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1. Introduction
Let E denote discrete countable set nd, for each x E, let P(x, denote

a probability mesure on E. Define the operator P by setting

Ph(x) f P(x, dy)h(y).

Denote by H the vector spce of bounded functions h for which Ph h.
In [3], under the assumption that P defines a transient Markov process, Feller
djoiaed to the space E a compact spce B with the following property. Every
function h in H has a continuous extension to E u B and every continuous rel-
valued function on B is the restriction to B of some extended function. The
boundary B is the Stone spce of the Boolean lgebra S of extremul points
of the convex setI {heHI0_< h_< 1}.

Feller noted thut if E is the open unit disc ]z[ < 1 there was a similar
operator P for which the eigeaspace H consisted of the bounded hrmoaic
functions. For this case, he pointed out that the ideal boundary B could be
constructed and djoined in u similar wy.

Since the vector lattice H of bounded hurmonic functions on [z] < 1 is
order isomorphic to the vector lttice L of bounded Lebesgue mesurble
real-valued functions on the unit circle [z 1, it follows that the set S of
extremals corresponds to the set of equivalences clusses of the characteristic
functions la, where A is mensurable set of positive measure. Consequently,
the Stone space of S cn be identified with the Stone space of the mesure
algebra. This space can also be looked at as the maximal ideal space of the
Bausch lgebr L=.

It is known (c.f. [5]) that the maximul ideal space of L curt be embedded
in the mximal ideal space of the Bunuch lgebra H of bounded unalytic
functions on [z[ < 1. Furthermore, with this identification, the maximal
ideal spce of L is the ilov boundary of H=.
While it is not true that a bounded harmonic function h on zl < 1 is the

real part of some function in H=, it is true that every such h has continuous
extension to the mximl ideal spce of H. Consequently, the vector lttice
H can be viewed as a vector lattice on thut compact extension K of ]z[ < 1
which is the maximal ideal spce of H=. It follows (c.f. Buuer [1]) that there
is smallest closed subset of K on which each function in H attains its maxi-
mum. This set is called the ilov boundary of H. It is esily seen that it
coincides with the ilov boundary of H. As result, the Feller and ilov
boundaries of H coincide.
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Let E be a locally compact space and let H denote a uniformly closed vector
lattice of bounded continuous real-valued functions on E. Assume that H
contains the constant functions. One of the purposes of this note is to discuss
the relationship between the Feller and Silov boundaries of H. It turns out
that the Feller boundary is the space of connected components of the Silov
boundary. Consequently, they coincide if and only if the Silov boundary
is totally disconnected.
The remainder of this note is devoted to a discussion of the total boundary

and of the problem of adjoining these boundaries to the original space E.
In [3], Feller defined a space that he called the total boundary. It is obtained
from H H+ H+, where H+ h

_
O IPh h}, as a space of maximal

ideals. We show that these ideals are the kernels of certain functionals
H - ,, where is the two-point compactification of R. As an applica-

tion, we give a proof of the assertion in [4] that the total boundary is, in a
suitable sense, expressible as a union of Feller boundaries.
The Silov boundary of H, when H consists of bounded functions, can always

be adjoined to E so that the functions in H have continuous extensions. In
general E is not dense in the resulting space. In case E is not compact, we
give necessary and sufficient conditions for E to be dense. The adjunction of
the total boundary is carried out and a corresponding condition given for E
to be dense in the resulting space.

2. The Silov boundary of H
Let H denote a vector space of bounded continuous real-valued functions on

a locally compact space E. Assume that H contains the constant functions
and that with respect to the partial order _, where f

_
g if f(x)

_
g(x) for

all x, it is a lattice.
The following proposition, due to C. Constantinescu and A. Cornea, is

proved in [2].

PROPOSITION 1. There is a unique compactification K of E such that"
(1) each function in H has a unique continuous extension to K; and
(2) the extensions to K of the functions in H separate the points of K E.

