
A KNOTTED CELL PAIR WITH KNOT GROUP

BY

T. . Pc,
In [2], L. C. Glaser and I proved that a locally flat cell pair (C, C’) of

type (n, k) was unknotted if n ]c was either I or was greater than 2, n >_ 4.
We also proved that if n ]c 2 and both C C’ and Bd C Bd C’ have
the homotopy type of the 1-sphere, then (C, C) is unknotted, n >_ 6.
Theorem 3 of this paper gives examples of cell pairs (C, C’) of type (n, n 2),
n >_ 6, such that v(C C’) Z, but (Bd C Bd C’) Z.

It should be noted that the results obtained here can also be obtained in a
piecewise linear or differentiable setting rather than the locally fiat setting.
In proving Theorem 4 in the differentiable case, one must apply the so-called
"smoothing the corners" process; otherwise the proofs are not significantly
different from what is done here.

Let C be an n-cell and C be a ]c-cell, then (C, C’) is called a cell pair of
type (n, ]) if C’ is a spanning cell of C; that is, the boundary of C’ is contained
in the boundary of C and the interior of C is contained in the interior of C.
The boundary of a cell D is denoted by Bd D. A cell pair, or a sphere pair,
is called unknotted if it is homeomorphic to the appropriate standard cell
pair, or standard sphere pair. Finally, let (E, E) and (E, E) denote the
standard Euclidean space pair of type (n, k) and the standard closed Euclidean
half-space pair of type (n, /c) respectively. A manifold pair (W, W’) is
called locally fiat if each point w of W’ has a neighborhood homeomorphic to
(En, E) or (E, E) according to whether w is in the interior of W’ or on the
boundary of W’.

THEOREM 1 (Hudson and Sumners, see Cor. 2 of [3]). For n >_ 4 there
exists a locally fiat sphere pair (S, S’) of type (n, n 2) such that

(1) (S, S’) is unInotted,
(2) S E u F n-cells with Bd E BdF EnF,
(3) S E’ u F where E’ and F are locally fiat spanning (n 2)-cells

of E and F respectively, and
(4) rl(E E’) Z and l(F F’) Z.

As stated above, this theorem was proved by J. F. P. Hudson and D. W. L.
Sumners in [3]. They gave a method of constructing such cell pairs. We
suggest here an alternative construction. This method, using twist spinning,
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is due to E. C. Zeeman, [4], but the relationship between twist spinning and
such cell pairs does not seem to have been pointed out.

Let (C, C) be a smooth knotted (n 1, n 3) cell pair with (Bd C, Bd
unknotted. The pair (S, S’) is generated by spinning (C, C’) with one twist.
Then by [3, Corollary 2, page 487], (S, S’) is unknotted. The cell pair (E, E’)
is generated by spinning (C, C’) half way around with a half twist. The
cell pair (F, F’) is generated by spinning (C, C’) the other half of the way
around with the other half twist. It is easy to check that the cell pairs
(E, E’) and (F, F’) have the desired properties. Clearly their union gives
the unknotted sphere pair, (S, S’), and each of (E, E’) and (F, F’) has the
same homotopy type as (C, C’).

Before proceeding to the main result of this paper we need a theorem about
the fundamental group of a manifold obtained by spinning. The following
notation will be used in the next theorem. Let M be a topological space and
let A be a subset of M. By the space obtained by spinning M about A,
denoted Sp (M, A), we mean the following

Sp(M,A) MXS1Uxs,A XD,
where A S is considered as a subset of each piece and the two copies of
A X S are identified under the identity map. The next theorem gives
condition under which vl(Sp (M, A)) is isomorphic to (M). A more
geometric proof can be given using triangulated spaces or CW complexes.
It is not as general, of course, but it is much easier to follow, so we give
brief indication of how it goes. Let (M, A) be a connected triangulated
pair, a CW complex structure is sufficient. Let T be a maximal tree in the
triangulation. Then Sp (M, A) has a natural CW complex structure, ob-
tained by spinning the ceils of M. Furthermore the tree T is maximal in the
cell structure on Sp (M, A). Hence v(Sp (M, A)) has a presentation with
one generator for each edge that is not in T and one relation for each 2-ce11.
But the edges of Sp (M, A) are precisely the edges of M plus the edges ob-
tained by spinning verticies of M, and any edge obtained by spinning
vertex is easily shown to bound a 2-cell. It is not difficult to show that the
fundamental groups of M and Sp (M, A) are isomorphic.

