ON FULL EMBEDDINGS OF CATEGORIES OF ALGEBRAS

BY
Z. HeprLiN AND A. PuLTR

Introduction and summary

The aim of this paper is to describe some full embeddings of categories,
especially full embeddings concerning categories of abstract algebras; e.g.
we prove that every full category of algebras can be fully embedded into the
category of algebras with two unary operations, which strengthens a result
of J. Isbell [2, p. 15]. To summarize the results in a simple way we describe
some concrete categories' that will be referred to:

R. The objects are couples (X, R), where X is a non-void setand
R < X X X (a binary relation on X); the morphisms from (X, R) into
(Y, S) are all the mappings f: X — Y such that (z, y) ¢ R implies
(f(x), f(y)) €S for all (x, y) e R. The morphisms of R are sometimes called
compatible mappings.

AR (A is a set). The objects are systems (X, {R.| ae A}) where X is a
non-void set, B, € X X X for every a ¢ 4; the morphisms from (X, {R.})
into (Y, {S.}) are all the mappings f : X — Y such that, for every ae A4,
(z, y) € R, implies (f(z), f(y)) eSa.

Let v be an ordinal number, let A = {«. | @ < v} be a sequence of ordinal
numbers (we consider zero to be an ordinal number, too). Such a sequence
A will be frequently called a type. The symbol D A denotes the sum of
ordinals in the ordinary sense.

Q(A) (the category of quasi-algebras of the type A). The objects are
quasi-algebras, i.e. systems (X, {F, |« < v}), where X is a non-void set and
F,, for every a < v, is a k.-ary partial operation on X, i.e. a mapping of a
subset of X* into X for «, 5 0, an element of X for k, = 0. The morphisms
from (X, {Fo|a <+v}) into (Y, {G.|a < v}) are all the homomorphisms,
i.e. mappings f : X — Y satisfying the following conditions:

(1) If @ < v, ko # 0 and if Fo({x.|¢ < k.}) is defined, then
G.({f(x.) | ¢+ < ka}) is defined and

F(Fa({z})) = Ga({f(z)}).
(2) If kg = 0, then f(F,) = G .
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1 The assumptions that the objects of the following categories are non-void sets are
not substantial. All the results of the present paper remain true if we admit void ob-
jects simultaneously in all the categories.
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A(A) (the category of algebras of the type A). This is the full subcategory
of Q(A) generated by the algebras, i.e. by the objects

(X, {Fala <))
such that F, is a mapping of X" into X for every «, % 0.

A (A4 is a set). The objects are systems (X, {¢a | @ € A}), where X is a
non-void set; ¢, are unary operations on X; the morphisms from (X, {e.})
into (Y, {g.}) are all homomorphisms.

R(A™). (the category of relational systems of the type A™;
A* = {ka| @ < v}

such that k, > 0 for every a < v; in general the asterisk over a type indicates
always this fact.) The objects are systems (X, {R.|a < 7v}), where X is
anon-void set and R, € X" for every @ < y. The morphisms from (X, {R,.})
into (Y, {S.}) are all mappings f : X — Y such that {f(z.)} ¢ S. for every
a < v and for every {z.} € R .

If there is no danger of misunderstanding, some brackets will be sometimes
omitted. We shall write e.g. %(1, 1) instead of A({1, 1}) ete. Let us remark
that AR is isomorphic with some R(2, 2, ---), A9 with some A(1, 1, ---).
In the notation given above the mentioned theorem by J. Isbell may be
formulated as follows:

Every full subcategory & of some (A) is isomorphic with a full sub-
category of some AYl.

If A = {ka|a < B}, wedenote A + 1 = {ka+ 1|a < B}. The symbol
& — ® (where &, € are categories) will mean that ® is isomorphic with a full
subcategory of & (the possibility of full embedding of & into &). Obviously,
£ — Land & — M imply & — M. We shall show in this paper that there
are full embeddings described by the following diagram (R is a small category,

S A > 2):

A1, 1,0
AA) = Q(A) > RA*) > AA > AR > R > AL, 1) 2 %[\(A').
A(2)
2 A2, 5

A(A) — L (A) follows immediately from the definitions.
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Q(a) — R(A*) means that there exists A* such that Q(A) — R(A%);
it suffices to put A* = A + 1.

