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Introduction

In [1], M. Auslander and O. Goldman introduced the notion of a Galois
extension of a commutative ring. The study of these Galois extensions was
continued by S. Chase, D. K. Harrison and A. Rosenberg in [3] and by Harrison
in [8]. Further work by Harrison [9] indicates that the notion of a Galois
extension will have significant applications in the general theory of rings.
Throughout, K will denote a commutative ring (with 1) and S (with 1) a

faithful K-algebra. Let G be a finite group of algebra automorphisms of S.
We call S a Galois extension of K with group G in case

1. K
2. there exists xl, x yl, y e S such that for all a e G,

xa(y) 1 if a e

=0 if ae
where if H is a subgroup of G, S denotes

{xeS la(x) x for all aeH}

This paper has as its purpose the study of not necessarily commutative
Galois extensions of a commutative ring K. We show that if S is a Galois
extension of K with no central idempotents except 0 and 1 then the center of
S is left fixed by a normal subgroup of the Galois group. This reduces the
study of Galois K-algebras S to the situation where S is either commutative
or S is central over K. We concentrate here on the study of central Galois
K-algebras whose Galois group is represented by inner automorphisms. The
Galois group will always be represented by inner automorphisms in case K is a
principal ideal domain, local ring, or field. We show that any central Galois
K-algebra S whose Galois group G is represented by inner automorphisms is a
separable projective group algebra. In case K has no idempotents but 0 and
1 we employ this result to find 11 the central Galois K-algebras with an
Abelian Galois group of inner automorphisms. We conclude with an applica-
tion to the commutative theory by giving a Kummer type theorem for Abelian
extensions when appropriate roots of unity are present.
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Section

Let S be a Galois K-algebra with Galois group G and let C be the center of S.
Let

H-{aGla(x)-x forall xeC};
then we have

THEOnnM 1. If S has no central idempotents but 0 and 1, then H is a normal
subgroup of G and C Sz. Moreover C is Galois over K with group G/H and
S is Galois over C with group H.

Proof. Let G/H be defined as a group of automorphisms on S" by
aH(x) a(x). Via restriction G/H may also be viewed as a group of distinct
automorphisms on C.

Since S is a Galois extension of K, there exists Xl, x yl, y in
S so that xi a(yi) a,e ( is Kroneckers delta). Let

tr (-x) HomK (S, K)
be defined by

tr (-x)(y) tr (xy) a(xy).

{tr (--xi), YI form a dual basis for S as a K module so S is finitely generated
projective as a K module (Prop. 4.4 of [2]).

Let S (R)K S (S the opposite algebra of S) be given by - xi (R) y.
For all x S,

(x(R) 1) .x.tr(yxx) (R)y (1 (R)x)

so by Proposition 7.7 of [2] S is separable over K. By Theorem 2.3 of [1], C
is then separable over K and since C has no idempotents but 0 and 1 by
Theorem 1.3 of [3], C is a Galois extension of K with group G/H. One can

show that S" is a Galois extension of K with group G/H by employing the
definition or by a straightforward generalization of Lemma 2.2 of [3]. Let
i C - S" be the inclusion map; i commutes with the automorphisms in G/H
so by the appropriate generalization of Theorem 3.4 of [3] or by a computation
using the definition i is onto. This proves the theorem.
Examples show that the hypothesis that S contain no proper central idem-

potents is necessary. However by a generalization of the techniques de-
veloped in Theorem 7 of [8], if K has no idempotents but 0 and 1, one can

The author wishes to thank the referee for many helpful suggestions.
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write S as a direct sum of Galois extensions of K which contain no central
idempotents. In the course of the proof of Theorem 1 we showed that any
Galois K-algebra S is separable finitely generated and projective over K, this
fact will be employed in the sequel. We will now characterize the central
Galois extensions S of a commutative ring K with a Galois group G represented
by inner automorphisms on S.
U(K) will always denote the multiplicative group of units of K. We re-

call that f G X G -- U(K) is called a 2-cocycle of G in case

f(ab, c)f(a, b) f(a, bc)f(b, c)

for all a, b, c in G. A 2-coboundary q G G--> U(K) is a 2-cocycle with
the property that there is a map p G --+ U(K) so that

q(a, b) p(a)(b)p(ab)-1.

