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1. Introduction

Marcinkiewicz has given an example of a continuous function f whose
Fourier series {S,(x, f)} converges uniformly (on [0, 2]) but whose sequence
of Fourier-Lagrange interpolation polynomials {I.(x, f) diverges almost
everywhere (see [2, page 40]). In this note we give a continuous function
(x) with the property that {I,(x, 4))1 converges uniformly to (x) but
S.(x, ) diverges at a point. Using a standard construction, can be modi-

fied to give an example with {S(x, )/diverging on an everywhere dense set
in [0, 2v]. The details of this latter construction are not carried out.
We are indebted to Professor G. Alexits for suggesting the problem treated

here and for helpful discussions during its preparation. Also we remark that
several classical results will be used without specific reference. All of these
may be found in Zygmund [1], [2].

2. A preliminary construction

We first define a set of functions which will be basic in the construction of
the example. To describe these functions it is convenient to introduce certain
sets of integers and certain subsets of [0, 2r].

D1. p, p., p or simply {p} will denote the first/ odd primes,
indexed in order.

D2. p* will denote a certain member of {p}. A(p*) will denote the set
U/’] [4r/p*, 2(2 4- 1)r/p*].
D3. e* is s positive integer, subject only to the restriction that if m is an

integer with 1 =< (2m 4- 1) =< p 2m 4" 1) "’.
, p where

0 < e__< e*
D4. For each number y (2r/)/(p[* p*) (with # an integer),

y e A(p*), let k(y) be a positive number less than 2/(p p)*. De-
note the totality of such y by B(], p*, e*) and let C(k, p*, e*, ) denote the set
A(p*)\U (y )(y), y 4- X(y)) where the union is taken over 11 y e B(k, p*, e*).
For some applications, the members of B(/, p*, e*) will be subscripted in

order from left to right (i.e., y < y. < < y,).

D.NTON 1. :For given choice of/, p*, e* and as defined in D1-D4,
let (/, p*, e*, ; x) be the continuous function on [0, 2r] defined as follows:

1 (k, p*, e*, X; x) 0 for x e B(/, p*, e*) u ([0, 2r]\A(p*))
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2 (k, p*, e*, ),; x) 1 for x e C(k, p*, e*, k);
3 (k, p*, e*, k; x) is extended to the rest of [0, 2] so as to be continuous

on [0, 2] and linear on each subinterval for which it has not been defined in
1 and 2.
For example if y e B(k, p*, e*) but is not an endpoint of one of the intervals

in A(p*), then

(k, p*, e*, k; x) (1/k(y))(x-y) for 0 =< (x--y) _),(y)

and

(/c, p*, e*, X; x)

1 (1/)(y))(x-- y-t-k(y)) for -)(y) _-< (x- y) _-< 0.

In Definition 1, the functions (k, p*, e*, ; x) are 0 in [, 2r] so that in
certain formulas involving the Dirichlet kernel D,(u), the substitution 1/u
for 1/(2 sin u/2) can be made with impunity.

Notice that (/c, p*, e*, k; x) is very nearly the characteristic function of
A(p*). However, it is continuous and also is zero at a certain critical set of
points. For simplicity (], p*, e*, ; x) will sometimes be denoted by
(- ;x). In what follows certain properties of {I(x, 4,(- ;x))} will be
discussed and these will be denoted by P followed by a suitable integer. Later
on properties of {S,,,(x, oh(-; x))} will be developed and these will be denoted
by Q followed by a suitable integer.

P1. I,(x, 4,(--; x)) 0 for 1 _-< (2m -[- 1) -< p or if 2m -t- 1 divides
(Pl p)e*.