R(A*) — AYN means that there exists a set 4 such that R(A*) — A9
The proof is givenin paragraph 1.

The meaning of  — AR is similar ([4], see §4).

AU — AR follows easily from the definitions. The dotted arrows mean
that, for any A/, D A’ > 2, one of the categories (1, 1), A(2), A(1, 1,0),
A(2, 0), can be fully embedded in A(A"). Actually, any of them can be
embedded in A(A’) ; we describe it in this way only to indicate the proof in §1.

All assertions & — %A(1, 1), R — A(1,1,0), R — A(2), R — A(2, 0), will
be proved in §2.

AR — RN has been proved in [4]. §4 contains some consequences of this
assertion.

§3 contains some negative results. It is shown that the condition >_A’ > 2
is not only sufficient, but also necessary.

Some results concerning representation of semigroups are given in §4.
Actually, the research on representation of semigroups stimulated the prob-
lems concerning full embeddings of categories. It follows from & — R,
where  is a small category of an accessible cardinal, and from the results
of §3 that any semigroup with a unit element S" is isomorphic with a semi-
group of all endomorphisms of an algebra of a type A if and only if Y A > 2.
This assertion strengthens the result of M. Armbrust and J. Schmidt [1],?
which states that every S* is isomorphic with a semigroup of all endomorphisms
of an object of some A9.

§5 is devoted to some applications of the assertion R(A*) — R(—A(1, 1)
ete.). Choosing some special A¥, we get some results on full embeddings of
categories of metric, uniform and topological spaces, and topological algebras.

1. Some embeddings

TrarorEM 1. Let A* = (k.| a < B} be a type. Then there exists a set A
such that R(A*) — AY.

Proof. Let X = (X, {R«|a < B}) be an object of R(A*). Put
8(X) = (X u Uiss ((@) X Ra) u {u(X), v(X)},
{Pav s 01,00, 08| @ < B, v < Ka}),

where
Car(a, (2| < ka}) =z, forall {x.}eRa,
oar(E) = u otherwise,
e(8) =u for all £,

ea(§) = for all £ # v, pa(v) = u,
es(E) =u for all £ % u, ps(u) = o.

2 This result itself can be obtained as a corollary of the result of [2].
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w(X), v(X) are some different elements, w(X), Q(X) ¢ XuU((a) X R.).
We may choose e.g. u(X) = (0, X),v(X) = (1, X). If

fiXo P = (Y, (8]a <8
is a morphism, put

2(f)(z) = f(x) for zeX
o(f)(a, {x}) = (&, {f(x)})  for {z}eRa,
&(f)(w) = u, &) (v) = .
It is easy to see that @ is a 1-1 functor into A%, where
A4 ={(g,7)]a <Bv < xaufl, 23}

Now, we are going to prove that ® maps %(A*) onto a full subcategory of
A,

Let g : ®(X) — &(¥) be a homomorphism. Let ¥y , ¥1, ¥, ¥5 denote the
operations in®(¥). We have

g(u) = gleru) = ¢19(u) = u
g(v) = glesu) = ¢Ysg(u) = Ysu = v.

Let x ¢ X. Since Yy g(x) = gleay ) = gu) = u, g(z) e Y u {u, v}. If
g(x) = u, we have yYsg(z) = v, while g(esz) = g(u) = u; similarly, if
g(x) = v, Yag(x) = u # v = g(psx). Hence, g(X) < Y. Let z,eX,
{z.} e R.. We have

Yoy 9o, {2) = 9(@ar(e, {@}) = g(2y) € ¥

and hence g(a, {z.}) = (e, {y.}) according to the definition of ¥, . More-
over, we get y, = g(z,) and, hence, f : X — Y defined by f(z) = g(z) (z X)
is & morphism and g = ®(f).