Remark. In case E is lz < 1 and H consists of all the bounded harmonic
functions on E, the space K is the maximal ideal space of the Banach algebra
H of bounded analytic functions on E. If u e H, let v denote its harmonic
conjugate. Define 7 on the maximal ideal space of H by setting

() logl (exp(u + iv) I.
When E is embedded in the maximal ideal space of H, the functions are
continuous extensions of the functions u. The validity of the corona con-
jecture [5] then shows that the maximal ideal space of H is the space K.
The vector lattice of continuous functions on K obtained by extending the

functions of H to K will also be denoted by H. If H does not separate the
points of K, let K be the compact space obtained from K by identifying points



682 z.c. TAYLOR

which are not separated by the functions in H. Then H can be viewed as a
vector lattice of continuous functions on the compact space K’. Again, it is
convenient to let the new vector lattice also be denoted by H.
Bauer [1] showed (Satz 2) that K has a smallest closed subset on which each

function of H attains its maximum. This set is called the ilov boundary of
H and will be denoted by 0(H). Further, in case H is uniformly closed, he
showed (Korollar 2 yon Satz 10) that each continuous function on O(H) is
the restriction to 0(H) ofa unique function in H. Hence, H is isomorphic to
C(O(H) under a lattice preserving linear isomorphism.
In the course of the proof of these last two statements, Bauer showed that

for x e K’ the functional f - f(x), f e H, is a lattice preserving functional if
and only if x e 0(H). Conversely, if H -- R is a lattice preserving linear
functional with (1) 1, then corresponds to a point of the Silov boundary.
As a result, the ilov boundary of H can be identified with the set of lattice
preserving linear functionals for which (1) 1.

3. The Feller boundary of H
Consider H as the vector lattice of functions on the compact space K’.

Assume H is uniformly closed.

PROPOSITION 2. Let I {re H iO

_
f

_
11. Then f is an extremal point

of this convex set if and only if f O(H) is the characteristic function of an open
and closed subset of O(H).

Proof. In view of Bauer’s results, it suffices to consider the case where
H C(X), X a compact space.

If f is the characteristic function of an open and closed subset A of X, then
feI. Assume f= tg+ (1- t)h, withg, heIandO < < 1. Since f>_ tg
and 1 t)h, it follows that g and h vanish off A. Clearly, on A both g and
h have to assume the value one. Hence, f g h and so f is extremal.

Let f e I have 1 as its maximum value, and let h, e be > 0 with ), + e

_
1.

Denote by g the function ([k/(X + s)]f) /k . Then g

_
X and g

_
f. If

h f g the maximum of h is 1 ),. The functions

h [1/(1- X)]h and g

are inIandf= g q-h hgl-t- (1- X)hl.
Assume that f e I is an extremal. Then, the maximum value of f is 1 and

its minimum is 0. Assume that, for some x0,0 < f(x0) < 1. Let h f(x0).
Since f is extremal, f gl (1/h)g. Now

g(xo) min{k/(k q- e), X}

and so X f(xo) min {X/(X q- e), 1} X/(X q- e). As the only restriction
on e is that e > 0 and X q- e _< 1, this leads to a contradiction. Therefore,
f is two-valued.
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COROLLARY. Let S denote the set of extremals of I. Then S is a Boolean
algebra and a sublattice of H. Further, S is isomorphic to the Boolean algebra
0 of open and closed subsets of O(H).

DEFINITION. The Feller boundary of H is the Stone space of the Boolean
algebra S.

THEOREM 1. The Feller boundary of H is homeomorphic with the space ,of
connected components of the Silov boundary of H. Hence, the two boundaries
coincide if and only if the ilov boundary is totally disconnected.

Proof. The Stone space of S is homeomorphic to the Stone space of O.
The points of the Stone space of O can be taken to be the maximal dual-ideals
(i.e. ultrafilters) U of the lattice O. A base for the topology of the Stone space
is given by the sets

A* {UIAeU} whereAO.

In a compact space the connected component of a point is the intersection
of all the open and closed sets which contain it. Hence, if U is an ultrafilter in
O, the intersection of all the sets in U is a connected component of O(H).
This defines a 1-1 function 0 from the Stone space of O onto the set of connected
components of 0(H).