The group Z2(G, K) of 2-cocycles of G modulo the subgroup B(G, K) of
2-coboundaries is the second cohomology group of G, H(G, K). If f is a
2-cocycle in G we denote its projection in H2(G, K) by Ill and if ft is another
2-cocycle so that f’l fl we say f is cohomologous to ft.
A projective group algebra KGs is a free K-module with K basis Ua a G}

and multiplication given by aa Ua ab Ub Ola Olb Uab f a, b) where aa a K,
a, b e G and f Z2(G, K). f and g are cohomologous cocycles if and only if
KGs is isomorphic to KG under a map carrying basis elements to basis ele-
ments. We associate in this way the projective group algebras KG and the
elements of H (G, K).

Remark. It has been shown in [13] that if each element in the class group
of K has order relatively prime to the order of G and if S is a central Galois
extension of K with group G, then every element in G is inner on S.

THEOREM 2. Let S be a central Galois extension of K with group G and as-
sume all the automorphisms in G are inner on S; then S is a projective group
algebra KG.

Proof. We need the following lemma which appears to be well known; a
proof in this generality appears in [6].

LEMMA 1. Let KG be a projective group algebra and let (G: 1) denote the
number of elements in G. KG is a separable K algebra if and only if G: 1) is
a unit in K.

Now let S be a K-algebra satisfying the hypothesis of the theorem. For
each a e G there exists xl, x,, yl, y, in S so that
for allbeG. Pick UaeS, one for eachaeG, so thata(x) UaxU{1. As-
sume a Ub 0 with a e K. Then for each a e G,

0 i Xi( b Olb Ub)yi Ola Ua.
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Thus the Ua are linearly independent over K. Define

f: G a- U(K)

by f(a, b) Ua U Ua- By the ssociative law in S, f is a 2-cocycle of G
and aeG KU KGs is a subalgebra of S.
One can show that S has K rank equal to (G: 1) exactly as in Theorem 4.1

of [3]; so if K were a field, then by a dimension argument S would equal KGs.
If A is a commutative K-algebra, then as in [3] or by employing the definition,
one can see that A (R) K S is a Galois extension of A with group G. Thus for
every maximal ideal I of K, K/F[ (R) S is a central Galois extension of the
field K/PI with group G. Since K/?I (R) S is a central Galois extension of the
field K/A, by Lemma 1, (G:I) belongs to no maximal ideal of K so
(G: 1) e U(K). Since S K, KG] is central over K and we have shown
then that KG] is a central separable K-algebra. By Theorem 3.3 of [1],
S KG (R) S’ where S’ is a central separable subalgebra of S and each
element in S’ commutes with every element in KG. But if x S and
Ua x xU for all a G then x e S= KsoS’=KandS= KGs
We can prove a converse to Theorem 2.

THEOnE 3. Let G be a finite group and KGf a projective group algebra which
is central separable over K; then KG is a Galois extension of K with group G,
where if a G and U is the basis element ofKG] corresponding to a, then a(x)
Ua xU- for all x e KG]

Proof. Since KGs is central, K. e K is exactly the fixed subring of KG]
under action by the elements in G. We show that the set

I(G:I)-U-, U ae G}

satisfy the condition of the definition. To do this let tre Hom (KG], K) be
given by

tr (x) aeG a(x) ’.aeG Ua xU1.
For any b e G,

_aeG V (V’. 1)-lb (Va) aeG a(Cb)V-1 G: 1 )-1.
ae a(Vb) tr (Ub) eKe.

On the other hand, a(U) Uaa-1 a where a e U(K) and aba-1 e if and
only ifb e. Thustr(U) 0unlessb eand

_aeG U-I(G:I)-lb(Ua) tr (Ub)UI(G:I)- e,b.

This completes the proof.

Section 2
If S and S’ are Galois extensions of K with group G we say S is G-isomorphic

to S’ in case there is an algebra isomorphism F mapping S onto S’ so that for
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any a e G, x e S; aF(x) F(ax). If KGs and KG are central Galois ex-
tensions of K, then KGx is G isomorphic to KG if and only if f is cohomologous
to g. The study of the G-isomorphism classes of central Galois extensions
with inner Galois group is reduced by Theorem 2 and Theorem 3 to the study
of the subset of H(G, K) which yields the central projective group algebras.

In what follows let G be n abelian group. A pairing of G with itself to K
is a biadditive mapping of G G into U(K). k is clled skew if (a, a) 1
for 11 a e G. Let P(G, K) denote the set of skew pairings of G to K. If
f H(G, K), we call f symmetric in case f(a, b) f(b, a) for all a, be G.
(If y’ is another 2-cocycle so that f’ f then f’(a, b) f’(b, a).) We
denote the subgroup of H(G, K) whose representing cocycles are symmetric
by Hsym(G, K).