(m)For letx, 2/(2m+1). Then
(m)I(x, (--;x)) 2/(2m + 1) .,2oh(-;x’))D,(x- x, 0

(m) (m)since (--; x, 0 for each x (see D3 and 1 of Definition 1).
1)2. If2m W land (pp.. p)e* are relatively prime and if ull points

x() which are in A(p*) are also in C(k, p*, e*, N) then

I(x, ( -; x)) 0(1) -t- 0((log p*)/q)
where q (2m -t- 1)/p*.
One has

())D,,,(xI,,,(x, (--; x)) 2/(2m -t- 1) 20(--; x x,

(since (--; x 1 in the terms left in the sum). Let

x (20r)/(2m-[- 1) + (2a)/(2m-t- 1)



A NOTE ON FOURIERoLAGRANGE INTERPOLATION

where0 =< a < r. Then
(m)D(x- x, )= {sin((m -I- 1/2)(0 + a)).2/(2m + 1)}

/{2 sin (((0- )v -t- a)/(2m + 1))}

(sin (0 )) cos a + (cos (o )) sin a}

/{2 sin ((0-- u) + a)/(2m + .1)}.

Therefore

(,) {Z:$*; ., ,-[2rq]+l (--1)"-"/(0 )} sin a + 0(1).

In (,) the symbol means that if one of the ranges ([2rq] + 1, [(2r + 1)q])
includes 0 then this term is not included in the sum.

[(2r+l)q]Consider a block of terms =2q+ (-1)-/(0 ) and suppose that
0 in this range. Suppose for example that 0 [2rq] 1. If

[(2r W 1)q] [2rq] is even, then successive terms of the block can be paired
to give some terms of a series which is absolutely convergent (i.e.,
ffi l/((n)(n + 1))). If [(2r + 1)q] [2rq] is odd, this pairing leaves
over one term, (-1)-[(+)q]/((0- [(2r + 1)q])r). The set of all paired
terms of (,) is dominated by the series ffi 1/(v(n)(n + 1)) (or morn
properly by twice this series since in general we have terms to the left and
right of x).
The worst possible case for the unpaired terms is to start with 0 < 0 [q]

and to have each integer [(2r 1)q] [2rq] odd. But then the sum of the un-
paired terms is dominated by 1 +] 1/qn O((log p*)/q) + 1. The
result P2 follows.

P3. Suppose (2m 1) is not relatively prime to (pl p)* but does not
divide (p p)*. Suppose further that each point of (2r)/(2m W 1)
which is in A(p*) but not in B(/, p*, e*) is in C(]c, p*, e*, )). Then
I(x, ( -; x) 0(1).

Let 2m + 1 p’. p+’p+ p’ where either s > ]c and f, > 1 or
f, > e*,...,f > e*withr >= 1(1 =< i < i2 < < ir

_
/c). If

the numbers (2)/ 2m -t- 1 which are in B(k, p*, e*) are just those of the
form (2q)/(2m + 1) }. Since q is odd, q 1 is even and the numbers

({(2)/(2m -t- 1)}\{(2,qr)/(2m -t- 1)})hA(p*)
occur in blocks of q 1 consecutive integers where (-; xm)) 1 while at
the remaining points of {xm)}, ( x)) 0. Therefore,

I(x, 4,) 2/(2m - 1) v z.,,ffivq+v’(+)q-1D(x x))
and with a suitable pairing of consecutive terms in this latter sum it is clear
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that
II,(x, @(--;x))l < 1 1/(r(n(n Jr 1))) d- 1.

P1-P3 show that if m is not too large (relative to pk) and if pk/p* is of the
same order of magnitude as log p*, I(x, ( x) )1 is bounded (the bound is
uniform if (p* log p*)/p is uniformly bounded and if the other hypotheses of
P1-P3 are met uniformly). We now put some further restrictions on the
numbers {k(y)} which will make ]I,(x, (-;x))] bounded for all m and x.
Let

X(y) (pip’" p)-e,(l+)

(recall the definition of y from D4).
(p* log p*)/p < M (say) we have

With this choice for k(y) and with

IEMMA 1. Suppose we have a class of functions
{@(/c, p*, e*, X; x)}

with P* log p*/p < M where the @’s of the class are constructed in accordance
with Definition 1 and the k(y) are chosen as above. Then {I(x, @(--; x))} is
uniformly bounded in m, x and the class {@(-; x)}.
The proof of Lemma 1 consists of examining I,(x, (--; x))l for m in

several ranges (the ranges adding up to all of the positive integers) and show-
ing boundedness in each of these ranges. We emphasize that for a single
@( x) the boundedness is trivial since each @( x) is Lipschitz (and hence
i,(x, (-; x)) (-; x) uniformly. However in the construction of the
example in Theorem 1 below we need to consider a sequence of functions of
the type @(--; x) and to have ]I,(x, (- ;x))l uniformly bounded even
though the set of Lipschitz constants of the sequence of functions is not
bounded.