Let D be the set of connected components of 0(H) and let

0(H) -- Dassociate with each point its connected component. Give D the quotient
topology. It has as a base the sets A1 A, where A is an open and closed
subset of O(H). Since 0-1A A*, it follows that is continuous. Con-
sequently, is a homeomorphism.

It is known (c.f. [6]), for a compact space X, that X is totally disconnected
if and only if C(X) has no proper closed subring A for which (i) 1 e A and
(ii) f2 e A implies f e A. ,A closed subring A of C(X) which contains the
constants is a closed vector lattice that contains 1 and, conversely, if V is a
closed vector lattice that contains 1, then V is a closed subring.

LEMMA. Let A C(X) be a closed subring containing 1. The following
statements are equivalent"

(1) f e A implies f e A; and
(2) Ill eA implies f eA.

Proof. If If leA, then f2 If12 cA. Hence (1) implies (2). On the
other hand, since A is closed, f: e A implies If /f e A. Consequently,
(2) implies (1).

Since H is isomorphic as a vector lattice to C(O(H)), this completes the
proof of the following proposition.
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PROPOSITION 3. The Silov boundary of H is totally disconnected if and only
if H has no proper closed vector sublattice V for which I e V and ii fie V
implies f e V.

In [3], for the vector lattice H of bounded functions f such that Pf f,
Feller showed (Theorem 9.1) that a function f in I is in S if f > ks, > 0
and s in S, implies f >_ s. A vector lattice H satisfying this condition will be
said to have property (S).

PROPOSITION 4. If the Silov boundary of H is totally disconnected, then H
has property (S). The converse is false. Specifically, there exist compact spaces
X which are not totally disconnected for which C(X) has property (S).

Proof. It suffices to show that, for a totally disconnected space X, C(X)
has property (S).

Assume that f is a non-extremal function in I for which f > ks, > 0 and s
in S, implies f >_ s. Since f is not an extremal,

[x If(x) 0} Z(f) O

and, for some x0,0 < f(x0) < 1. Let A be an open and closed set containing
x0 and denote by s the characteristic function of A. If f fails to vanish on A,
then, for some ), > 0, f > ,s and so f(xo) 1. Therefore, A n Z(f) 0.
This shows that the connected component of x0 contains a point of Z(f),
and so X is not totally disconnected.

Let X be a compact space with an open dense discrete subspace. Then,
C(X) has property (S). However, this does not imply that X is totally
disconnected. Let X be compact and connected and let Y denote a second
copy of X. Define a topology on the disjoint sum Y - X by taking as basic
open sets {y}, y e Y, and (0 F) -t- 0, 0 open in X and F X finite. The
space Y X is compact and has Y as an open dense subset. It is not totally
disconnected (this example was pointed out to me by B. A. Rattray).

4. An extension theorem for linear functionals

Let H denote an arbitrary vector lattice. A function H - , where
denotes the two-point compactification of R, will be called a linear functional
if (1) the image H of H contains 1, (2) (f - g) (f) -t- (g), and (3)
(kf) k(f), for real, whenever (f) + (g) and k(f) are defined.

THEOREM 2. Let H be a vector lattice and let. 1 be a positive element of H.
Assume that {0/ is the only subspace N of H for which

(1) feN and g <_ If[ implies g e N;
(2) IcN.

Then there is a unique lattice preserving linear functional ’H - I with
ker {01 and (1)- 1.
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Proof. To simplify notations, for any real k, let k Mso denote X. 1. Let

H* {feH n > O,n >_

Then, {0} and H* are the only subspaces of H* which satisfy condition (1).
This, as is well known c.f. [1]), implies that H* is the set of real multiples of 1.

IEMMA A. Let f > 0 be in H H*. Then f A k k; for all real k >_ O.

Proof. If f> 0isinH- H*andk_> 0, thenfAX a.1 aforsome
a _> 0. This follows from the observation preceding the lemma.