LemmA 1. Let Ay = {ka| @ < B}, A2 = {N | v < 8} and let there be a 1-1
mapping ¢ of B into & such that ke < N for every a < B. Let at least one of the
Sollowing two conditions be satisfied:

(1) thereis an a < B such that k, = 0;

(2) Ny 5 0 for v ed\e(B).

Then the category A (A1) is tsomorphic with a full subcategory of A(Asz).

Proof. Let X = (X, {Fa|a < B}) be an object of A(4;). If the con-
dition (1) is satisfied, let us choose an ey < B, such that «,, = 0. We define
the operations F, (on X) as follows:

(1) if y e8\(8), \y = 0, then F, = Fo ;

(2) if v ed\e(B), Ny 5 0, then F ({ml; <N =20

(3) ify =9¢(a),\y =k, =0, then F, = F,;

(4) if v =e(a), A\ > ke = 0, then Fy({. | < N\}) = Fa;

(5) ify = o(a), ke = 0, then Fr({z. | ¢ < \}) = Fa({z, | v < xa}).
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Put®(X) = (X, {F,|v < 8}). Let ¥ = (¥, {Gx|a < B}) be another
object of A(A;). We shall prove that a mapping ¢ : X — Y is a homo-
morphism of X into ¥ if and only if it is a homomorphism of &(X) into ®(¥).
First, let g be a homomorphism of X into ¥.

(1) If yed\e(B), Ay = 0, then
g(Fy) = g(Fay) = Gay = G .
(2) If y e \p(8), Ay 5 O, then
g(Fy({m ] v < M) = g(m) = Gy(fg(x)] v < MY).
(3) Ify = ¢(a), \y = k, = 0, then
g(F,) = g(F.) = Ga
(4) Ify = ¢(a), \y > ka = 0, then
g(Fy(fe ] < M) = g(Fa) = Ga
(5) If vy = ¢(a), ke # 0, then
g(Fy(fa | v < M)

Gy .

Gy (fg(e)] v < M).

g(Fa({z. |+ < ka}))
Ga({g(@)] v < ka})

G (lg(z)] e < M.

On the other hand, let g be a homomorphism of &(X) into ().

(a) If ke = N = 0, then g(F,) = g(F;(a)) = G;(a) = G, .
(b) Let ke = 0 < Npy - Let us choose an arbitrary system

It

{z.] v < N}
We have

g(F,) = g(F;@({xb[ < No})) = G;(a)({g(xt)‘ < N} ) = Ge.

(¢) Letk, 5% 0. Let us take a system {z. | « < ka}, and let us choose z.’s
for ke < t < Ny . We have

g(Fa({xt [ e < Ka})) g(F;(a)({ﬂhl e < )‘tp(a)}))

= Gow({g(z)] 1 < Now})
Ga({g(z)| ¢ < ka}).

Consequently, deﬁmng ®(g) : &(X) — ®(7) by ®(g)(z) = g(x) for every
homomorphism g : X — ¥, we get a 1-1 functor from 2(A;) onto a full sub-
category of A(A,).

As a consequence we get

Il

TueoreM 2. Let D A > 2. Then at least one of the following statements
holds:
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(1) AL, 1) — AA)
(2) AL, 1,0) — A(A)
(3) A(2) — AQ)
(4) A2, 0) — AA).
2. Further embeddings
TaEOREM 3. R — A(L, 1) and R — A(1, 1, 0).

Proof. Let X = (X, R) be an object of %t and u:(X), 7 = 1, 2, two elements
none of them belonging to X or R. We define two unary operations Fo, Fy
(two unary operations Fy , F; , and one nullary operation F, , respectively) on
the set X u R U {u1, us} as follows:

Fz) = uiqn forevery zeX,7=0,1;
Fi((21, 7)) = zepq forevery (z1,2:)eR,7=0,1;
Folw) = Fo(uz) = uz, Fy(ui) = Fi(ug) = us.