If 2m -$- 1

_
p, I,(x, (-;x))l 0 by P1, so Lemma 1 is valid for

this range of m. If p -< (2m-l- 1)

_
(pip-"p)e*, and 2row 1 and

(pl p2 p)* are relatively prime, Lemma 1 follows from P2 since p*(log p*)
/(2m Jr 1) < m and all points of the form (2r)/(2m -t- 1) in A(p*)
are also in C(/, p*, e*, X) (since the minimum distance from points
{2,r/(2m -t- 1)} to points {2,r,/(p pk)*} is greater than 2,r/(p... p)2,).
A similar argument shows that if p -< (2m - 1)

_
(p... p)* and

2m -t- 1 are not relatively prime then the hypotheses of P3 are satisfied and
{I I(x, @(-; x))I} is uniformly bounded in this case.

Finally we treat the case (2m -t- 1) > (p p)e*. This will be handled
by some sublemmas which will be prefixed by P (continuing from the previous
set P1 P3).

P4.

I,(x,@(-;x)) (1/,r)(z.,,-0(-; x, )(-1)’-/(i0 -i)) sin a + 0(1)

where x 2,rio/(2m Jr 1) d- 2a/(2m + 1) (0

_
a < r) and ’ means the
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term i i0 is deleted. 0(1) is uniform for the class of functions ( x) }.

For Ira(x; ( x))

(2/(2m -t- 1) 20( x) )Dm(x x))
t2m xm)(2/(2m-t- 1))-o(--;

(sin ((io- i) + a))/2(io- i)/(2m + 1) + 0(1)
t2m (m)(/)(-0 (-; )(-)’-/(i0 i)) sin, + o().

The 0(1) term in this last formula is uniform for the class of functions
{(- ;x)} and P4 is established.

P5. Suppose (-; x) is linear in an interval [a, b] (and either increases
from 0 to 1 or decreases from 1 to 0 there). Suppose further that

(m)](--; x)) (--; z,+] , for x) e [a, b].
Then

(m),_ (- x )(-)"-’/(io -i)

’ 1/(i0 2i)(i0 (2i + 1))0(1)- + 0() /(io i)-[/l

where N and N are (respectively) the smallest and largest indexes of i with
) [a, b].

Asse first that N N & 1 is even and that (-; x)) decreases from
l to 0 in [a, b]. Then

v2 (m)

(_),o-{(v(_;,)/(io N) (-; ,+/(io N,
(m) (m)+ + (-; -/(io N + ) (-; )/(io )

(-1)’-{(-;,)(/(io- ) /(io ))

+ ,i/(io ) + + (-;- (/(io + )

/(io N)) + ,/(io N)}

0()’-1/((io 2i)(io (2i + 1)))
n 1/(io 2i)+ 0(1)v-,

Asimilar argent holds whenN N W 1 is odd. In this case there is an
unpaired term (say ( ;x ) ) and this gives rise to a term 0( 1)1/(io N).
The case where (- x) increases from 0 to 1 is treated by taking (-; xm
as the unpaired term. (The factors 0(1) are universally bounded-inde-
pendent of [a, b] and N and N.)
The case (2m + 1) > (p p)* is somewhat different than when
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2m+ 1 <- (pl’"p). In P6 the range

(pl...p)* < 2m+ 1 < (p....p)N*
is treated where N is the number of points in B(k, p*, e*). The case
2m + 1 > (p p)m, requires only a slight modification and will not be
treated explicitly. We emphasize that 0(1) is used to mean bounded for the
class of functions considered in Lemma 1.

P6. If m is such that

(p p)*
_

(2m + 1) < (p p)(.+l),
then lira(x; (-; x))] 0(1).