LetI {k >_ 0[f/kk k}. Clearly0I. The fact that

f A (x A ) (f A x) A
implies that/ e I if/ <_ k nd k e I. Hence I is n intervM. The intervM I is
closed. LetkoeI. Then if fA k0,k > aimplieskeI. SinceIisn
intervM, it is clear when k ) k0. Assume a ( k <_ k0. Then

fAX=fA(XoAX) =(fAXo) AX AX= <x.

Assume that {k >__ 0If A k k} hus n upper bound nd let k denote the
least upper bound of this intervM. Consider f k. This function is posi-
tive nd different from zero. Consequently, the hypotheses on H imply that,
for some n > 0, n. (f kl) >_ 1. This implies f _> kl + 1/n and so

f A (k + l/n) k + 1In,
which is a contradiction.

LEMMA B. If h H, then one of h+ and h- is in H*.
Proof. Let k >_ 0. Then

(h +- h-) A x h+ A (x + h-) h- h+ A k- h-,

since h+ A h- 0. From this it follows that

[(h+ h-) A x] V (-x) h+ A x h- A x.

Consequently, Lemma A shows that if h+ and h- are both in H H*, then

(h/k k) V (-x) 0 for all k >_ 0.

Assume h- is in H H*. Consider

hA 1- 1 h+A 1- l--h-.

It is negative and does not lie in H*. Hence, by Lemma A,

(-1) (h A 1- 1) V (-1) (h A 1- 1) V (0- 1) (h A 1) V 0- 1,

and so (hA 1) V0 h+A 1 0. Applying Lemma A once again to h+,
it follows that h+ is in H* and in fact that h+ 0.



686 J.c. TAYLOR

This argument applied to -h shows that if h+ is in H H*, then h- 0.
Define H - by setting (f) equal to if f ), to if f+ is in

H-- H*, and to-- ill-is inH- H*. It is clear that(hf) )(f)
whenever ).(f) is defined. A consideration of the possibilities for (f)
and (g) shows that (f + g) (f) + (g), whenever (f) + (g) is
defined. The functional is increasing, since f

_
g implies f+

_
g+ and

f- >_ g-. Furthermore, it preserves finite unions, since (f /g)+ f+ /g+
and (f /g)- f-/ g-. Consequently, is lattice preserving.
The kernel of . is {01 and (1) 1. Let be any linear lattice preserving

functional with I,(1) 1. Then and agree on H*. If f+ is in H H*,
then f f+ and, applying Lemma A,

foralln > 0. HenceT(f) +. Similarly, T(f) =-- iff-isinH-H*.
This shows that 9.

COROLLARY. Let p 0 be a positive element of H. Let N be a subspace of H
for which

(1) feN and g <- If] implies g eN.
(2) pY.
(3) N is maximal with respect to (1) and (2).

Then there is a unique lattice preserving linear functional $’H R with
N kerSand$(p) 1.

Proof. Consider the vector lattice H/N. Let 1 denote the positive ele-
ment corresponding to p. Then 1 and H/N satisfy the conditions of the
theorem. Hence, there is a unique lattice preserving linear functional

H/N --> with I,(1) 1 and ker {0}. Composition of $ with the
quotient mapping of H onto H/N defines $.

DEFINITION. A maximal ideal of H is the kernel of a lattice preserving
linear functional $ H -- R.

This corollary has as a consequence the following extension theorem for
linear functionals which will be of use in discussing the total boundary.
Let p 0 be a positive element of U and let g* denote {re HIS n, Ill_< n.p}.

THEOREM 3. Let q" H* - R be a lattice preserving linear functional for
which (p) 1. Then there is a unique lattice preserving linear functional
H -- ( which extends .

Proof. If f e H then, for all > 0, (f/ p) /(-),p) is in H*. Hence, if
$ extends ,
(f) limx+ [((f) / ) / (--)] limx+(f / Xp) / (-Xp)).

