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Introduction
For concreteness, let X be the closed interval {0

_
x

_
1}, t the Lebesgue

measure on X, 21 21(), and 2 .(t) (over the reals). As we know,
2 is the norm-dual of 2. C C(X) can be imbedded isometrically in 2,
so for the moment, let us consider it as a subspace of . Finally, let 6t be
the image in of the Riemann integrable functions, that is, each element of
6t is the equivalence class (modulo the essentially bounded measurable functions
vanishing almost everywhere) determined by some Riemann integrable func-
tion. ThusCc 6tc 2.
Denote by B(1) the unit ball of . and by A(2) the set

(the "face" of B() lying in the positive cone). By the Grothendieck
theorem, we have:

The set of linear functionals on 2 continuous on B(2) under the wea
topology w(2, C) defined by C is C itself.
In the present paper we show the following:

The set of linear functionals on 2 continuous on A(21) under w(

We compare these two theorems further. As was shown by Caratheodory
[4], 6t consists of those elements of each of which is simultaneously the
infimum in of some subset of C and the supremum in 2 of some subset
of C. We describe this shortly by the statement: 6t is the Dedekind closure
of C in . The above theorems can then be stated as follows" the linear
functionals on 21 which are w(21, C)-continuous on B(2) constitute the
norm-closure of C in , those which are w(., C)-continuous on A(),
the Dedekind-closure. (The norm-closure of C is C itself; we just state it
this way for purposes of comparison.)

Caratheodory’s characterization has been extensively used in recent years
as an approach to the Riemann integral [2], [7], [13], [14]. In the present
paper we make a study of the Dedekind closure of C(X), X compact, in a
general closed ideal of the bidual M(X) of C(X). Since for every Radon
measure t on X, 2(t) is a closed ideal in M(X), our work includes the
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Riemann integral as a special case. Specifically, given a closed ideal I in
M M(X), we denote the projection of C C(X) in I by C and call the
Dedekind closure of C in I the Riemann subspace of I. The characteriza-
tion stated above for t in is obtained for this generM Riemann subspace.

Part I is devoted to obtaining this characterization. It requires a study
of uppersemicontinuity (or equivalently, of lowersemicontinuity) in the dual
L of C, which is of interest in itself. Prt II is devoted to crrying out--in
M--Semadeni’s generalized Riemann integration [15], [1].

Before turning to the work itself, we want to discuss a phenomenon which
occurs frequently in going from a topic in topology to the corresponding topic
in M. This is that the role played by a-closed (set) ideals in the former turns
out to be played in M by norm-closed (vector lattice) ideals. The concept
of norm-closure in M has no correspond for sets. In working with sets, if a
set ideal or ring is not large enough for one’s purposes, one usually takes its
a-closure. In M, however, between an ideal and its a-closure there lies its
norm-closure, and it is this which often seems to be the correct enlargement.
We have already given one example of this in [11, 10], showing that a

theorem in function theory which can ordinarily be stated only in terms of
meagerness (i.e. first category) turns out in M to involve nothing more than
rareness (i.e. nowhere-denseness). We give another example now.
As before, let us confine ourselves to X {0 -< x =< 1} and the Lebesgue

mesure. Also, for simplicity of illustration, we will work with the vector
lattice of bounded real functions on X (endowed with the supremum norm)
rather than with M. Consider the classic Lebesgue theorem: a bounded
function f is Riemann integrable if and only if its set of (points of) discon-
tinuity has measure zero. The correspond, in our vector lattice, to the set
of discontinuity of f is the saltus function (f) of f. (Indeed (f) tells us
more; not only is (f)(x) 0 if and only if x is a point of discontinuity, but
the value (f)(x) is the magnitude of the discontinuity.) Writing the
Lebesgue theorem in terms of (f)--and thus eliminating all reference to sets--
we have: a bounded function f is Riemann integrable if and only if () has its
Lebesgue integral equal to zero.
But now we can immediately sharpen the theorem. (f) is always a

non-negative uppersemicontinuous function, and for such functions, the
Lebesgue integral vanishing is equivalent to the Riemann integral (existing
and) vanishing. Thus the theorem becomes: a bounded function f is Riemann
integrable if and only if (f) has Riemann integral zero. Besides being more
satisfying esthetically, this final form illustrates our point. The bounded
functions having Lebesgue integral zero form a a-closed ideal, while those
having Riemann integral zero form only a norm-closed ideal.
A more refined analysis leads to the same result. Let P0 be the set ideal

of sets of content zero, P its a-closure (i.e. the a-ring generated by P0), and
P the ideal of sets of measure zero. Thus P0 P P., the inclusions both
proper. Now the Lebesgue theorem actually has P in place of P:f is
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Riemann integrable if and only if its set of discontinuity is an element of P1.
Paralleling this with functions, let No be the ideal generated by the charac-
teristic functions of sets of content zero, N1 its -closure, and N. the ideal
generated by the characteristic functions of sets of measure zero (this last is
simply the ideal of functions having Lebesgue integral zero). Again
No c N1 c N2, the inclusions both proper. But now we also have the norm-
closure N of No No c N c N c N2, all three inclusions proper. And it is
N which is the ideal of functions having Riemann integral zero. Thus our
final theorem in the preceding paragraph reads: f is Riemann integrable if
and only if (f) e N.