First note that ( -; x) is either 0 or 1 except in "small" neighborhoods ot’
the points {YI where it consists of one or two linear parts (depending on i).
The fundamental points/xm) where (-; xm)) # 0, 1 are in the neighbor-
hoods of points {y} where I

_
i -< (n- 1).

Let2m + 1 0(p...p)n*wherel -< 0 < (pl...p)e*. The points
{x) where (-; xm)) # 0, 1 are of the form 2r/(2m + 1) where

N(i) vO(p p)("-)e* O(p

<= t* <= vO(p p)("-)* + O(p p)(’-)*
N(i)

(, is determined by the index o the point y). From P4 and P5 it follows that

2/(2m + 1)1 ,2() (,O)D(x
’()/ 1/(2i0 j)(2(i0 j) + 1)

+ 0(1) ’tn=()= 1/(io 2j)} sin a=[1(i)/2]

where

and
x 2rio/(2m + 1) + 2a/(2m + 1) (0_ a < ’).

1/(io 2j)

0(1) log io- vO(px.., p)(-)** + O(px

P) (-i),

0(1) { (i0 (p,
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Let io o(p p)-*. One has

( r)-)’* + 0(1)

0(1)(’- 1/(o,= v(i)))l/(p, p)-)’* + 0(1) 0(1)

sincen (p...p)*’. Clearly- ,t,)/2]_ 1/2(i0 j)(2(i0 j) + 1) 0(1)

Therefore

_() (-; x )D(x z 0(1)

where the 0(1) in (A) is uniform over the class of $(-; x)’s we are consid-
ering.
In the expression

(B) I(x;.(--; x)) 2/(2m + 1) =0,( ))h(x )

the set of terms where (-; x)) 1 (i.e., the set of terms corresponding
to x) C(k, p*, e*, X) ) can be divided into blocks in C(k, p*, e*, X) where
C(k, p*, e*, X) is the arc-component of C(k, p*, e*, X) between y and y+x
if there is an even nber of terms of (B) in a given Ci(lc, p*, e*, X) we
leave this block unchanged, if ,here is an odd number of terms, we lump the
"last" term (one farthest to the right) with the contiguous block in (A).
With this modification, the estimate in (A) is still valid (see P5) and the re-
maining terms in (B) occur in blocks of even numbers of consecutive terms,
i.e.,

(m)

That (C) is bounded follows as in P3. Therefore (B) is uniformly bounded,
over the class {$(-; x)} we are considering in Lemma 1, and Lemma 1 is
proved.

3. Properties of S(0, (-;x))
In this section we discuss certain properties of S(0, $(-;x)). The

properties will be labelled by Q followed by an integer.

Q1. Letn [p*/2]. ThenS,(0, $(-;x)) (1/20) logn forn suf-
ficiently large.

Recall that

(l/r) D() d (2/’) log + 0(1) where 0(1) < 2.
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From this it is clear that if x(x) is the characteristic function of A(p*) then

S(0, x,(x) ) (1/r) Jo x,(x)D,(x) dx

Now (k, p*, e*,
is large enough relative

S(0,

2. If m/p* , hen S(0, 4( )) 0(1) log m + 0(1).

Noice that ,(-; x + 2/p*) (-;x) for x, x + 2/p* C([0, ]).
Let d(), d(), da() and d() be defined by the conditions

1 d() 2/p* (j 1, 2, 3, 4) ( an integer [p*/2]);

2 0 d() 2u/m < 26/m, 0 (2u + 1)/m- d2(u) < 26/m

0 da(v) (2 + 1)/m < 2r/m,

0 < 2( + 1)/m d() < 26/m;

3 d() d,() d() da().

hen S(0, 4(-; )) (1/) 4(-; )(sin m)/ d + 0(1)

[/1

(1/) (--; ) sin m/ d + 0(1)

--1 dl( d2() (2+1) /m

dt()2(,+l)/m+ + (--; x) sin mx/x d + 0(1)
() ()

0(1)

sin m(x + d3- dl) dx + 0(1)x+ d3 d /

0(1) In m -t- 0(1)

since (da dl) rlm < 4’it/m. This proves q2.