(Fy = w1, resp.).
Let ®(X) denote the algebra

(XU Rvu {us,u); Fo, Fv)

((XuRu {ur, us}; Fo, Fr, F3), resp.). L
Let X and Y = (Y, 8) be objects of R. Letf: X — Y beamorphism in R.
&(f) denotes the mapping from

XuRu {u(X), us(X)} into Y uSu{u(Y),u(Y)}

defined by
®(f)(z) = f(z) forevery zeX

a(f)((z,y)) = (f(x),f(y)) forevery (z,y)eR
®(f)(us(X)) = uw(Y) for ¢=1,2.

First, we are going to prove that ®(f) is a morphism from ®(X) into &(Y)
in A(1, 1) (in A(1, 1, 0), resp.). Let G:, 7 = 0,1 (0, 1, 2, resp.) denote the
operations in ®(Y). We must prove that

(f)(Fi(§)) = G:(2(f)(&))

fori = 0,1. In therespective case, ®(f)(Fa) = G; follows from the definition.
Let ¢ = w; ; then

®(f) (Fi(uy)) = () (ue—) = us—i = Gi(®(f) (u3))-
Let £{ = veX. Then
®(f)(Fi(z)) = ®(f) (Uip1) = Uin

G:(2(f) (2)).
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Finally, let ¢ = (21, #2). Then
() (Fu(ar, 7)) = &(f) (i) = f(®iy1)

= Gi(f(21), f(®2)) = G:i(®(f) (21 ,22)).

Hence, & defines a functor from R into A(1, 1)(A(1, 1, 0) resp.),which is
obviously 1-1. It remains to prove that its image is a full subcategory of the
corresponding category.

Let g : ®(X) — ®(Y) be a homomorphism. The proof will be completed,
if we show that g = ®(f) for some morphism fe R. Since

g(u(X)) = g(F:(m(X))) = Gi(g(m(X))),

we have g(u(X)) = w(Y) for ui(Y) is the only element remaining fixed
under G; . Similarly, g(us(X)) = us(¥Y). LetzeX. Ifg(z) = u:,wehave
Go(g9(z)) = Go(us) = uz, while g(Fo(x)) = g(u1) = uy;if g(z) = (21,2),
we have Go(g(z)) = Go(x1, 22) = 1, while g(Fo(x)) = g(u1) = ua. Hence,
g(X) € Y. Let £ = (21, ) eR; if g(¢§) = i, we have Go(g(§)) =
Go(us) = up , while g(Fo(£)) = g(z1) e Y;if g(§) = z € Y, we have Go(g(§)) =
Go(z) = wui, while g(Fo(£)) = ¢g(z1) eY. Hence, g(R) < S. Now, let
z1 Rxzy . Hence, (21, 72) ¢ R and

g((@1, 22)) = (1, ¥2) 8.
We have

g(x:) = g(Fica(21, 22)) = Gia(g(21, 22)) = ¥:,

and, hence, g(21) S ,(22) and g((21, 22)) = (9(21), g(2)). Hence, g =3(f),
where f : X — Y is defined by f(z) = g(x). The proof is finished.

Taeorem 4. (1, 1) — A(2), A(1, 1) — A(2, 0).

Proof. LetX = (X;Fo, !i’l) be an object of %(1,1). A binary operation
Fyon the set X' = X u {0:(X), v(X)} (where v;(X) are some elements which
are not in X)) is defined as follows:

Fo(z, v1) = Fo(x), Folvr,z) = Fi(x) for zeX,
F(,)(027U2) = vl,
Fo(z,2') = v, otherwise.