PnOPOSlTION 1. Let K be a commutative ring, G a finite abelian group, and
assume K has no more than m distinct mt roots of 1 where m is the exponent of
G; then the map

F H2(G, K)-- Psk(G, K)

given by F(I f I) (a, b) f(a, b)f(b, a)-I yields the split exact sequence

0 -- Hsyn(G, K) H2(G, K) Pk(G, K) ---> O.

This proposition was proved by the author in case G has odd order but the
proposition for all finite abelian groups is an immediate consequence of
Theorem 2 nd Corollary 3 of [14].

It is clear that a domain can have no more than m distinct mt roots of 1.
In [10], G. J. Janusz has developed theory of separable polynomials with co-
efficient in a commutative ring. One of the results there is the following:

PIOeOSITION 2. Let K be a commutative ring without idempotents except 0
and 1 and assume m is a unit in K; then there are at most m distinct mt roots of
linK.

A pairing of G to K is called nonsingular in case 6(a, G) i implies a e
for all a e G. Let I be the subset of P(G, K) consisting of the non-singular
skew pairings of G to K. If (G: 1) t U(K) then as we saw in the proof of
Theorem 2 there are no central Galois extensions of K with group G. On the
other hnd

THEOREM 4. Let K be a commutative ring without idempotents but 0 and 1
and assume (G:I) is a unit in K; then the G-isomorphism classes of central
Galois K-algebras with Galois group represented by inner automorphisms is in
one to one correspondence with I )< Hyn(G, K).

Proof. The central Galois K-algebras with Galois group represented by
inner automorphisms is in one to one correspondence with the G-isomorphism
classes of central projective group algebras KGs with the action of G on KG
given by a(U) U, U U for a, b G and Ua, U the basis elements in KG
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corresponding to a and b. Let KGs be a central proiective group algebra.
By a simple computation, for all a, b G, a(Ub) Ubf(a, b)f(b, a)-1. Define
the skew pairing on G to K by (a, b) f(a, b)f(b, a)-. Since K.e is the
fixed subring of KGs under action by the elements in G, is non-singular. The
correspondence of Proposition 1 then yields the result.
We could have replaced the hypothesis that K have no idempotents but 0

and 1 in Theorem 4 by the weaker hypothesis that K contain no more than m
distinct mth roots of 1 where m is the exponent of G.
To complete the classification theory we have begun it remains to examine

the conditions a non-singular skew pairing of an Abelian group G to a com-
mutative ring K impose on the structure of G and K, to give a description of
all such pairings, and to apply this information to study the algebra structure
of the corresponding Galois algebras. First, it is easy to see that the existence
of a non-singular pairing of G to K is equivalent to the existence of a primitive
mh root of 1 in K where m is the exponent of G. We now describe the con-
ditions imposed on an Abelian group G by the existence of a non-singular skew
pairing of G to K in the situation where K contains no more than m distinct
mt roots of 1.

PROPOSITION 3. Let K be a commutative ring, G a finite Abelian group of
exponent m, and assume K contains no more than m distinct m roots of 1. Let
b be a skew non-singular pairing of G to K; then G - H1 (R) H2 and there is an
isomorphism a HI ---> H2 and a non-singular pairing of H. to K so that

1. b(h h) l for all h eH
2. (h h) b(h, h)-1 (a(h), h2) for all he H.

The non-singular pairings on H to K correspond to the isomorphisms from H to
Horn H, U K Conversely, any b so defined is a skew non-singular pairing
of GtoK.

Proof. Write G ----- H1 (R) (R) H, the H Sylow p-subgroups of G. One
easily checks that (H, H.) 1 if i j, and that restricted to H is a non-
singular skew pairing of G to K. Let C be a cyclic direct summand of H H1
of largest possible order, and let c generate C. (C" 1) p" for a prime p. By
the non-singularity of on H and the hypothesis on K the map b --. (b, -) of
H to H Horn (H, U(K)) is an isomorphism. The element (c, -) has
order p in H so there then must exist an element d e H so that (c, d) has
order p in U(K). By maximality of the order of C, d must also have order
p’. Let D be the cyclic subgroup of H generated by d, then we contend that
DnC {e}. Let D C be generated by the element m in H. SincemeD
and is non-singular, (m, d) 1. Since m e C, m c with r

_
p.

