
A RELATION BETWEEN A CLASS OF LIMIT LAWS AND A
RENEWAL THEOREM

BY

JOHN A. WILLIAMSON

Introduction

Let {Xk} be a sequence of random variables and set

The asymptotic behavior of the function H(x) in the case where the random
variables, {X}, are independent but not necessarily identically distributed
has been studied in some detail. Under additional assumptions [1] deals
with H(x) Ix, [3] with - (H(x + h) H(x)) dx,

[5] and [7] with H(x + h) H(x), and [6] with a weighted renewal function,

A property common to the sequences of random variables considered in these
four papers is that in each (1In) 1Xk converges in probability to a constant
as n -- . It is the purpose of this paper to examine the case when the dis-
tribution function of (l/n)X converges to a limit law, proper or im-
proper, and to discuss which limit laws can arise. Specifically"

THEOREM. Let {X} be a sequence of independent non-negative random
variables. If the variables {X/n} for 1 <_ t

_
n are infinitesimal and if there

exists a probability distribution function F such that at every continuity point of F,

lim. P((l/n)%Z < x) F(x),
then for each h

(1) lim liml f0r ( fo(R)dF(x)0+r P x <_ (X+) < x- h) dx h
j-----1 k-----1 X

The proof of this theorem is found in Section 2 and is an adaptation of a
Tauberian argument given in [3]. One would like to eliminate the limit on

in (1) and to be able to conclude

(2) liml f0r (x ) fo (R)dF(x)r-(R)- P <_ X<x+h dx =h

Corollaries stated in Section 2 give conditions which permit this. If we write
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then, as is pointed out in [6 p. 677], (1) and (2) can be stated in the more
compact forms"

(1’) lira lira U x /x
dF(x)

0+ x X

(2’) lira H(x)/x f(R) dF(x)
.-> "]0

Let P F" F is infinitely divisible, F(x) 0 for each x < 0}. We
say that a probability distribution function, F, belongs to the class L if it is
possible to find a sequence {X} of independent random variables and con-
stants A and B > 0 such that at every continuity point of F,

lim P( (1/B) X A < x) F(x)

and such that the variables {X/B} for 1 n re infinitesimal. This is
the cluss L s defined by Khintchine. In Section 1 the Laplace transform
of functions in P L is discussed and it is pointed out that for any F e P L
there exists a sequence of random variables satisfying the conditions of the
theorem with F as the limit law.
The notation used is meant to be consistent with that used in [4].

() lim zdP(X <) and lim ().

{X} is said o be infinigesimal if for every e > 0

lim sup<< P( X > e) O.

he funegion (z) is ha found in ghe Lvy form for ghe ourier gransform

of an infinigely divisible law. Srong use is made here of he fae ha if
XI is a sequence of row independeng, infinigesimM, random variables such
hag X eonverges in disgribugion go a limig law, F, hen ag every
eonginuigy poin of he function, (z), assoeiaged wih F,

lim- P(X z) (z).

In each of ghe above k is finite for each . In he main heorem of his
paper, X/ X wigh .

Seegion g contains examples.

Section

LEMMA. For any F e P the function n(x) of the L$vy form for f e dF(x)
is integrable on every interval [0, b], 0 < b < , and hence

e dE(x) (1 e-’z) dn(x)

Proof. By the corollary to Theorem 1, [2], XIII-29

e-"dF(x) exp
(1  P(x)
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where P is non-decreasing. It is therefore possible to construct a sequence,
{Xk}, of non-negative, row independent, infinitesimal, Poisson random vari-
ables such that at every continuity point of F(x),

lim. P( _al X.k < x) F(x).

Also
kn

lim lim f x dP X, < x)
b-}O+ n- k=l

and if {bin} is a sequence of continuity points of n(x) converging to O,
k

e-SX)lim lim (1 e-’x) dP(X, < x) (1 dn(x).
bmO n-- k=l bm

Consequently the Laplace transform of F has the stated form.

COROLLARY TO A THEOREM OF L]VY’S. If F e P n L then there exists a
sequence {Y} of non-negative independent random variables such that the vari-
ables Y/n} for 1

_
tc

_
n are infinitesimal and such that at every continuity

point of F,
lim P((1/n)1 Y < x) F(x).

Proof. Let f(t) fetxdF(x). By Theorem 1, [4] p. 147, if FeL
then for any a between 0 and 1, f(t) can be written

f(t) f(at)f.(t)

where f.(t) is the Fourier transform of a probability distribution. As is
done in the proof of this theorem of Lvy’s, we set a ( 1 )/k and look at
the sequence {Y} of independent random variables defined by

E(eit) f(-x)/k(kt).