We putAF{ = 9, in the case of the proof of the second assertiqn.
Let X, ¥ = (Y; Gy, Gi) be objects of (1, 1), and let f : X — ¥ be a homo-
morphism. We define a mapping &(f) : X' — Y’ putting

®(f)(z) = f(z)  forevery zeX,
&(f) (v:(X)) = v(T).
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First, we shall prove that ®(f) is a homomorphism of ®(X) into &(¥).
Really, for z e X,

a(f) (Fo(z, v1)) = ®(f)(Fo(z)) = Go(®(f)(2)) = Go(@(f)(x), ®(f)(v1)).
Similarly for &(f) (Fo(v: , z)).
&(f) (Fo(va, 1) = ®(f) (1) = v1 = Go(®(f)(va), B(f) (v2)).
®(f)(Fo(2, 7)) = Go(@(f)(2),8(f)(2')) = v

in the remaining cases. Hence @ defines a functor, which is evidently 1-1.

Let g : ®(X) — ®(¥) be a homomorphism. Let us, to simplify the nota-
tion, designate the operations Fy , Gy by juxtaposition. We get

£ e{v, v} forany Ee x, vy resp.

As v = v and vy = v1, the mapping g maps {v;, vo} onto {vi, vo}. We
have
g(v2) = g(vive) = g(v1)g(v2) = 02,
vs. Let g(x) = ve for some z e X. We get the following

since vy v2 = Vo 1
contradiction:

v = g(v2) = g(ave) = g(x)g(v2) = v20p = vy.

If g(z) = v, then vy = g(v1)g(x) = g(v12) # vs, hence, g(v:;) = v:,¢ = 1, 2,
and ¢(X) € Y. If we define a mapping f : X — Y by f(x) = g(x), we get
easily f(Fi(z)) = Gi(f(x)), i.e. f is a homomorphism of X into . We have

g = 2(f)-
3. Some groups of endomorphisms

Throughout this paragraph X = (X; ¢, {0« | @ € A}) is a quasi-algebra with
one partial unary operation ¢, and with nullary operations o, , a € A, where A
isa set. Define a relation C on X as follows:

(2, y) €C if and only if there exist ¢, 7 > 0 such that ¢*(z) = ¢’(x), where
¢ is the identity mapping and ¢"(z) = ¢(¢" *(2)) if the symbol on the right
hand side is defined.

C is an equivalence relation, and if Y is a class of equivalence defined by C,
theno(Y) C Y. ¢||Y:Y —> Yisdefinedbye | Y(z) = ¢(x). The quasi-
algebra

V= (Y§‘P ” Y, {Oa} n Y)

is called a component of X.

Lemma 2. Let { X, | b e B} be the family of all components of a quasi-algebra
X, and let E(X)—the semigroup of all endomorphisms of X—be a group. Then
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every E(X,) is a group and
E(X) ~ [ {E(X), beB},
where ] denotes the direct product.

Proof. Letf: X — X be a homomorphism. We know that the image of a
component under ¢ is a subset of a component. We shall show that in the
discussed case we have f(X;) € X, . Really, if f/(X,) < X., b 5 ¢, the map-
ping g : X — X defined by

g(x)
g(x)

is a homomorphism. Since E(X) is a group, g ought to possess an inverse,
but ¢ is not a 1-1 mapping.

Let ki : X» — X3, b e B, be homomorphisms. The mapping & : X — X de-
fined by h(z) = h(z) for z e X is evidently a homomorphism of X into itself.
In particular, we immediately see that the E(X,) are groups, since A~ || X,
forms the inverse homomorphism of h, . Now, it is easy to see that the
mapping

f(x) for zeXs,

T otherwise

:EX)->]E X
defined by
®(f) = {f|| X»| beB]}

is a group isomorphism. ‘
Put B(z) = {y | 3i > 0,¢'y = z}. B(x) is said to be simple if and only if

& =o'y = pzimpliesy = z.