Part
1. Terminology. In general we follow the terminology and notation of

the preceding papers [8], [9], [10], [il], [12]. If Y is a compact (Hausdorff)
space, the Banach lattice of continuous real functions on Y, its dual, and its
bidual are denoted by C(Y), L(Y), and M(Y) respectively. As before,
our concern is with a fixed compact space X, and C(X), L(X), M(X)will
be simply written C, L, M.
For/ e L andfe M (hence in particular, forf e C), (f, #) will denote the value

of the bilinear functional giving the duality.
Adopting Bourbaki’s term, we will call the weak* topology on L (that is,

the weak topology w(L, C) defined by C) the vague topology.
In general an element ofM connot be considered a function on X. Howewer

there are two kinds of elements which are completely determined by their
values on X, and therefore--with proper precautions--can often be treated as
functions. These are the elements of U and the elements of M0 [8]. Thus for
example, if f and g are both in U, or both in M0, then f -< g if and only if
f(x) <- g(x) for all x e X.

In line with this we adopt a convention. Given a subset A of X, we cannot,
in general, talk about the "characteristic function", or rather " characteristic
element" of A in M. For, if f e M satisfies f(x) 1 for x e A, f(x) 0
for x A, then also f -t- g satisfies this for all g e M1. However, if A is measur-
able with respect to every Radon measure, then there is a unique f e U satisfy-
ing the above. Hence for such a set A, by the characteristic element of A
we will mean this f e U. In particular, for a closed set A, the characteristic
element of A is the u.s.c, element satisfying the .above.

Finally, for any set A in X, we may sometimes talk about the characteristic
element of A in Mo.

2. The state space A and semicontinuity.
theorem from function theory which we will need.

We first record a simple

(2.1) Let Kz K,} be a covering of X by compact sets, and f an upper-
semicontinuous function on X. Then for each > O, there exists a continuous
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function h dominating f such that

sup,, h(x) < sup,:,f(x) T e, i= 1, ...,n.

We will denote by A the set {t e L it >- 0, t 1} of "states" of L.
A is vaguely compact, and its set of extreme points is precisely X. Thus by
the Krein-Milman theorem, A is the vague closure of the convex envelope
of X. For our purposes, we want to specify, for each t e A, a "canonical"
type of net in which converges vaguely to

Let II be the set of all partitions of unity in C, that is, each r e II is a finite
set {f, f.} of non-negative elements of C satisfying f 1. Define a
partial order on II as follows: v’ will mean that ’ can be written

{gli= 1,...,n;j 1, ...,m(i)}

such that for each i, z.,=l g ft. It is easily verified that H is a directed
set under this order.
Now for each r {fl, f-I let us fix a set {xl, x,} where x is an

arbitrary element of the suppo of f, i 1, ..., n. Then for each f e C,
set f f(x)f. While the f’s depend on our choices of x’s, (2.2)
and (2.3) below are independent of these choices, in the sense that they hold
for any choices.
Given feC, {feH} is a net in C th H for index system, and

limn f f 0 [3, Chap. III, 2, Lemme 2]. It follows that for eve
L, lim (f, ) (f, }. We state this formally:

(2.2) Given f C and t L,

lim. ,f(x)(f, ) (f,

On the other hand, given e L, let us set ’ (f, }x. Then, reading
the summation in (2.2) as (f, ) rather than (f, #), we have that
lim. (f, } (f, } for every f e C. Thus

(2.3) t lime in the vague topology.

In particular, if e A, then t e for all , and we have our "canonical"
type net of converging vaguely to .
Now consider an u.s.c, element f of M. f is vaguely uppersemicontinuous

on A, since it is the pointwise infimum there (indeed, on all of L+) of some
subset of C. Thus for each # A, (f, t} >= lim sup (f, }, where A, --* t
vaguely. We actually have a stronger property:

(2.4) THEOREM. Given an u.s.c, element f of M, then for each t A,

Proof. We of course need only show -<. First, for each partition of unity
{f, f,I, let us denote the support of f by Ks, i 1, n, and
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choose Ix1, xl such that

(i) /(x) sup,f(x).

(The x’s will now be fixed for the remainder of the proof.) Now consider
e 4. Since/z e for all r e II, we need only show (f,

Denote this lim sup by X and choose any e > 0; we show (f, ) <- X + 3e.
Specifically, we will produce h e C such that h >- f and (h, ) <= 3- 3e.

Choose r {f, ..., f} such that

(ii) (f, > -<_ ), + e.

Now choose h e C to satisfy (2.1). Then h >- f (since h(x) >= f(x) for all
x e X), and (from (i))

(iii) sup,, h(x)

_
/(x) + e, i 1, ..., n.

Finally, by (2.3), choose r’ > r, r’ {gli 1, ..., n;j 1, ..., m(i)},
such that

I[h, ,,> <h, >I -<- e.(iv)

Then
(h, #,>

(from (iii))

-<_ + 2e (from ii))

Combining this with (iv), we obtain (h, g) -< ), + 3e, which completes the
proof.

If we have a 1.s.c. element f of M, we can apply the above theorem to -f.
Thus

(2.5) COrOLlARY. Given a l.s.c, element f of M, then for each

<f. #> lim inf.... <f. v>
We are now in a position to prove

(2.6) THEOREM. Given f e M, the following are equivalent"
1 f is an u.s.c, element.
2 f is vaguely uppersemicontinuous on a.
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However, this is a special case of (4.4) below, and it is the latter which we
will need.

3. Closed ideals in L and M. In this section we give a short review of
those properties of ideals which we will need. By an ideal, we will always
mean a vector lattice ideal, and the unmodified term "closed" will always
mean with respect to order-couvergence.