IX E(ert/") IX f(kt/n)
=1 -- f(t(l 1)/n)

We write- x dP(X >__ x) - bP(X, >_ b) - P(X >_ x) dx
kl kl k----1

where b is a continuity point of n(). Applying Fatou’s Lemma yields
kn b

"(b) bn(b) liminf f0 Z P(X >_ x) dx >_ Jo n(x) dx.

n(x) is monotone and hence f n(x) dx is finite for any b > O. This
proves ghe main assertion of he Lemma.
n(x) is non-decreasing and (x) e /-,1(0, b), 0 < b < , so that

lim_,+ xn(x) 0. An integration by parts shows that for fixed > 0,

lim limsup- f (1 -e-- x) dP(X, <) O.
bO+ n-*o k-----1
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and hence we have the desired convergence of distribution functions. It is
also shown in the proof of this Lvy theorem that the variables IY/nl for
1 _< k _< n are infinitesimal. We add only the observation that if F e P a L
and

f(x/k) f(x/(k 1)) P(Y, < x) F dP(Y < y)

then P(Y, < x) 0 for each k and each x < 0. If this were not the case
then the following contradiction would arise. There would exist some k and
some e > 0 such that

P(Ye [-2e, -e)) > 0.

Let, sup {x/lc’F(x/l) 0}. >_ 0andF(-) 0 because F is left
continuous. Then

0 f(’),) >_ f dP(Y <y)

>_. F(’), + e/k)P(Ye [-2e,--e)) > 0.

Hence the sequence {Y} is non-negative and the proof is complete.
An alternative proof of this corollary is sketched in a remark appearing in

Section 3 and following Example 1.

Section 2

Proof of the Theorem. Fix h 0 and c > 0. The function

G(x) P(x <_ _,= (X + ) < x -}- h)

is finite for each x. Set

(s) E(e-) and (s) fo e-. dR(x).

Let U(T) f G(x) dx. We will show that

liras] e-’dU(x) lims] e-’G(x) dx
s-O+ Jo s-O+ Jo

(e’a- 1)
lim E II (s)
s0+ 8 n--l

h e-C,,(s) ds h dF(x)

An appeal to a standard Tauberian theorem gives the value of

limr (1/T) U(T).
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An application of the Monotone Convergence Theorem completes the proof.
The interchange of integration and summation in the above is permissible
because each of the summands in the definition of G(x) is non-negative.

Let i > 0 be given. Choose R > 0 so that

-’C,,(s) ds < 3,

so that for fixed So > 0,

uniformly in s for s e [0, So], and so that /R < 1/2. Since

liming.- P(X m) n()

has the property that lim0+ xn(x) 0 and since the sequence {Xk/n}
is infinitesimal, it is possible to find constants b > 0 an,d N’ > 0, both de-
pending on R and , such that for all n satisfying N’ <_ n <_ R/s,

(i ())’
k----1 3"=2 j

_< sup (1 --k(s)) (1 (s))

(1< sup sx dP(X < x) .q- P(X > nb)
l<k<n k=l

[Rb + SUpl_</_<n P(Xk >__ nb)] [ fo
’b

<- 1 [Rb q-supl<< P(X > rib)]
Rx dP(X < x)

k=l

+ E P(X _> )
k--l

< -og (1 /).

There exists ’ < rain (,, R/N’) such gha if 0 N N ’, hen

Writing
En----1

TTse 11=1 (s) < dt.

E se-’" exp log ,(s)
n=N’ )

[R/s] f
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and applying the above estimates gives for all s e [0, S’],
se ll=l (s) z_.,=’ _-1 (1 (s)) < 38.

If the integral f e-8(s) ds is approximated by the Riemann sum and the
lemma is used, we see that there exists s’ > 0 such that if s e [0, s], then

R IRis]

e-’(s) ds sexp --ms( + ) (1 dn(x)
ml

Since

x dP(X < rex)
k-

iv<_ _,2 , P(X m) + 2 P(X mx) dx
kl kl

2 xdP(X <x) +P(X, m)
k=l kl

it is possible to find N" > 0 and > 0 so that for all m satisfying N’ m
R/s,

k-l
msx dP(X < rex) x dP(X < rex)

_< --log (1 6/R).
It is also possible to choose v > 0 such that

(1 e-’) dn(x) <_ --log (1 (/R)

for allm <_ R/s, and such that I’(v) ’] -< -log (1 /R). IfFeL
then as a consequence of Theorem 1, [4] p. 149, n(x) is continuous on (0, ).
Fix v. On the interval [v, ), n(x) is uniformly continuous and non-de-
creasing. Each of the functions, _,= P(X >_ mx), is also non-decreasing.
Therefore on the interval Iv, ),

limm- ’= P(Z >_ mx) n(x)

uniformly in x. This fact combined with an integration by parts yields for
all sufficiently large m,

