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A recent paper [11] established some homology results for the problem of
mapping an orthogonal k-tuple on Sn-1 into the Euclidean space R. These
results were obtained under restrictive hypotheses on n and It. That paper
indicated certain possibilities of generalization. In part the present brief
note indicates these in more detail. Since the arguments are largely extensions
of these anterior results, it seems worthwhile to preface our remarks with the
proofs of some of the assertions in [11] together with their indicated generaliza-
tions. In the interests of succinctness it will be assumed the reader has avail-
able [11] and notation, terminology, numbering of results and bibliography
references are consistent with that article.
The computations in [11] involve the coefficient group J for all cohomology

rings. However, the definition of the index in [4] or [10] uses J for odd dimen-
sions and J for even dimensions in computing the element I(j) of the
cohomology group [4, p. 331]. Since 2 is the only possible torsion coefficient
entering in the various cohomology rings used the Universal Coefficient
theorem is the assurance that the height of I(j) can be calculated by using
J, p an odd prime throughout. For clarity we shall presently refer to the
index as the J index.
Lemma 1 states" If n 2m 1 is a prime, and if Ai is the i symmetric

function in the arguments 12, m2, then Ai 0 mod n for 1 < i < m.
The elementary proof consists in the combination of the observation that

12, 22, m are quadratic residues [12, p. 270] with respect to the prime
n 2m - 1 and Euler’s criterion [12, p. 274]

x ------ 1 mod n
whence

(x 1) II: (x i2) mod n

which implies the lemma.
The method in [11] involves the determination of the cohomology ring of
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The following slips in [11] are noted" page 171, line -3; n should be m in B/o page

172: The book reference should be to page 332; page 173, lines 17 and 18: the footnote
reference is to Corollary 5 not 3; the exposition on page 175 is clearer if one introduces
T T’X T’ThenG"= (G T")X T’;inthesecondlineofequation (3.3), t not b
and the range is e < i. Equation (3.4) should be

p*(S, SO(n))p*(J X T’, S) p*(J X T’, G’)p*(G", T)p*(T, SO(n));
In the next line too, S and J X T’ should be transposed, and below, e not /c’; page
176: transpose the sentences "The ideal..." and "Since pi i..."; line 8: insert
", m,,-)" after mr+; line 14: the relation is mod I; line 16: H not B; line 19: Add
h before (a).
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SO(n)/A for some subgroups A, which in turn involves the homomorphism of
cohomology rings of classifying spaces [2]. These homomorphisms depend on
how the subgroups are imbedded. Thus a crucial homomorphism is that

*indicated by p (C, G) where C m Jk and G (Jk) A natural coniecture
might be b. - b, in line with [2, p. 310]. However, as stated in [11], the im-
bedding of C in G is such that the correct correspondence is

(a) b --- jb.
We present the details.
If the matrix representation of the generator of C is

0 1
0 0

0
1 0

then, since the characteristic roots are the/th roots of unity, this is orthogonal
equivalent to the matrix

a--

where m In/2] and

A 0
A

0 A
1

(cos 2r// --sin 2r//A
\sin 2zr/k cos 2-/k, ]"

The multiplicative representative of the jth generator of (j)m is
1

1 0

Ai
0 1

where A. A is in the position of A in a. The inclusion map of a into the
direct product of the aj’s is therefore obtained by mapping a into

A1
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In an additive representation with a the generator of C corresponding to a
and {a.} the additive generators corresponding to a.

a -- al (R) 2a. @ @ ma,.

Let and . be the dual generators for Hom (C, J) and Horn (G, J) with
/ p respectively. Thus

(a) 1, tit(as) : modp

and the induced homomorphism

Horn (G, J) -- Hom (C, J)

is specified as usual by

(i5r)a (ia) @ 5=1 jaj r.

Accordingly

(b) i5 rS.
On referring to [11, Eq. 2.4] for B and B*o, it is clear that (b) implies (a),
i.e.

o*( C, G)b ib.

We now take up some generalizations. One is that of replacing / p
by / p, s > 1. This generalization amounts to replacing C by C,
maintaining the coefficient group J and the auxiliary Lemmas 1 and 2 go over
intact. Thus Lemma 1 remains valid with the interpretation m (p8 1)/2

zX--- 0 modp 0 < i < m.
For this note that

(p 1)/2 p(p- 1)/2 + (p 1)/2

whence mod p, the sum of the 2i power of the first p(pS-1 1)/2 integers
vanishes and only the integers 1, 2, (p 1)/2) enter. However for
these, Lemma 1 is valid.
The squared integers entering in the correspondent of (a) may be restricted

to those prime to p since the coefficient j in the mapping bj jb is understood
mod p. This implies that [11, (2.9)] is valid provided the (p- 1)/2
integers divisible by p are stricken from the product

II’ (1 + (jb)).

Accordingly the right hand side of [11, (2.9)] would be

(2.9’) 1 + Ab(-1-’

That is to say 2m is replaced by (p 1)pS-, etc. and so [11, (2.8) and (2.10)]
are available, and thus eventually the index is 2(p 1)p- 1.
A comment is in order here on the application of the index method. The
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index is derived under the assumption that only the identity of C leaves any
point fixed. Accordingly the diagonal of R8 must be replaced by the fat
diagonal V defined as the diagonal of

Ex x E,
the p fold product of R’-’. Plainly V A. (In his current doctoral
thesis Mr. Masami Wakae has independently noted (2.9’) and has carried
through the analysis of the case n k also and has established bounds for
(R- V) forn p".)
For the case of n a composite number, a simple observation is in order.