Let E be a complete vector lattice. The importance of the closed ideals
of E lies in the Riesz theorem: an ideal I of E gives rise to a decomposition of
E, E I @ I, where I is also an ideal, if and only if I is closed, and in such
case I is precisely the (closed) ideal I’ consisting of all elements of E disjoint
from I.

It follows that if I is closed, then each a e E has a natural projection, or
component, in I. We denote it by a. More generally, the projection in I
of any subset A of E is denoted by A. If I is a principal closed ideal, that
is, the closed ideal generated by a single b e E, then we also write a for a
and A for A in particular I E.
We turn to L and M. M is not only the norm-dual of L; it is also its dual

with respect to order-convergence, that is, it consists of the linear functionals
on L which are continuous under order-convergence. While L, on the other
hand, is not the norm-dual of M, it is the latter’s dual with respect to order-
convergence. Thus L and M are reflexive with respect to order-convergence.

Unless otherwise specified, annihilators of sets in L or M will always be
with respect to the dual system (M, L). Thus, for an ideal J of L, J" will
denote its annihilator in M.
Given an ideal J in L, J" is a closed ideal in M; and given an ideal I in M,

I" is a closed ideal in L. Moreover, if J is a closed ideal in L, the Riesz
decomposition L J @ J’ gives us the decomposition M (J’)" J’,
and (again from the Riesz theorem) (J’)" (J’)’. We will call
the ideal in M dual to J. Conversely, given a closed ideal I in M, we have
M I I and L (I’)" I’; we will call (I’)" (which is also (I’))
the ideal in L dual to I. Clearly, given closed ideals J and I in L and M
respectively, I is dual to J if and only if J is dual to I. For short, we will
also simply call them dual (closed) ideals.
Given two dual ideals J in L and I in M, the relationship of L and M is

inherited by J and I:I is both the norm-dual of J and its dual with respect to
order-convergence, while J is the dual of I with respect to order-convergence.

Remartc. If J is a principal closed ideal, J L for some e L, then J can
be identified with () (Radon-Nikodym theorem), and so its dual ideal
(J’)’ can be identified with 2(). Thus () and () are reflexive
with respect to order convergence.
We turn to the duality between L and C. For an ideal J of L, J C

is also an ideal, but even if J is closed, the decomposition L J @ J’ does
not in general give rise to a decomposition of C. To clarify the situation,
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consider the ideal (J n C)" in L. (J" n C) is of course the vague closure of
J; let us denote it by . We will call the set K X the support of J.
If J L for some # e L, then K is the support of as the latter is ordinarily
defined.
We collect the basic relations between J, :[, and K in (3.1) below. The

set A n J (for any ideal J in L) will be denoted by A(J).

(3.1) (a) A(:[) is vaguely compact, and K is its set of extreme points.
(b) C/(J" C) C(K), hence

= L(K) and w(i, C)l w(L(K), C(K)).

(c) + is the vague closure of J+ hence A() is the vague closure of A(J).

The only statement whose proof is not immediate is (c), and this follows
from the

LEMMA. If L+ is not in the vague closure of J+, then there exists

f (J C)+ such that (f, ) > O.

Proof. By the Hahn-Banach theorem, there exists g e C such that

Serf= g+. Then

(i) 0 -<_ supj+ (f, ) sups,j+ sup0__<_ (a, )

Since J+ is a cone, it follows (f, ) 0 for all 0 e J+. But then (f, ) 0 for
all e J, and we have f e J.
Remark 1. We emphasize that h(J) and/ (the convex envelope of K)

are each in the vague closure of the other.

Remar 2. It is clear from (3.1) that in working with J we can restrict
ourselves to the support of J instead of dealing with all of X. Otherwise
stated, we can assume J is vaguely dense in L.

4. Semicontinuity on A(J). Let I be a closed ideal in M, and consider
the projection C of C in I. C is a norm-complete linear sublattice of I-- in
the Geba and Semadeni terminology [5], an M-subspace of/--just as C is one
of M. Copying the definition of an u.s.c, element in M, we will call f e I an
(u.s.c.) element if f / B for some subset B of C. Similarly, f will be
called a (1.s.c.) element if f /B for some subset B of C.

(4.1) IEMMA. f e I is an (u.s.c.)x element if and only if f g for some
u.s.c, element g of M. And similarly for a (l.s.c.) element.

Proof. Suppose f g, g u.s.c. Then g / A, A C, and since pro-
jection preserves suprema and infima, f / A. Thus f is (u.s.c.). Con-
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versely, suppose $ /, h,, {h,} C (for the proof in this direction, it is
more convenient to use an indexed set {ha} than a set denoted by a single
letter B). For each a, ha (g)x for some ga e C, so we have f /a (g).
Now 1 is a strong order unit for I, hence f >_- hl for some h. Then

A,, [e,, V xl] A, [(g,) V xl] [A, (g)] V Xl ,/’V Xl f.
Thus, for simplicity, we can assume we already have ga hl for all a, that
is, the set {gal is bounded below. Setting g /a ga, we have g u.s.c, and
f g. This completes the proof.

Our obiect in this section is Theorem (4.4) below.. We need another lemma

(4.2) LEMMA. Let J c L and I M be dual ideals. Then, given f I and
h C, the following are equivalent.