(1 e-m’) dn(x)

Finally

m--> T/ k=l

(1 e-mS) dP(X < mx)

_< --log (1 8/R).

x dP(X < x) ,(,)
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so that there exists N such that for all s e [0, s’P],

e dn(x)

(1 e"’) dn(x)
)

--exp --ms x dP(X < x + e
k----1

(1 e-- mx _. dP X < m

(1 e 2 < _<

Therefore there exists r > 0 such that for all s e [0, r],

e-b(s) ds -- se-’I(s) <_ 3-9--3 16&
nl k...l

Hence

lim s e G x dx h e-*eb(s) ds

and consequently

lim
1 G(x) dx h fo e-’C(S) ds h i dF(x)

xe
Letting e -- 0 gives the desired result.
In the corollaries that follow are found conditions which make it possible

to replace (1) by the more desirable (2) in the conclusion of the theorem.
In the proof of the theorem, the introduction of served two purposes. It
made it possible to choose R > 0 so that

e-b(s ds and se-’ (s
n>’R/ k=l

could both be made small, in the latter, uniformly in s for s in some [0, So].
The remaining estimates in the proof were made independent of e.

COROLLARY 1. If in addition to the assumptions of the theorem, it is assumed
that there exists some M 0 such that

lim inf 1- f0
M

n- T kl
xdP(X < x) C > 0

then (2) holds.

Proof. For each > 0, ,() >_ C and hence lim_,o+ ,() , > 0.
lemma (s) e L(0, ).

By the
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n>Rl

Therefore there exists So > 0 such that for all s e (0, So],

--RV(1--e-- sM)
8e

1 e-v(1--)/TM

This inequality together with the integrability of h(s) and the remark in the
paragraph preceding Corollary 1 completes the proof.

COROLLARY 2. If in addition to the assumptions of the theorem it is also
assumed that (s) e L(O, oo and that

lim,,_,, (]’I’= (s/n) )/b(s) 1

uniformly in s for s >_ O, then (2) holds.

Proof. For R/s large,

sXk(s) <_ 2 (sn) <_ 2 b(s) ds.
n.R/s kl nRl8 R--s

For the same reasons as stated at the conclusion of the proof of Corollary 1,
Corollary 2 is proven.

Section 3
Example 1. Let F(x) (1/r(a) f t"-e-t dt and

b(s) fJ0 e-8 dR(x) (1 -t- s)-" ((1 e-’)ae-’/x) d

[2, xiii, p. 29]. Heren(x) -f:(ae-U/y) dyand/ 0. Fora > 1let
{X} be u sequence of independent rndom variables with

E(e-’Xk) exp(--f0 (1-- e-a)oe-/k) dx}
exp{--as/(1 + ks)}.

The sequence satisfies the conditions of the theorem with

lim, P( (1/n) "..X < x) F(x).

Furthermore (1 -t- s)-" is integrable on [0, oo ) and
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can be made small uniformly for all s in some [0, So] by taking R large so that
it is possible to conclude the stronger (2). The value of the limit in (2) is

h fo dF(X)x hr(- )/r() h/(a- 1).

For each l, E(Xk) a and we see that the reciprocal of the common mean
does not appear in the limit.
Remark. Given any F e P n L the method of construction used in the

above example provides an alternative proof of the corollary of Section 1. If

e dE(x) (1 e-8) dn(x)

then

exp ,s (1 e-) d(-- xn’(x+)

is the Laplace transform of an infinitely divisible law, [4, p. 149]. Defining
Xk by

E(e-x) exp ,s (1//) (1 e-) d(- xn’(x+

yields a sequence of random variables satisfying the conditions of the theorem
with F as limit law.

Example 2. Let {X} be a sequence of independent random variables
defined by

P(X 1) 1- 1/k

Letu =IP(=IX n).
which here takes the form

and P(X k + 1) 1//.

From Corollary 1 we can conclude (2)

lira (l/n) uk
n-Oo k=l

exp s- d ds.
X

Heren(x) logxforx _< landn(x) 0forx > 1. 1. For all
E(X) 2 and yet the average of the probabilities of a renewal at time n
approaches a value between 1/2 and 1.

Example 3. Let {X} be a sequence of independent random variables
defined by

N(e-x) exp ((1 -e-)/k)d(-x-) exp {-k-
where 0
stated in Example 1, it is possible to conclude (2). The value of the limit
is hf e- ds. A non-zero limit is obtained despite the fact that for
each
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