Q3. If m >> (pl pk)e* then Sin(0, (- x)) -< 2.
Lipschitz function and its Fourier series converges to it.

For 4(-;x) is a
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4. An example
We state our main result as

THEOnEM 1. There exists a continuous function (x) with IS(O, (x))l
diverging but with {I,(x, (x))} converging uniformly to (x) (on [0, 2r]).

The function (x) is of the form

(f) (x) - (1/i)(/c, p, e,, ) ;x)

where the parameters {/}, {p’}, {e} and {)/are chosen so that (x) sutisfies
the conditions in Theorem 1.
The sequences of parameters are generated inductively. For the first set of

parameters choose p 3, k 4 (so that p 11) e 3 and the set
by the formulas in the paragraph preceding Lemmu 1. Now suppose for
i n parameters have been chosen so that

1 p/* > 2, (p*- log * * *p_)/p 1, and p satisfies the conditions on m
in the hypotheses of Q3;

*)2 k satisfies the conditions (p* log p)/p < 1, and p > (p
3 e* satisfies the conditions of D3;
4 for the given choice of ]c, p:Y, e the set ) is chosen in accordance with

the formula )i(y)) (p p)(l+’)e, (see the paragraph preceding
Lemma 1).

One now proceeds to generate the parameters for the index n. First one
chooses p* so that the conditions of 1 are met for i n. One has only to
choose p* large enough. Then k is chosen so that the conditions of 2 are
met (for the given p*). Clearly this will be possible for k sufficiently large.
Finally e* and ), are chosen so as to satisfy 3 and 4.

Let be the function defined by the formula () with the set of parameters
satisfying 1-4. We show that {S(0, (x)) diverges. Given *p, let
n [p/2]. Then

+ S(0, (1/j)(k, p, e, ) x))

-t- S;(0,+ 1/i)(k, p:Y, e’, ) ;x)).
From 1 and Q1,

p/2 > log2)/(20j)S,(O, (1/j2)ch(k p e X x)) > (1/20j2) log * 2

while

S(0, -I (1/i)4(-; x)) -t- S(0, ET--’+(1/j)4( -; x)) 0(1)

from Q2 and Q3. Hence the subsequence {S(0, 4(x))} is unbounded so
that S(0, 4(x) diverges.
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To prove that Ira(x, (x) converges uniformly to (x), we remark first
that from 20-4 it follows that Lemma 1 holds for the set (ki, p*, e*, },i x)
used in the definition of . Given e > 0, choose no so that for n _>- no

(x) /f)(- ) < /3.
If M is a bound for {I,(x, (ki, p, e, k;x))} choose nl so that M/n1 < /3.
Finally choose m0 so that for m ->- m0 and n2 max (n0, nl),

(x, = (1/i2)( --; x)) i (1/i)( x) /3

(this latter is possible since n= (1/i)( x) is Lipschitz) Then for
m_>__m

I(x, (x)) () < I(x) ,..,= (/)( x)

+ Z:% (1/)(-;) -’L-, (/)z(z, ( ;z))l

+ :+(/)1 (x, (-; x))

< c/3 + /3 + /3 .
Therefore I(x, (x) converges uniformly to (x) and Theorem 1 is
established.

5. (::oncldin remarks
The example in Theorem 1 is such that {S,(x, (x))} diverges at 0 and r

while converging at other points of [0, 2]. First, (x) can be modified so that
{S,(x, )} diverges only at a single point (say x0) and {I,(x, )} converges
uniformly to (x). Secondly, given an arbitrary sequence of points
{xi} c [0, 2], we can construct a set of functions {(x)}, with (x) having
the behavior t x that (x) hs t 0 nd with {I,(x, (x)} converging uni-
formly to (x). Using a standard construction, the {i(x)} can be used to
construct a function whose Fourier series diverges at least at each of the
points {x} but whose interpolation series converges uniformly.

Finally we remark that it is relatively simple to construct a function (x)
with {Sin(0, (x))} divergent and with II,(x, (x))} convergent to (x)
but not uniformly convergent. The maior complications in our proof are
forced by wishing to make the convergence of I(x, ) uniform.
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