This shows that has at most one extension as a lattice preserving linear func-
tional.
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Consider N* ker . It is a subspuce of H which satisfies conditions (1)
and (2) of the corollary. Let N

_
N* be a subspace of H satisfying the con-

ditions of the corollary, and let be the functional corresponding to N. If
f H*, then f (f)p e N*, and so

0 (f- (f)p) (f) q(f),

since (p) 1. Consequently, extends .
Remark. W.A.J. Luxemburg has informed me that a similar extension

theorem for real-valued functionals is to be found in [7].

5. The total boundary
In [3], Feller defined a space that he called the total boundary. Let H

denote the vector lattice H+ H+, where H+ {h >_ O IPh h} and P is
the operator defined ia the introduction. The points of the total boundary
are taken to be what Feller called the ideals M in H+, the positive cone of H,
which are maximal with respect to some positive p in H.

In [3] a subset I of H+ is called an ideal if

(1) f/ geIwhenf, geI.
(2) feIand0_ h_fimpliesheI.
(3) f e I and ), >_ 0 implies ),f e I.

An ideal I of H+ is maximal with respect to p e H+ if p e I and p belongs to
every ideal that properly contains I. If I is an ideal and p e H+ I, there
exists an ideal M I which is maximal with respect to p.
The connection between Feller’s concept of maximal ideal and the definition

of maximal ideal in the previous section is provided by the following proposi-
tion.

PROPOSITION 5. Let M H+ be a Feller ideal which is maximal with respec
to p. Then there exists a unique maximal ideal N of H with N n H+ M.

Conversely, let N be a maximal ideal of H. Then N n H+ is a Feller ideal
maximal with respect to some p >_ O.

Proof. Let N {fl] f e M}. Then N is a subspace of H which satisfies
conditions (1) and (2) of the corollary to Theorem 2. Let N1 N be a
subspace of H satisfying (1) and (2). Since N1 n H+ is a Feller ideal contain-
ing M, it follows that N n H+ M. Therefore, if f N, f+, f-e N and so

feN.
Conversely, let N be a maximal ideal of H and let p >_ 0 be the element in

H N of condition (2) in the corollary to Theorem 2. The intersection
N H+ is a Feller ideal I which does not contain p. Let M I be a Feller
ideal maximal with respect to p. The maximality of the ideal N implies that
Y {fllf]eM} and soNnH+ M.
The total boundary ofH is the topological space B obtained by equipping the
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set of maximal ideals N of H with the hull-kernel topology. This is the
topology having the sets 0h /N h e N}, h H, as a base.
The space B is Hausdorff. Let N1 N be two maximal ideals of H and

let hi and h. be the positive functions in condition (2) of the corollary to
Theorem 2 with hi e N for i 1, 2. Then N e 0 and, as is easily seen by
viewing the maximal ideals as kernels, 0 n 0h 01^.. Denote by
the functionh- hl/h. Then,//k/. 0andso0kla0 0. It
remains to show that/ e N for i 1, 2.

It can be assumed that h e N and h e N. Hence,

Therefore, / e N since hi e N for i 1, 2.
Oa the set L of lattice preserving linear fuuctionals H -, the elements

h of H determine the functions ] defined by setting ]() (h). Let L
also denote the topological space obtained by giving L the weak topology
induced by {]lh e H}.

LEMMA. Let U be a neighbourhood of a point o e L.
and h H such that o(h 0 and

Then there exists

{( e L (h) < } U.

Proof. Since U is a ueighbourhood of 0, there exists > 0, and functions
gl, g,/c, ,/ in H with 0 e U1 n U., where

v %/(R)ll (R)(e) 0(e,) < s}
and

U. N% {(R) I(R)() > 1/1.

We first show that U. can be replaced by a neighbourhood of the same type
s U.
Let k 1/. Since 0 e L, there exists p >_ 0 with 40(p) ), 1. Assume
0(/) and letq p //. Then

{(R) (q) > x + 1/2} l(R) I() > x}.

As 0(q) - 1, it follows that

0 l(R) (R)(q) 0(q) < 1/2} - l(R) (R)() > x}.