LemMA 3. Let there be an element xo € X possessing a non-simple B (o), such
that

(B(z)\{o'xo |7 = 1,2, -} n {os} = .
Then E(X) s not a group.
Proof. Let B(xo)\eB(xo) = 0. We define, for y € B(x)\eB (o),
k(y) = min {k| ¢y = ¢z, 2 # ¢y},
As B(x) is not simple, such a k exists. Put
n = min {k(y)| y e B(z0)\¢B(x0)},
and let us take a y such that k(y) = n; let us take an element z; % ¢" "y such

that "y = ¢21. Asn is minimal, there exists a sequence {z; |7 = 1, 2, - - -}
such that gz; = z;_;for7 = 2,3, --- . The mapping g : X — X defined by
g(¢iy)=zn—i’ 1=0,1,--,n—1,

g(z) =z otherwise,

is evidently a homomorphism of X into itself possessing no inverse.
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Now, let B(zy) C ¢B(xy). We consider two cases:

I. = ¢’z for some s > 0. Let n be the least ¢ with this property. Let
us define n(z), for z e B(xo)\{¢’xo}, to be the least natural number such that
2o = ¢"?2. The mapping g : X — X defined by g(z) = """, (k issuch
that k-n — n(x) > 0) for x e B(x)\{¢'ro}, g(x) = =z otherwise, is a homo-
morphism of X into itself possessing no inverse.

II. > Oimplies o'z # . Let us define n(z) in the same way as in the
case I. We take a sequence {a; |7 = 1, 2, - - -} such that zy = ¢a1, a;: = i1
and put

g(z) = e for x e B(x)\(0)
g(z) = x otherwise.

The mapping g : X — X defined in this way is a homomorphism of X into it-
self possessing no inverse.

LemMA 4. Let X consist of one component. Let E(X) be a non-trivial group.
Then

(1) A=29,
(2) ¢ s al-1 mapping of X onlo itself,
3 X ={oz|i="--,-1,0,1,---},

(4) EX)~XZ, i card X =n,
E(X)~Z 1if X 1san infinite set.

(Z is the additive group of integers, Z, is the additive group of integers mod n.)

Proof. Let A # 0. Put Y = {2 |B(z) n {0.} = 0}. As E(X) is non-
trivial, the set Y is non-void and, by Lemma 3, B(z) is simple for any z e Y.
Moreover, there exists y ¢ Y and a homomorphism ¢ : X — X such that
g(y) = y. Let k be the least natural number such that ¢*y = ¢, for some
jand a. B(y1), 1 = ¢ '(y), is simple and, hence, there is a uniquely defined
sequence {y;} (finite or infinite) such that y; = ey fore = 1,2, --- . Let
us define a mapping f : X — X as follows:

fly:) = g(y:), f(z) = x otherwise.

f is a homomorphism of X into itself and has no inverse. Hence, A = f.

Let ¢ be not defined on the whole X. Then, according to the definition of
component, it is undefined in exactly one element x,¢ X and we have
X = B(xy). The previous lemma shows that X = {x,,x;, - - -} (the sequence
being finite or infinite) such that gx.y1 = zi(¢ = 0, 1,2, ---). Let g be a
non-identical homomorphism of X into itself. Hence, there is g(2,) = . for
some m #* n. We get easily n > m, g(2r) = Zn_mir and ¢ is not mapping
onto.

Now, since A = @ and ¢ is defined on the whole X, the mapping ¢ is a homo-
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morphism of X into itself and therefore it has an inverse. The rest of the
proof is evident.

TaeorEM 5. Let X = (X; 0, {0a, o € A}) be a quasi-algebra with one partial
unary operation ¢ and with nullary operations o.(a e A). Let E(X) be a non-
trivial group. Then either

(1) E(X) s the infinite cyclic group, or

(2) E(X) is a direct product of at most a countable number of finite cyclic
groups with orders which mutually do not divide each other.

Proof. By Lemma 2, E(X) is a group for every component X, of X. Evi-
dently, every homomorphism must map every component into itself. Con-
sidering Lemma 4, we obtain: if there is a component

X ={ox|i=--,—-1,01, -}

such that o'z are different for different ¢, there is no other X, with a non-trivial
E(X3), since X; may be homomorphically mapped onto any such X, . Simi-
larly, a component with a non-trival group consisting of n elements, n being a
natural number, may be mapped on such a component consisting of k elements,
if k divides n.

