a minimal winning coalition that contains i and not j; so so" s.,
and x is balanced.
A proof of Lemma 3.1 is also given in [5].

LEMMA 3.2. If X is a balanced imputation then x/wi >-_ xl/w for
i= 1,...,n.

Proof. Let T1, .-., T be the classes of symmetric players. We shall
prove by induction on/c that if i T then x/wi >= x/w. If xl 0 the
inequalities follow since the x are non-negative. If x > 0, assume that the
inequalities hold for i e T, h __< ]c 1, and let r T_ and j e Tk. By Lemma
2.5, s,. is attained by a minimal winning coalition, nd therefore, by Lemma
2.3, there exist players p, ..., p such that Wu < wj, u 1, ..., t,

By our assumption > (Wpu/Wl)Xl,and Xj " Zu=lXpu. XpuWj Zu=l Wp
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and so we have
W

X3 ----> E WXl Xl
u=1%01

COROLLAIV 3.3. The maximum amount that player 1 gets in the ]cernel is
w/tw, and it is achieved only in the nornalized main simple vector.

Remarlc 3.4. The more general inequalities

x/w <= x/ <- <=
are not always satisfied by balanced imputations; e.g.(0, 0, 0, 0, 1/2, 1/2) is in the
kernel of [1, 1, 1, 1, 2, 3].

THEOREM 3.5. The normalized main simple vector is an extreme point of
the convex hull of the tcernel.

Proof. Lemma 3.1. and Corollary 3.3.

4. The kernel of partition games
Let G [wt, w] be a constant-sum game with homogeneous weights;

G is a partition game if it has exactly n minimal winning sets. Partition
games are described and discussed by Isbell in [3] and [4]. The name is due
to Isbell [4, p. 433]. Let Tt, T be the classes of symmetric players in
G. If G is a partition game then (see [3], [4]), T consists of exactly one
player, T_t has at least two players, and Tt contains also two or more players.
The minimal winning sets of G, which we shall denote by St, S, are
given by

U [(+t)/]
i=1 T2i-1

and for j-- 1, ...,m- 1,. {j} u Ui=1 Tk+2i-1
where T is the class that contains j.

Let G be a partition game. We divide W into two sets"

A IS’j m,jT,i 1 (2)/ and A W- A.
It follows from the above description of the members of W that

(i) fq {S" SAt} # 0 and f’l {S" SA.} # ft.
(ii) If S e A and P is obtained from S by substitution, then P e A..
(iii) Player 1 is in exactly two minimal winning sets’ St

LEMMA 4.1. If X is a balanced imputation then

e(S,) e(l) max {e(S)’S

Proof. LetE {S S e W", e(S) >= e(Q) for all Q e W}. We know (see
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Lemma 2.6) that [’l/S S e E} 0. Hence E intersects both A1 and A,.
From Lemmas 2.5 and 2.3, (ii) and (iii), it follows that both $1 and Sm are
in E.

COROLLARY 4.2. If X is balanced and i and j are non-symmetric players,
then si is attained by a minimal winning coalition.

Proof. It follows from Lemma 4.1, (iii) and Lemma 2.2 that sk is at-
tained by a minimal winning coalition for all ]c 1. Lemmas 2.5, 2.7, 2.9
and 2.10 complete the proof.

LEMMA 4.3. The kernel of a partition game is star-shaped.

Proof. Let G [wl, wn] be a partition game, and let

be the normalized main simple vector of G. We shall show that if x is bal-
anced then the whole segment [xx] is contained in the kernel. Let i and j
be different players, and let tx + (1 t)x, where 0 < < 1. If i and j
are symmetric then, since x x.andxi x.,

tx + (1 t)x tx + (1 t)x and s.(2) sj(2).

If i and j are not symmetric let s(x) e(P, x) and si e(Q, x). By
Corollary 4.2 we may assume that both P and Q are minimal .winning sets.
Sincee(S, x) max/e(Q, x) QeWl for allSeW", sii(x) e(P, x)
and si(x) e(Q, x). Hence sj() e(P, 4) and sli(2) e(Q, ).
By Lemma 2.8 sit(x) si(x), so s.() si(2), and the proof is complete.

THEOREM 4.4. Let G be an n-person constant-sum simple game with exactly
n minimal winning sets; then the kernel of G is star-shaped.

Proof. G is either the seven-player projective game or a partition game
(Isbell, [4]). The kernel of the seven-player projective game is known to be
star-shaped (though not convex, [5]).
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