This shows that U can be replaced by a set of the same type as U.
Now assume0eU

_
U. Let hi g 0(g)’l. Then heH and

0(h) 0. Let h $=[h I. Since 0 is lattice preserving, it is clear
that 0(h) 0 and that { (h) < e} U.
Making use of this lemma, we are able to show that the total boundary is a

quotient space of L.

BPROPOSITION 6. Denote by - L -- the function defined by setting
r(O) ker . The topology of B is the quotient topology induced by r and the
topology on L.
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r 0h {l(h) 0}. Hence, r is continuous.Proof. It is clear that -1

Let now U L be open and saturated with respect to the equivalence rela-
tion defined by r. Pick 0 e U, e > 0, and h > 0 in H with 0(h) 0 and
V {](h) < e}.
Let p e H be positive and such that 0(p) 1. Denote by 1 the function

--1p-f-h. Then0er 0k U.
-1 -1 that is, (k) > 0. Then,Since 0(/) 1, 0 e r 0k. Assume

q(h) > 0orq(h) 0. If(h) > 0, fork e/[2(h)],ke U. If(h) 0,
it is clear that e U. In either case, for some X > 0, , e U. Since r(I,)

r OU.r(q) if and only if, for some X > 0, X ,I,, it follows that
In [4], Feller observes that the total boundary is obtained by taking, in some

sense, a union of the boundaries defined by the vector lattices H* as p runs
through the positive cone of H, (in actual fact Feller uses the lattice of bounded
functions of the formf(x)/p(x), f e H, which is isomorphic to H’v). His state-
ment can be made explicit in the following way.
For each p, let B denote the set of lattice preserving linear functionals

e H*v -- 1 for which e(p) 1. Equip each B with the weak topology.
For each p, the extension theorem shows that there is an inclusionj ofB in L.
It follows from the compactness of B that eachj is an embedding.

If B is now identified with the corresponding subspace of L, L itself is the
union of the spacesB. Since B is Hausdorff andB is compact, the mapping
r embeds each B in B. Hence, B can then be thought of as a union of the
spaces B, provided two functionals q and ,I, are identified when, for some
X > O, ), ,I,.

6. The boundaries as boundaries of E
Let H denote a vector lattice of bounded continuous real-valued functions

on the locally compact space E. Assume that H contains the constants.
Using the notation of Section 2, the ilov boundary 0(H) of H is a closed sub-
set of K’, and if O(H) K’ r(E), where r K -- K’ is the identification
map, then O(H) is homeomorphic with B r-l(O(H)). Hence, the ilov
boundary 0(H) ofH can be adjoined to E by identifying it with the subspace B
of the subspace E u B of K.
The collection of open subsets 0 of E together with the collection of sets of

the form P K, where P is in the weak topology defined by the extensions to
E u B of the functions inH and K

___
E is compact, form a base for the topology

of the subspace E u B. In other words, the topology of E u B is the coarsest
Hausdorff topology for which E is an open subspace and the extensions to
E u B of the functions in H are all continuous.

In general, O(H) does not lie in K’ r(E). For example, if H consists
only of constant functions, then K’ O(H). However, it is always possible
to adjoin O(H) to E.
Denote by B any space homeomorphic to O(H), for example, take B to be

the subspace of the dual of H (equipped with the weak topology) consisting
of the lattice preserving functionals e for which (1) 1. Let E B denote
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the following topological space. The underlying set is the disjoint sum of E
and B. The topology is the coarsest Hausdorff topology for which E is au
open subspace and each function in / {flh e H} is continuous, where
](y) h(x) if y x e E and/(y) (h) if y q e B. This topology has as a
base l0 0 E is open u/P K P is in the weak topology determined by
/, and K

_
E is compact}.

Remark. As applied to the situation studied by Feller in [3], this topology
is coarser than the one he introduced into E u B. To show that Feller’s to-
pology coincides with the above topology it would be sufficient to show that
for any sojourn set A there is an extremal s and 0 < < 1 with

A {ils(i) > 1-7}.