4. Main theorems

The following definitions play an important role in this paragraph.

A couple (X, R), where X isa set and R < X X X, is called rigid if there is
only one compatible mapping of (X, R) into itself, namely the identity.

The symbol F(a), where a is a cardinal, denotes the following assertion:

There is a rigid (X, R) such that card X > a.
We shall use the following assertions:
TueoreMm 6. F(card A) = (AR — RN).
For the proof see [4].
TaeoreMm 7. F(a) holds for every cardinal a.
Proof. The assertion is an immediate consequence of the result of [5].

TueorEM 8. Let & be a small category; let K be the set of its morphisms.
Then & — KR.

A very simple proof is given in [4].
Now, we shall prove a theorem concerning embeddings of small categories

into the categories of algebras and representation of semigroups by semigroups
of endomorphisms of algebras of a given type.

TueorEM 9. The following assertions are equivalent:

(1) & - A(A) for any small category K.
(2) R — Q(A4) for any small category K.
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(3) If S'is a semigroup with a unity element, there exists an algebra X of the
type A such that S is isomorphic with E(X).

(4) If 8'is a semigroup with a unity element, there exists a quasi-algebra X of
the type A such that S* is isomorphic with E(X).

(5) > A>2.

Proof. Evidently, (1) = (2) = (4) and (1) = (3) = (4). (4) = (5),
by the results of paragraph 3. Let (5) hold. Then Rt — %(A), by Theorems
2, 3 and 4. As F(card &) holds, we have Kt — R (where K is the set of
morphisms of {), by Theorem 6. By Theorem 8, we get & — KR. Hence,
(5) = (1).

We remark that the previous result contains as a corollary the statement
that the category A(A)(Q(A), resp.) is universal if and only if >, A > 2.
The definition of a universal category is given in [4].

TaeoreM 10. Let A, A’ be types, D A’ > 2. Let & be a full subcategory of
R(A). Then

£ — AQ).

In particular, A — A(1, 1) for any full category of algebras .
If >0 A’ < 2, then A(A) — A(A") does not hold for any A such that D A > 2.

Proof. By Theorem 1, R(A) — A9. By Theorems 6 and 7, AR — R.
Since ¢ — A(A’) (by Theorems 2, 3 and 4), we obtain R(A) — A(A"), and,
hence,® — A(A").

Now, let D>, A’ < 2, > A > 2. Consider an arbitrary non-abelian group
G. By Theorem 9, there exists an algebra X of the type A such that E(X) is
isomorphic with G. Let & be a full embedding of 2(A) into A(A"). Then
E(®(X)) is isomorphic with E(X) and, hence, with G, which is not possible
by Theorem 9.

5. Applications

We shall apply previous results to some concrete categories.

(A) Let X = (X, 7) be a topological space. We designate
x(X) = sup {x(2)| z e X},

where x(z) is the character of the point z in (X, 7), i.e. the least cardinality of
a set of neighbourhoods of x which is confinal in the directed system of all
neighbourhoods of z.

Designate by T(a) the category of topological spaces X with x(X) < aand
all their continuous mappings.

Levmma 5. T(a) — R(A) for some A.
Proof. The idea of the proof is based on replacing the topology by an
equivalent convergence structure.
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Let A be a set, card A = a. Evidently, there exists a set C' with the follow-
ing properties:

(1) the elements of C are directed sets (B, <), where B C 4;

(2) if (D, <’), card D < a, is a directed set, then there exists (B, <) ¢ C
isomorphic with (D, <’);

(8) if (Bi, <i1) and (Bs, <2) are isomorphic elements of C, then
(Bi, <1) = (Bz, <2).

Evidently, card ¢ < 2* for infinite cardinals.

Let the set C be well ordered, say by an ordinal 8. If (B, , <&) is the a-th
element of C according to the well ordering, we choose an ordinal «, with
card k, = card B, . Let us direct every set «, in such a way that (ks, < ) is
isomorphic with (Ba, < w).