1 h >= f.
2 For every x in the support K of J,

h(x) >- lim sup,ea(j).,.x agu (f,

Proof. Set g f h. Since (h, #) (h, #) for all J, the lemma re-
duces to showing that the following are equivalent:

1 g<0.=
2 For every x in the support K of J,

We of course need only show that 2 implies 1. Suppose g+ 0. Then
there exists h 0 such that (g+ hl)+ 0. Let I. be the closed ideal
generated by (g+ hl)+ and J its dual ideal in L, and set e lx. By
elementary vector lattice calculations, we huve 0 < he -_< g+. (c.f. the proof
of (6.1) in [9].) This gives first of all that I !, hence J J, hence
A(J) c A(J), and thus the support K of J is contained in K. We will ob-
tain a contradiction of 2 by showing that (g, ) >_- h for all A(J). In
effect, since he <= g+, e/ g- 0; it follows g- vanishes on J,., hence for

>__ (e, x(e, x(Z,
We are now prepared to establish (4.4).

theorem from function theory.
We will make use of the following

(4.3) Let f be a bounded real function on a subset A of a topological space Y,
and define F on by

F(y) lim supz,._.f(z).
Then

(b)
fort A;

(c)

F is uppersemicontinuous on A;
it is the smallest uppersemicontinuous function on which dominates

iff is uppersemicontinuous (on A ), then F coincides with f on A.
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(4.4) THEOREM. Let J c L and I M be dual ideals.
the following are equivalent"

1 f is an (u.s.c.) element.
2 f is vaguely uppersemicontinuous on h(J).
3 f is w(J, C)-uppersemicontinuous on A(J).

Th.en given f e I,

Proof. Since (f, ) (f, ) for every f e M, e J, we have w(L, C)I J
(J, C). Thus 2 and 3 are equivalent. Suppose 1 holds. Then f g
for some u.s.c, element g of M (4.1). g is vaguely uppersemicontinuous on A,
hence in particular on A(J). Since (f, ) (g, ) for all e J, it follows f is
also vaguely uppersemicontinuous on A(J). Thus 1 implies 2.
Now suppose 2 holds. Following Remark 2 at end of 3, we will assume J

is vaguely dense in L, and thus the support of J is X. By (4.3), we can extend
f lA(J) to a vaguely uppersemicontinuous function F on A.

(i) F is superlinear, that is, for , A and k, K >= O, X 1,

F(X - ) >- XF() - F().

To show this we choose (as is always possible) two nets {,}, {,}, with the
same index system, on A(J) such that , -- , , --* vaguely and
(f, ,) -- E(), (f, ,) -- E(). Then the net {, -t- .1 is on A(J),

and

Since F is vaguely uppersemicontinuous, this gives

which is (i).
Now f >- kl for some real number/. Let g / {h C h >_- kl, h >- f}.

Since projections preserve infima, g >= f; we show the opposite inequality,
which will give equality and establish 1, thus completing the proof.

(ii) g(x) F(x) for all x e X.

To show this, consider x e X and ), > F(x). Since F is uppersemicontinu-
ous on X, there exists h e C dominating F on X such that h(x) <= . From
(4.2), hx >= f, hence by definition of g, g(x) <= h(x) <= k. Since k was arbi-
trary, this gives (ii).

(iii) (g, ) <= F() for all e 5.

Assume first that e .. Then kx, 1, n >- 0, k 1;
hence (g, ) X,g(x,) k,F(x) <-_ F(), this last inequality follow-
ing from (i). Now consider any e A. Applying Theorem (2.4),

(g, ) lim sup.,:,._.. ,,.y (g, ) <= lim sup.,,.-., vaguely F() <- F(),

and we have (iii).



Since F() (f, t} for every t e A(J) (4.3), (iii) gives us that (g, t}

_
(f, t}

for all e A(J). It follows easily that (g, } =< (f, t} for all t e J+, hence
g -<_ f. The proof of (4.4) is complete.

Replacing f by -f in (4.4) gives us the corresponding theorem for lower-
semicontinuity

(4.5) Let J c L and I M be dual ideals. Then, given f I, the following
are equivalent"

1 f is a (1.s.c.] element.
2 f is vaguely lowersemicontinuous on A(J).
3 f is w(J, C)-lowersemicontinuous on A(J).

Setting J L in (4.4) gives us (2.6). in the Appendix (8.1), we apply
(2.6) to strengthen considerably an earlier theorem on homomorphisms of C.. Riemann subspaces. Let E be a vector lattice and F a linear sub-
lattice of E. The set of elements of E each of which is simultaneously an
infimum of some subset of F and a supremum of some subset of F will be
culled the Dedekind closure o/F in E. We have immediately,

(5.1) The Dedetcind closure of F in E is again a linear sublattice (con-
taining F).

If the Dedekind closure of F in E is F itself, we will say F is Dedekind closed
in E. The Dedekind closure of a set is always Dedekind closed.

Warning. A linear sublattice in a vector lattice E may be Dedekind closed
yet not be complete (as a vector lattice), even when E is complete. C is
Dedekind closed in M but in general is not complete.
Given a closed ideal I in M, consider the linear sublattices C and S. We

will call the Dedekind cloure of C in I the Riemann subspace of I and denote
it by (R(I) and we will call the Dedekind closure of S in I the Lebesgue sub-
space of I and denote it by (I). These names stem from the case where I
can be identified with (t) for some t e L. Under this identification, (R(I)
is the image in (t) of the t-Riemann-integrable functions on X and 2(I)
is all of (t). In 6, we will define the "t-Riemann-integrable" elements of
M and see that their proiection in (t) is (R(I). And a similar statement
holds for (I).