When the Silov boundary 0(H) lies ia K’ (E) it is immediate that E is
dense in E u B. In general, this is not the case. If E is itself compact then
it is not dense ia E B, or if H consists of 11 the bounded continuous real-
vlued functions oa E, then gia E is not dense in E t B. This raises the
question as to when E is dense in E B.
Assume that E is not compact. The set E is dense in E B if and only if,

for each e B, every neighbourhood of intersects E. The following lemma
describes the basic neighbourhoods of point of B.

LEMIVIA. Let e B and let U be a neighbourhood of q in E o B. Then there
exist e > O, h > 0 in H and K E compact with

(i) (h) 0 and
(ii) U {yeEoB[l(y) < e} K.

Proof. Since U is a Ieighbourhood of there exist e > 0, gl, g in H,
and K

_
E compact with

Let h g (g). 1 and let h - h [. Then, since is lattice pre-
serving, (h) 0. Consequently,

With the aid of this lemma we give a proof of the following proposition

PROPOSITION 7. Assume that E is not compact. Then E is dense in E t B if
and only iffor any compact K E and h in H, inf h 0 implies iuf_ h 0.

Proof. Let e B and let h > 0 ia H be such that (h) 0. Then iaf h 0
as (1) 1. Since, for any compact K

_
E, inf_ h 0 it follows from the

lemma that each neighbourhood of intersects E.

Conversely, let h be a function in H with inf h 0 and inf_ h s > 0,
for some compact K

_
E. Since infh 0, h vanishes on B. Assume

(h) 0. Then
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{y eE u B f(y) < } K

is a neighbourhood of which does not intersect E.
In case E is an open bounded regio in R and H is the set of bounded

solutions of Laplace’s equation, then it is well known that the condition of
Proposition 7 is satisfied.
In the case considered by Feller where H is defined by a transient Mrkov

process the coldition is also satisfied. While this follows from results of Feller
[3], we give a direct proof. Assume h > 0 satisfies p(i, j)h(j) h(i),
infE h 0, but that for some finite set K __c E, infE_K h > 0. Then h
wnishes on K. Let

Z {lh() 0}.

It is esy to see that, for i e Z, p(i, j) 0 if j e E Z. This implies, in the
terminology of [3], that Z is a sojourn set. Since it is finite it contains a mini-
mal sojourn set. This contradicts the ssumption of transience.
The procedure used to adjoin B to E can be used to adjoin L to E. Let

h e H. Define on the disjoint sum of E and L by setting ](y) equal to h(y)
if y e E and equal to y(h) if y e L. Using the set/ of functions ], h e H, L
may be adjoined to E in the same way that B was adjoined to E. The result-
ing topology on the disjoint union E u L of E and L is Hausdorff. The sub-
spce E is never dense in E u L, since y e E E implies that y(1) 1.
The topological space E u L can be used to adjoin the space B to E. De-

fine =1 E u L -+ E u B, by setting =l(y) equal to y if y e E nd equal to ker y
B"if y e L. Then =1 determines a quotient topology for E u If h e H, let

SO {yeEIh(y) O} u {ye Ih,y}

These ses re open since
--1 *=, (0 {y eE u L f(y 0}

nd hence B is a subspace of E u B.
The quotient topology is Hausdorff. Instead of proving this directly, we

Bintroduce coarser topology into E u which is Hausdorff and for which B
is still subspace. This topology is similar to one used by Feller in [3].

If p > 0 is in H, let E,, {x e E p(x) > 0}. The boundary B cn be d-
joined to E by considering it as the Silov boundary of the vector lattice of func-
tions on E of the form f h/p, where h e H*. This means that, for each
function f hip, the function ] is continuous, where ](y) h(x)/p(x) if
y xeEand](y) (h) ify eB.
Denote by j’E u B E u L the inclusion defined by setting j(y)

equal to y if y e E and equal to the extension of y to H if y e B,. Let i be
the function = j. Then i, is an inclusion of E, u B in E u B.