If (X, 7) is an object of T(a), put

<I>(X’ T) = (X’ {Ra(T)I a < ﬁ}))
where R,(7) (abbreviated R,) is the set of all those systems
fe. ] < ke + 1}

with the following property : for every neighbourhood U of the point z,, there
iS o € kq such that < ¢ implies z, € U.

The lemma will be proved if one shows that a mapping f : X — Y isa con-
tinuous mapping of (X, 7) into (Y, ¢) if and only if it is a morphism from
®(X, 7) into®(Y,q) in R(A), which is almost evident. (A = {xa + 1| a < 8}.)

Let the symbol T(a, A) denote the category, the objects of which are sets X
endowed simultaneously by a topology (such that x(X) < a) and by a rela-
tional structure of the type A, and morphisms are all the continuous mappings
satisfying the condition required for morphisms of R(A). In particular, if the
relational structures on two objects are structures of algebra, the morphisms
are continuous homomorphisms.

LEmma 6. T(a, A) — R(A) for some A'.

The proof can be made similarly to the proof of Lemma 5. We must only
modify it by adding the relational systems.

CoROLLARY. Let R be a full subcategory of T(a,A). Then®& — R (—A(1,1)
elc.).

In particular, the assertion holds for the following categories:

objects: morphisms:

metric spaces continuous mappings
metric linear spaces continuous linear mappings
normed linear spaces bounded linear mappings
Banach algebras continuous homomorphisms.

(B) Denote by U(a) the category, the objects of which are uniform spaces
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(X, ) such that U contains a confinal subsystem of a cardinality less than or
equal to a; the morphisms are all their uniformly continuous mappings.
Further, denote by (a, A) the category of uniform spaces X having the men-
tioned property, and endowed by relational structures of the type A, where the
morphisms are uniformly continuous mappings which are morphisms of R(A).

Lemma 7. U(a, A) — R(A") for some A'.
Proof. The proof will be given for U(a), as the generalisation is obvious.

We find a system (k. , <,) similarly as in the proof of Lemma 5. Here we
put A" = {2x, | @ < B} and define

®(X, u) = (X, {Ra(‘ll)l a < ,3}),

where {z, | ¢ < 2k} € Ro(U) if and only if, for every U €U, there is a i, such
that [z, , 2« +.] € U for every « > 4.

Finally, if f : (X, U) — (Y, V) is a uniformly continuous mapping, we de-
fine ®(f) : ®(X, U) — ®(Y, V) by &(f)(z) = f(z). It is easy to see that
&(f) is a morphism of $(A’), and that & is a 1-1 functor onto a full subcate-
gory of R(A').

CoroLLARY. Let & be a full subcategory of U(a, A). Then
K-N (>A(1, 1)  ete.).

TuarorEM 11. The category of metric spaces and their uniformly continuous
mappings is tsomorphic with a full subcategory of R (and A(1, 1) etc.).

The proof follows from the fact that the uniformity defined by a metric
contains a countable confinal subsystem.

(C) Let (X, p), (Y, g) be metric spaces, f: X — Y. fis called a con-
traction, if

o(f(), f(y)) < p(x,y)  forall z,yeX.

TaEOREM 12. The category of metric spaces and their contractions is 7so-
morphic with a full subcategory of N (A(1, 1) etc.).

Proof. Let A be the set of all non-negative real numbers. We shall prove
that the category under consideration is isomorphic with a full subcategory
of AR. For a metric space (X, p), put

(X, p) = (X, {Ra|aeA}),

where [z, y] € R, if and only if p(z, y) < a;®(f) = f. Obviously, ® is a full
embedding.

(D) We state explicitly a corollary concerning representation of semi-
groups by commuting mappings.

CoRrOLLARY. Let ' be a semigroup with a unity element. Then there exist
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a set X and two transformations fi , fo of X such that S* is isomorphic with the
semigroup (under composition)

{¢I¢:X_>Xa¢°ff = fiop,1 =1, 2}
The proof follows immediately from Theorem 9.
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