Actually, of course, the above definition is for any closed ideal I in M.
For such I, 6t(I) gives the proiection in I of the elements of M which are
t-Riemann-integrable for every in the dual ideal J of I (some precautions
have to be taken); and (I) gives the proiection of the elements of M which
re -Lebesgue-integrable for every e J. For example, let I be M itself.
C.. C, which is Dedekind closed in M; so 6t(M) C. (This corresponds
to the classic theorem that the functions on {0 =< x -< 1} (say) which are

Riemann-Stielties integrable with respect to every function of bounded vari-
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ation are precisely the continuous functions.) And S S, ,whose Dedekind
closure in M is U; so .(M) U.
Our interest in the present paper lies in the Riemann subspacesrather than

the Lebesgue and we will have nothing more to do with the latter.
We turn to our principal theorem in Part I. From its definition, (I) con-

sists of the elements of I which are simultaneously (u.s.c.) and (1.s.c.).
Combining this with (4.4) and (4.5), we obtain

(5.2) THE,OREM. Let J c L and I M be dual ideals. Then ((I) con-
sists precisely of those linear functionals on J which are w(J, C)-continuous, or
equivalently, vaguely continuous, on A(J).

Proof. Since (4.4) and (4.5) are stated for elements of I only, we have to
verify that a linear functional on J which is w(J, C)-continuous on A(J)
lies in I. Now w(J, C) is a coarser topology than w(J, I), which in turn is
coarser than the norm-topology. Thus is norm-continuous on A(J). It is
not hard to show from this that is norm-continuous on J, hence lies in its
norm-dual, which is I.

Setting I M in (5.2), and using the fact that C is Dedekind closed in M,
we have the non-trivial

(5.3) COROLLARY. A linear functional on L lies in C if and only if it is
vaguely continuous on A.

Returning to (5.2), if J L for some e L, then J 1(), I 2(),
and we have the theorem of the introduction.
As in the introduction, replacing A(J) by the unit ball B(J) of J, which is

larger, gives us the smaller space C in place of (I) (by the Grothendieck
theorem).
J is not the full norm-dual of I. Suppose we set 2 2(I), this norm-dual,

and consider J as imbedded in 2. Then

A(J) c A(2) {pe 2[p _>_ 0, p 1}.

What happens if we replace A(J) in (5.2) by the larger set A(2)? It turns
out again that we obtain C in place of (I). To see this, let Y be the setof
extreme points of A(2) with the topology induced by w(, I). Then Y is
compact and by the Kakutani Representation theorem, I C(Y) and
2 L(Y); the above statement then follows from

(5.4) Given a compact space Y, a norm-closed linear sublattice E of C( Y)
containing 1, and a linear functional on L(Y), the following are equivalent:

1
2 is w(L(Y), E)-continuous on L(Y).
3 is w(L(Y), E)-continuous on B(L(Y)).
4 is w(L(Y), E)-continuous on A(L(Y) ).
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Proof. We need only prove 4 implies 1. We note first that is w(L(Y),
C(Y))-continuous on A(L(Y)), since this latter topology is finer than
w(L(Y), E). It follows from (5.3) that eC(Y). Now from 4, is, in
particular, w(L(Y), E)-continuous on Y. A straightforward application of
the Stone-Weierstrass theorem [6, Theorem 16.4] gives us e E.

Part II
6. A second approach to Riemann subspaces. A closed ideal I in M is

completely determined by its dual ideal J in L or by its disjoint ideal I’ J
in M. Hence of course (R(I) is also. We examine the relation of (R(I) to I’.
We recall [11] that for f M, (f) u(f) l(f). Since u(f) and l(f) cor-

respond to the closure and interior of a set in topology, (f) corresponds to the
frontier of a set.

Given a closed ideal I’ in M, we will call

i-1(I’) {feM (f) eI’}

the Riemann subspace modulo I’ of M, and denote it by (R(M; I’). We estab-
lish first that (M; I’) is an M-subspace of M:

(6.1) Given any norm-closed ideal H in M, -I(H) is a norm-closed linear
sublattice of M containing C.

Proof. If i(f) e H, i(g) e H, then from [11, 2],

0 =< (f + g) -<_ (f) + ti(g) eH,

0 -<_ i(f V g) <- i(f) V (g) e H,

Thus -(H) is a linear sublattice. Forf e C, i(f) 0 e H.
(%)eH, n 1,2,...,andlimll%-f[[ 0. Then

[11, (2.21)],hence lim, ti(f)  (A)II o,
and we are through.

for all ),.

Finally, suppose

Remark. Speaking loosely, the common occurrence in vector lattices, as in
classical algebra, is that under the usual mappings linear sublattices appear as
images and ideals appear as inverse images. In contrast to this, (6.1) states
that for the mapping. 5" M -- M, the inverse image of an ideal is a linear
sublattice.

If the dual ideal J of I is an L, for some z e L; then (R(M; I’) is the cor-
respond in M of the functions in ordinary function theory which are Riemann
integrable with respect to z. Hence we will use the same terminology for
(R(M; I’), that is, given f e (R(M; I’), we will say f is Riemann integrable with
respect to .

Since H is norm-closed, (f) e H,
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If I, H are closed ideals in M with I c H, then H’ c I’, hence

UI(H’) c UI(I’).
Thus we hve

(6.2) If I, H are closed ideals in M with I H, then (R(M; H’) 6t(M; I’).
Also

(6.3) If {Ia} are closed ideals in M, and I is the closed ideal generated by
their union, then 6(M; I’) 6(M; I’,).