THEOREM 7. If the odd number n kq, the J index, p an odd prime, of
SO(n)/C1 is the same as that of SO(to)/Ck.

By the Kunneth theorem, since there is no odd torsion

H(SO(n)/Ck, J) H(SO(n)/SO(k), J) (R) g(so(tc)/C, J)

and the height facts are those of the factor

H(SO(tc)/C J).

The case p 2, n 28 is open. The difficulty here is that the action desired
of C J28 is not that of reflections, but of a rotation of angle 2r/28. Accord-
ingly the plausible attempt of replacing the maximal forms T in the p* homo-
morphisms cited in [11] by the subgroup of diagonal matrices Q according to
the pattern of [13] is not available.
However, there is still an interesting class of frame problems involving

C2 J following the ideas of the index (apart from the procedures of Bourgin
and of Yang cited in the bibliography of [4]). Here the equivariant mapping
condition

(c) ft tf
restricts the admissible mappings. Assume below that is the antipodal
mapping tw w. Then

(d) f(-) -f(w).

For these restricted mappings we may again apply our methods and as a notable
advantage the results can be stated for the general /-tuple. Remark first
that already with Ck,/ # 2, the orthogonl/-tuples in [11] can be replaced by
equispaced/-tuples in the sense that rotation, through 2r// about a suitable
axis leaves the/c-tuple unchanged (Cf[5, p. 300]). However for the antipodal
mappings each diameter is unaffected. Hence there need be no relation to any
other diameter in our C J arguments and therefore an arbitrarily spaced
/-tuple can be assigned and the results stated for the rotation equivalents of
this k-tuple. An alternative argument invokes the Gram-Schmidt orthog-
onalization process and was given in [14] where it was also remarked that the
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linearly dependent k-tuple can be treated as a limiting case of linearly inde-
pendent k-tuples. Specifically then as an analogue of Theorem 6 [11],

THEOREM 8. Let f be of type (b) on Sn-1 to R z. Then for n 2, the
set of rotation equivalents of an arbitrary t-tuple on whose end points have a
common image constitutes a symmetric set D’ with

HN_(D’) 0 (/-- 1)/_j_ n- 1

N dim SO(n)/C2 n(n- 1)/2.

In particular if n 1 (]c 1)/, there is a non-bounding cycle of such k-tuples
of dimension n/2 n/2 1 ).

COROLLARY 9. Under the hypotheses above there is a rotation equivalent of an
arbitrary tc-tuple on Sn- whose end points map into the same point if n 1
(]c- 1)/.
This corollary has been found by Geraghty [14].
The proof of the theorem depends on the fact that C J2 viewed as an

involution is a subgroup of S0(2). According to [2, p. 3.10] the cohomology
ring is

(S0(2) ) J(a)
H\. ,J. .(a).(R)V dima 1

with (an) the ideal generated by an. Hence

,(S0(2)/C) n- 1.

The rest of the proof follows the detail of that of Theorem 2.
Typical of the directness of the proof afforded by these methods is the fol-

lowing treatment of the generalized Borsuk-Ulam theorem [4, p. 338].

THEOREM 10. If f" S ----> R and if{x If(x) f(tx) D where is an
involution, then

Hk(D’, J) O, 0

_
k

_
n- l.

Note F(x) f(x) f(tx) is equivariant and

F’S D--R- 0.

Since (R 0) 1 and (Sn) n, then just as in [11, p. 173]

HAccordingly I(m, Sn) m l, n, maps into 0 e (A’, J.) in [11 Equa-
tion (1.5)]. Hence with pn sn, and D’ P A,

H,_,(D’) O, m- l, n

Moreover by commutativity in Equation (1.5), the inclusion mapping of D
into pn induces non-trivial homomorphisms for these values of m.

It is well known that the inscribed cube problem for convex bodies is
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generally impossible. A related problem is that of the inscribed equilateral
frame: If K is a convex body in R is there a frame {/=a about some origin,
with a independent of i, terminating on the boundary of K? This prob-
lem is still unsolved for n >_ 3, (though it seems likely that an equilateral frame
with end points on the boundary of a compactum K inR exists if K is merely
contractible and locally contractible). However, with an added symmetry
hypothesis the problem becomes a corollary of Theorem 2. Specifically, K
is symmetric with respect to the origin 0 if x e K implies -x e K.

THEOREM 11. Let K be a compact symmetric star convex set with respect to an
interior point , contained in R, n an odd prime. Let E be the set of inscribed
equilateral frames (with end points on the boundary M of K). Then E/C,
C JR, has the homology properties of D’ in Theorem 2. In particular, for
n 3 the representative in S0(3)/C of E/C contains a nonbounding 1 cycle.

Furthermore Corollary 5 is valid with circumscribing cubes replaced by equilat-
eral inscribed frames.

For the proof we need merely take for f(w) the length of the radius to M
along the line through w e (If the existence of merely one such frame is
t issue, the same definition of f(w) may be applied to the Kakutani or
Yamabe-Yujobo [15] proofs for general n).
An x-diameter of a convex body K is a segment containing x whose end

points are on the boundary of K. n equal orthogonal x-diameters constitute
an x-flare.
THEOREM 12. Let K be an arbitrary convex body (not necessarily symmetric)

in R and let x be any inner point of K. Let E be the set of x-flares. Then the
properties of E/C are those listed in Theorem 11.

Added in Proof (See Theorem 10). No more than four points on a great
circle of S need have a common image in R. A simple example is
f(x) x - x - x essentially suggested by C. Pucci.
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