BPROPOSITION 8. There is a unique topology for E u for which each .
embeds E u B, as an open subspace. This topology is Hausdorff. The subset

BE is dense in E u if and only if for each p > O, E is dense in E u B.
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Proof. To simplify the notation, we identify E u B with its image under
iv. With this identification, the first statement of the proposition holds if,
forpandq > 0,

(Ev u By) n (Eq u Bq) (Ev n Eq) u (By n

is open in E u B.
To show this it suffices to show that each point y0 e B n Bq has a neighbour-

hood in E t B, which lies in (E J B) n (Eq t Bq). Consider the function
r p / q. It is in H* and so f rip has a continuous extension ] to B,
given by

](y) y(r) y(p) / y(q) y(q),

where y denotes also the extension of y to H. Since y0 e B n Bq, yo(q)
](y0) 0. There therefore exists a neighbourhood U of y0 in Ey u B on which
] never vanishes.
The neighbourhood U lies in (Eo B) n (Eq t Bq). Let yeU n E.

Then, 0 ](y) f(y) and so 0 r(y) <_ p(y) / q(y). This implies
q(y) OandsoyeEq. IfyeUnB,then0](y) y(q) andsoqekery.
Consequently, y e Bq, when Bq is viewed as a subset of B.

Since each subspace Ey u.By is Hausdorff, this topology for E u B is Haus-
dorf provided any two points of B lie in one of the subspaces E u B.
Let yl - y be two points of B with y ker, for i 1, 2. Assume p > 0
are such that (p) 1. The argument used to show B is Hausdorff also
shows that pl and p. can be chosen so that p/ p 0. Let p p V p.
Then (p) 1, for i 1, 2, and so y, y. lie in By.

If each E is dense in E u B, it is clear that E is dense in E B. Since
each Ey B is open, the converse holds.

In case E is an open region in 1 and H+ is the set of positive solutions of
Laplace’s equation, each E coincides with E. Applying Proposition 7,
E E is dense in E o By if, for any compact K and h in H*, infs hip 0
implies infs_ hip 0. Assume that infs_ f/p s > 0. Since infs hip 0
this implies that hip vanishes on K. Consequently f vanishes on K and so
h 0. This is a contradiction.

In the case of a transient Markov process the condition is also satisfied.
Assume K

___
E is finite and that, for h e H*, infs hip 0, but infs_ hip

s > 0. ThenZ {ilh(i) 0} is a subset of K and hence finite. This
leads to a contradiction by the argument used above for the bounded case.

PROPOSITION 9. The topology for E t defined in Proposition 8 is coarser
than the quotient topology induced by - Furthermore, it induces the hull-kernel
topology on BOO.

Proof. Let 0 G E u B be open and let y0 e 0 n B. Then, there exist
> 0, h > 0 in H* and compact K G E with y0(h) 0 and

0 {yeE t B (h/p)-(y) < 1 K.
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The continuity of 1 follows from the fact that
--1- {yeSyuByl(h/p)-(y) < } {yeEJLIf(y < ./(y)}.

Since is continuous, ]L is continuous. Consequently, the hull-
Bkernel topology on contains the subspace topology induced by topology

defined in Proposition 8. To show that this subspace topology is the hull-
kernel topology, it suffices to show, for each h and p > 0, that 0h n By is open
inBy. Letq p/handlety0e0hnBy. Then

0}.

Since q e H*, this set is open.

BRemark. It does not look as though the topology for E u for which all
the Ey u By are open subspaces coincides with the quotient topology induced
by =. If, for example, each jy embeds Ep u Bp as an open subspace of E u L,
then these two topologies coincide. However, in the case where E is a bounded
region in R and H is the set of harmonic functions, it is not true that each
E u B is embedded by jy into E u L. Let p > 0 be a minimal function.
ThenH* has dimension one and asE E, E u Bp is the one-point compactifi-
cation of E. IfE u B could be embedded in E u L, each function in H would
extend continuously to the point at infinity. Since this clearly cannot happen,
it follows that j does not embed Ey u B in E u L.
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