For, I’ I’, and for any f e M, (f)e I’ if and only if ti(f)e I’ for
all .

(6.4) COROLLARY. Let I be a closed ideal in M and J its dual ideal. Then
6t(M; I’) consists of those elements of M which are Riemann integrable with
respect to every g e J.

For J is the closed ideal generated by U,j L,, hence I is the closed ideal
generated by U,j (L,)".
We turn to the relation between 6t(M; I’) and 6t(I).

(6.5) 6t(M; I’) (R(I).

Proof. Consider f e(M; I’). Since l(f) <-f <= u(f), we hve
l(f) <= f <= u(f). But u(f) l(f)I’, hence l(f) u(f) (there-
fore) f. Thusf is both a (1.s.c.) and an (u.s.c.), hence lies in 6t(I).
We have two important cases in which (R(M; U) projects onto 6t(I).

(6.6) If the dual ideal J of I is an L, for some e L, then (R(M; I’) 6(I).

Proof. From (6.5) we need only show (R(I) c (R(M; I’). Consider
f e (R(I). f is both a supremum of some subset of C and an infimum of some
subset of C. Using the norm II’ll defined on I by t [8, 11] ([[ g 11,
(] g I, ]t ]) for all g e I), we can obtain two sequences {g,}, {h,} in C such that
g f,h f. Foreachn, choose,feCsuchthatg, (),h= (f).

(i) {.}, l]} can be chosen to satisfy

The selection is carried out inductively. Choose any e C such that
() g. Choose any h e C such that h h, then set/ h V, whence
(/) hV() hVg h. Assume,...,n,/,...,/,have
been chosen to satisfy (i). Choose any g e C such that g g,+, then set

9.+ (g V 9.) A
whence

(0.+) ( V (#.)) A (/.) (g.+ V g.) A h. g.+.

This estublishes (i).
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From (i), g /9 and h // both exist and satisfy g -< h. Clearly
g h f; we show that i(g) e I’, which will complete the proof, h is u.s.c.,
hence h >-_ u(g), and g is 1.s.c., hence g l(g). Thus (g) u(g) l(g) <-
h--g. Buth-geI’(since(h--g) h-g 0 and we are through.

(6.7) If the dual J of I is vaguely dense in L, or equivalently, if C n I’ O,
then (R(M; I’) (I).

Proof. From C n I 0, it follows that the projection C --* C is one-one,
hence a vector-lattice isomorphism. Turning to the proof, we agaia need only
show 6t(I) c (R(M; I’). Given f e 6t(I), consider the two sets

A {geCIg <- f}, B {heC]h >- f}.

From the isomorphism of C with CI, every element of A is =< every element of
B, hence g /A and h / B exist and satisfy g <_- h. The remainder of
the proof is the same as that of (6.6).

In general, we do not have (R(M; I’) 6t(I). We give an example. It
is based on the fact that a compact space can have a non-normal subspace.
Following [6, page 74] let o be the first infinite ordinal, ol the first uncountable
ordinal, N the set of natural numbers,

N* Nu{o}, W {a[a <ol} and W* Wu

Endow W* and N* with the order topology and take

X W* N* and K (W* X {w})u({w} N*).
Since K is a compact subset of X, M(K) can be identified with a closed ideal
in M, hence the elements of M(K) disjoint from the characteristic element of
the single point (ol, 0) is also a closed ideal in M. We denote it by I. We
show there exists f e I such that f g h for some g 1.s.c. and some h u.s.c.
of M but that no such g and h can be found which also satisfy g -< h.

It is enough to show there exists a function f on the set H K\{ (o, o)}
such that f g H hi H for some lowersemicontinuous function g on X and
uppersemicontinuous function h on X but that no such g and h can be found
which satisfy g(x) <= h(x) for all x e X. In short, the rest of the discussion
is in ordinary function theory.

Let h be the characteristic function of W* )< {o}, g the characteristic func-
tion of X\({ol} N*), andfthechracteristic function of W X {0}. Then
f g H h H. Suppose a g and h could be found with these properties and
which also satisfied g(x) <= h(x) for all x eX. For every n e N, h(0, n)
f(0, n) 0, hence

lim sup,*l h(a, n) <= 0,
hence

lim sup,ol g(a, n) <- O.

It follows there exists a0 such that g(a, n) -< 1/2 for all n and all a >= a0.

contradicts the fact that for every a < Ol, lim inf,o g(a, n) => 1.
This
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In studying dual ideals J and I, there is m loss in confining ourselves to the
support of J, instead of dealing with all of X (cf. (3.1) above), and we will do
this. This is equivalent to assuming J is vaguely dense in L. We state it
formally:

Henceforth, unless otherwise stated, J will always be a closed ideal which is
vaguely dense in L.
As a consequence, we will always have C n I’ 0, C isomorphic with C,

and 6(M; I’) (R(I).

7. Zero content. I is a fixed closed ideal in M with C I’ O. We will
denote 6(M; I’) n I’ by N(I), and its elements will be said to have content
zero with respect to I. Since (R(M; I’) and I’ are both norm-closed, N(I) is
also. Clearly 6(M; I")/N(I) is isomorphic with (R(I).

Before stating (7.1) we remark that one easy consequence of the condition
C n N 0 is that if an u.s.c, element is in I’, then it is actually in (I’)+.