Then we have (c, d)" (c, d) (m, d) 1 with r _< p which by
choice ofcanddimpliesr pandm 1. LetN C ZTDandlet

N’ lh eH b(h, N) 1}.
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N n N’ /e} and N’ is a subgroup of H. Let N Horn (N, U(K)), then

N {(h,-)e Horn (N, g) lheH}
and H --- H, N N by the hypothesis on K. Define a biadditive map

7" N X H---+ U(K)

by 7(b, h) (b, h) for b N, h H. .(b, h) 1 for all b e N if and only if
h e N’ so we have the exact sequence

0---+ H1/N’ ---. N.
Thus (N: 1) (N’: 1) (H: 1) and N (R) N’ H. b restricted to either N or
N’ is a non-singular skew inner product on N or N so inductively we need
only verify the proposition for N. N C @ D with C D by a(c) d.
Define a non-singular pairing of C to K by/(c, c) h(c, d). a and
satisfy the conditions of the proposition. The proofs of the remaining state-
ments are straightforward and so we omit them.

In the course of the proof of Proposition 3 we have shown that if is a
non-singular skew pairing of a finite Abelian group G of exponent m and a com-
mutative ring K with no more than m distinct m roots of 1, then

G-----N1(R) @Nk

with (N, N) 1 (i j), restricted to N non-singular, and with N the
direct sum of two cyclic groups of order p or some prime p and integer n.
This yields a corresponding decomposition for central Galois extensions in the
following way" if S is a central inner extension of K with group G and associated
pairing , and if G -- N @ N2 with (N, N.) 1, then S S.1 (R)K SN and
S is a central Galois extension of K with group N. (i j). Those facts
follow with some work from the representation of S afforded by Theorem 2.

This completes our description of the central extensions in case G is Abelian.
One can ask why can be said in case the Galois group G is not necessarily
Abelian. We saw in the proof of Theorem 2 that if S is a central Galois ex-
tension of K with group G, and if 9.I is a maximal ideal of K, then K/I (R) : S is
a central separable K/O.I-algebra of dimension (G: 1) over KIWI. Thus any
Galois group of a central extension must have order perfect square. By
elementary number theoretic considerations we can rule out, for example, the
symmetric groups S and alternating groups A from consideration as candi-
dates for groups of central extensions. If we let K be the complex numbers,
then the existence of a central Galois extension of K with Galois group G is
equivalent to the existence of a faithful irreducible proiective representation
of G in some central simple algebra over K. This problem has received some
study in [12], but little is known about groups admitting such representations.
We now apply these ideas to obtain an elementary Kummer Theorem for

commutative rings without idempotents but 0 and 1.
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THEOREM 5. Let S be a commutative faithful K-algebra and assune that the
class group P K of K is trivial and that S has no idempotents but 0 and 1. As-
sume also that S is a Galois extension of K with cyclic group H, that H" I n
is a unit in K and that there is a primitive nt’ root of 1 in K; then S K(a)
with a a unit in S and a K.

Proof. Let b generate the cyclic group H. Define f’H -- U(S) by
f(b) , where , is a primitive nth root of i in K. Since f(bc) f(b)b(f(c)
where b, c e H we apply Hilbert’s Theorem 90 (Corollary 5.5 of [3]) to infer
that there is an a U S so that f b a b a

-1
/. We conclude that

b(a) "a, bi(a) ,, and the elements ,a are distinct. Also, a e K since
b(an) a" so a satisfies the polynomial p (x) x / for some/c e U(K).
Let A be the K-algebra K(a). A is a K-subalgebra of S on which H acts
faithfully as a group of algebra automorphisms and Axx K. By Theorem
1.3 and Theorem 3.4 of [3] the proof will be complete when we show A is
separable as a K-algebra.

Let A’ KHs where KHs is a projective group algebra with f defined by

f(bi,b) 1 if i-j < n

/c if i+j>_n.

By Lemma 1, A’ is a separable K-algebra. There is an obvious algebra homo-
morphism of A’ onto A and since the homomorphic image of a separable
algebra is separable, A is separable and this proves the result.

COROLLARY. Let S be a faithful commutative K-algebra without idempotents
but 0 and 1, assume P(K) is trivial, and assume S is a Galois extension ofK with
Abelian group G of exponent m. If m is a unit in K and there is a primitive
mth root of 1 in K then S is G-isomorphic to SI (R) (R) S with the S Galois
extensions of K with cyclic group H
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