THEOREM 2. Let M be a pathwise connected topological space. Let A be a
pathwise connected closed subset of M. Suppose that there exists an open set 0
such that A 0 and 0 deformation retracts to A. Then (Sp (M, A) is
isomorphic to r(M)

Proof. Let

M1 (MXS1) u (A X (D2- {0})) and M2 (A XD2) u (0XS1).
Then M0 M n M (A X (D {0} ) t] (0) 1). Let i and i. denote
the inclusion induced homomorphisms of rl(M0) into vl(M1) and r(M.)
respectively. Then van Kampen’s theorem [1, Theorem 3.1] implies that
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r(Sp (M, A) ) is isomorphic to

[,(M0)]

where [,(M0) denotes the smallest normal subgroup of ,(M,), r,(M=)
that contains all the elements of the form i(y) i=(y-*), where e ,(M0).

Since M, deformation retracts to M S, M= deformation retracts to
A D and M0 deformation retracts to A X S it is easy to see that
r,(Sp (M, A) is isomorphic to

r,(M X S’) r(A X D’)
N

where N is defined as below.
Let i, and j, denote the inclusion induced homomorphisms r(A X S)

into (M X S) and (A X D), respectively. Let p, denote the inclusion
induced homomorphisms of (A) into (M) and let q, denote the inclusion
induced homomorphism, namely the identity isomorphism, of r(A) onto
r(A). Then, using the product theorem for fundamental groups, we see
that i, p, (R) id andj, q, (R) 0, where id denotes the identity isomorphism
of Z onto itself, 0 denotes the zero homomorphism of Z onto the zero group
and (R) denotes the direct product. Let G ((M) (R) Z) (r(A) (R) 0),
let H (M) and let N denote the smallest normal subgroup of G that con-
tains all elements of G of the form (p,(a), k), (q,(a-), 0), where a e r(A)
and ] e Z. That is, N is generated by the relations i,(a, ) j,(a, k),
for every (a, ]) e v(A) (R) Z (A X S).
We wish to show that GIN is isomorphic to H. Let be the quotient

homomorphism of G onto GIN. Let be the homomorphism of G onto H
defined as follows. Let

o), o), ..., o)

be typicM element of G, where e(M), ae’(A) nd keZ. Then

(p, o (p, o q, (a)) ,.. (p, o q(a,.) ).

Let be the inclusion induced homomorphism of H into G; that is, if e H
then (t) (, 0).

First we note that N kernel of . To prove this it suffices to show that
O(w) 1 for each w e G of the form w (p,(a), ), (q,(a-), 0). But this
is true because (w) p,(a). (p, , qT o q,(a-)) 1. Thus y- is a
well defined homomorphism of GIN into H.
Next we note that o identity. Let teH. Then b(B)

((, 0)) . Hence (ov-)o(ob) identity.
Finally, if w e G, then v obo(w) v(w). It suffices to show this for

words of the form w (, ]), where fe(M) and/eZ, and w’ (a, 0),
where a e r(A).
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7b(w) 7((f, 0)) 7((, 0)).7((1, /c)) 7((/,/c)) (w),

because (1, ]) (p.(1), /c).(q,(1), 0)
Similarly

o o (w’) v((p. o q(a), 0))

7( (P* qi(O/) 0))’7( --1 --1
o (p.(q. (a )), 0), (q,(q71(a)), 0))

7((q.(q71(a), 0)) 7((a, 0))

because (p.((a-)), 0), (q.(qT(a)), 0)) e N. Thus 7 b o v and
hence ( o ) o ( o v-) identity.

Therefore, v is an isomorphism of H onto GIN.
THEOREM 3. For n >- 6 there exists a locally fiat cell pair (C, C’) of type

(n, n 2) such that
() (c c’) z,
(2) (BdC BdC’) Z.

Proof. Let (S, S’) be a smooth sphere pair of type (n 2, n 4) that
satisfies the conclusion of Theorem 1. Let (D, D’) denote the cell pair ob-
tained by taking the cone over the pair (S, S’). We obtain the pair (C, C’)
by spinning (D, D) around the (n 2)-cell, F, that lies on the boundary of D.
That is, C Sp(D, F) and C’ Sp(D’, F’). Thus C C’
Sp(D D’,F F’) andBdC BdC’ Sp(E- E’,BdE- BdE’).
Therefore, by Theorem 3,

rI C C’ rl D D’ Z and I(BdC-BdC’) rI E E Z.

Question. What are the higher homotopy groups of C C’?
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