(7.1)
(a)
(b)

The following are two alternate definitions for N(I):
N(I) [f eMlu([f]) eI’}.
N(.I) is the ideal generated by the u.s.c, elements in

Proof. Consider feN(I); we show u([f[)eI’.
hence it is enough to show f and/t(]f I) are in I’. That f e I’ follows from
f e I’; that/t(]f [) e I’ follows from ti(f) e I’ and
[11, 2]. Next suppose u([f[)el’. Since u([fl) is an u.s.c, element and
If] <= u(If I),flies in the ideal definedin (b). Finally supposef is inthis last
ideal. Then, from the remark preceding the present proposition, u([f I) is
also. The inequality/t(f) -<_ 2u([f]) then gives us that fe6(M; I’), hence

f e 6t(M; I’) n I’ N(I),
and we are through

Since/t(f) is u.s.c., it folloTs from (7.1) that for any f e M,/t(f) e I’ if and
only if /i(f)eN(I). Thus, setting 6t(M; N(I)) -I(N(I)), we have
6t(M; I’) 6t(M; N(I)). This gives in turn that the Riemann subspace
6(I) of I is completely determined by N(I). In particular, given two closed
ideals 1, H, if N(I) N(H), then 6(I) is isomorphic with 6(H).
We examine this in more detail. For convenience we denote N(I) simply

by N. Suppose the closure of N is strictly smaller than I’. Then N’ ’)
is strictly larger than I. Now it is easily shown that N(N’) N, whence
6t(N’) is isomorphic with 6(I); more exactly, the projection of N’ onto I
gives an isomorphic mapping of 6(N’) onto 6t(I). Moreover N’ is the largest
closed ideal with this property, that is, if I, H both give rise to N, then
I, H N’ and R(N’) projects isomorphically onto R(I) and R(H).
We can obtain more insight into N’ by looking at its dual ideal N’. The

following theorem gives some characterizations of N’, but because it has an
independent interest, we state it in terms of a general ideal G of L.
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(7.2) Given an ideal G in L, the following ideals are identical:
G1 N, where N is the ideal generated by the u.s.c, elements in (G)+
G2 the w(L, S)-closure of G;
G3 the w(L, Bo)-closure of G;
G4 the w(L, U)-closure of G.

For need of a name, we will call this ideal the co(L, U)-closure of G.

Proof. We have

G2 (SnG’) , G3 (BonG’) and G4 (UG’).
Set A {f u.s.c. If e (G)+}. Then

A cNcSnGCBoG"C UnG,
hence G Ga c G N A. We show A" G, which will give equality
and complete the proof. Consider e A; we show (g, ) 0 for all g e U n G".
It is enough to show this for g e (U n G’)+. Since g e U, there exists a net
{g-/ in M+, consisting of u.s.c, elements, such that g, " g [8, (7.3)]. Since
is continuous on M, it follows (g, ) lira, (g,, ). But g, e G, hence g, e A,
hence (g,, #) 0 for all a, and we are through.
Summing up the above discussion, if we wish to study the variousRiemann

subspaces of M, the ideals of M dual to w(L, U)-closed ideals of L seem to be
the natural domain for such study. With this in view the following theorems
become of interest.

(7.3) Every principal closed ideal of L is w(L, U)-closed.

This was proved in [9, (5.5)].

(7.4) Given an ideal G in L, if x X is not in G, then it is not in the w(L, U)-
closure of G.

Otherwise stated, the intersection of X with the w(L, U)-closure of G is
the same as its intersection of G. To prove this, suppose x e G and let f be the
characteristic element of x. Sincef is u.s.c., it is an element of U not vanishing
on x. Thus we need only show it vanishes on G. The one-dimensional linear
subspace R. x generated by x is a closed ideal in L, hence L (R. x)
hence G (R.x)’. Since clearly f e (R.x)’, we have f e G".
An ideal in L0 always contains points of X; hence if an ideal in L intersects

L0, it contains points of X. Combining this with (7.4), we obtaia the follow-
ing corollary. Note first that the decomposition L L0 @ L1 gives
G (G L0) @ (G n L1), hence the intersection of G with Lo is also its pro-
jection G0 in L0.

(7.5) Let G be an ideal in L and F its w(L, U)-closure. Then Fo Go.

This gives in turn

(7.6) L is w L, U)-closed.
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In contradistinction, L0 is w(L, U)-dense in L, since it is separating on
U [8, (8.3)]. (Thus, interestingly, A is not only the vague closure of :, it is
also its w(L, U)-closure.)
We close this section with some examples.

Example 1. Let I M. On the one hand, (R(M) C; on the other
M’ 0, giving N(M) 0 and 6t(M; 0) C (t(f) 0 if and only if f C).

Example 2. Let I be the dual ideal of a principal closed ideal J L, (J
need not be vaguely dense for this example). This is the example from which
our terminology comes. N(I) corresponds in function theory to the functions
whose Riemann integral (with respect to t) is zero, (R(M; I’) to the functions
which are Riemann integrable, and 6t(M; I’)/N(I) and (R(I) to the image in
=(g) of the Riemann integrable functions.
We point out here how our approach gives a complete parallel between the

Riemann integral and Jordan content. A set has content zero if its closure has
measure zero; a non-negative element f of M has content zero in our termi-
nology if u(f) satisfies (u(f), g} 0. A set has content (is Jordan measur-
able) if its frontier has content zero; an element f of M lies in (R(M; I’) if (f)
has content zero. Thus the "Riemann integrable" elements of M are those
which "have content". (And we could make the same statement if we were
confining ourselves to functions.)
Thus in our approach, the unsatisfying mixture in Lebesgue’s theorem of

Riemann integrability and Lebesgue measure has disappeared. The crucial
point is the following. The frontier of a set is always closed, hence for it,
having measure zero implies having content zero. Similarly (f) is always
u.s.c., hence for it, lying in I’ implies lying in N(I). However, even though
(f) is u.s.c., the set {x[ (f)(x) 0} is not necessarily closed.

Example 3. Let A be an arbitrary subset of X (again for the example, we
need not assume A is dense in X). The closed ideal J generated by A as a
subset of L is in L0 and can be identified with ll(A), hence its dual ideal I is in
M0 and can be identified with (A). So for convenience of discussion, we
confine ourselves to M0 and consider it as the space of all bounded real func-
tions on X. Then Cx consists of the restrictions to A of the continuous func-
tions on X, and (I) consists of the bounded continuous functions on A.
N(I) (really N(I) n Mo) is the ideal generated by the non-negative upper-
semicontinuous functions vanishing on A. Finally, (R(M0 I’) consists of
the bounded functions whose points of discontinuity all lie in X\A.

In order to work with the w(L, U)-closure of J, we cannot confine ourselves
to L0 and M0, since this closure does not in general lie in L0. However,
from the discussion following (7.1), the Riemann subspace of the ideal dual to
this w(L, U)-closure is still isomorphic with (R(I) above, that is, with the space
of bounded continuous functions on A.

Example 4. Let J L1, the ideal of diffuse Radon measures; hence
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I M1. As we have pointed out, L1 is w(L, U)-closed (7.6). Moreover, if
X has no isolated points, L is vaguely dense in L; we will assume this is the
case (thus C(=C1) is isomorphic with C).
(R(M) is in general strictly larger than C. For example, if

X {0 -<_ x 1} and f is the characteristic element of the closed set
/x e X 10 _<- x -< 1/2}, then fl is an element of (R(M) which is not in C. The
exact description of ((M) is simple. It is the proiection in M of t(M; M0),
that is, of the elements of M which are Riemann integrable with respect to
every diffuse measure (6.4).
We now have essentially obtained a theorem of C. Goffman (oral com-

munication)--or rather its correspond in M. Goffman’s theorem runs as
follows"

(7.7) (Goffman) A bounded real function on a closed interval is Riemann
integrable with respect to every diffuse (i.e. purely non-atomic) regular measure
if and only if its set of points of discontinuity is countable.

We obtain this theorem (with "bounded real function" replaced by "element
of M") from our above description of 5t(M; M0) and the

(7.8) LEMMA. Let X a <= x <= b} and f be an u.s.c, element in Mo.
Then f vanishes at all but a countable number of x’s.

Proof. f >= O, from the remark preceding (7.1). If f(x) 0 for an un-
countable number of x’s, then there exists k > 0 such that f(x) >= k on an un-
countable set A, which is moreover closed. But A contains a perfect set,
hence supports some diffuse measure . Since then (if, ) > 0, this contradicts
the hypothesis that f e M0.

Appendix
8. Let E, F be two M-spaces with strong order units, both of which we de-

note by 1. By an M-homomorphism, or simply homomorphism, h’E -- F,
we will mean a linear mapping which preserves the operations /,/k and satis-
fies hl 1. Let X, Y be compact spaces. Given a homomorphism

h C(X) C( Y),
let h" L(Y) L(X) and h" M(X) M(Y) denote its transpose and
bitranspose, h is also a homomorphism and moreover is order-continuous
[11].
By a theorem of M. H. Stone [16], for each continuous mapping q Y -- X,

the "transpose" h" C(X) -- C(Y) defined by (hf)(y) f(qy) for all f eC(X)
and y e Y is a homomorphism, and conversely every homomorphism h is the
"transpose" of a continuous mapping q (specifically, q hi Y). Moreover,
h is one-one (hence an isomorphism into) if and only if q is onto.
We noted in [11, (6.7) that, given a homomorphism

h C(Z) --. C( Y)



SECOND DUAL OF THE SPACE OF CONTINUOUS FUNCTIONS 301

htt carries u.s.c, elements of M(X) into u.s.c..elements of M(Y). We now
show that if h is one-one, the converse also holds, a property which we could
state in [11, (12.1)] only under a strong additional condition.

(8.1) Let h C(X) C(Y) be an isomorphism of C(X) into C(Y). Then
for f e M(X), htf u.s.c, implies f u.s.c.

Proof. By (2.6) we need only show that f is vaguely uppersemicontinuous
on A(L(X)). Suppose not; then there exists e A(L(X)), k > (f, ), and a
net {,} c A(L(X) such that , -- vaguely and (f, ,) >= k for all a. Since
h is one-one, h carries Y onto X, as we have pointed out above; it follows easily
that h carries A(L(Y)) onto A(L(X)). Thus, for each a we can choose
, e A(L(Y)) such that hta ,. Since 5(L(Y)) is vaguely compact, {,}
has a convergent subnet; for simplicity of notation, we assume {,} itself is
convergent: a --. vaguely, for some e A(L(Y)). Since h is vaguely con-
tinuous, h . But then we have

(httf, v,) (f, htv,) (f, g,) >= h for all a,
while

<h"f, t,> (f, h’,> (f, g) <
This contradicts the fact that httf is vaguely uppersemicontinuous on A(L(Y)
(2.6).
Remark (8,1) of course also holds with "u.s.c." replaced by "l.s.c.".
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