ON THE VARIETY OF ORBITS

BY
A. SEIDENBERG!

1. Statement of the main result

Let the algebraic group G have components G, - -+ , G, and let G operate
regularly on the variety V, i.e., let the operation of @; on V, for every 4, be an
everywhere defined rational map of G; X V into V. (See 1 of §4, where
the notes and remarks are assembled.) Let & be a field of definition for G,
V, and the operation of G on V. Let v ¢ V and let g e G: be a generic point
for G; over k(v). k(v, g) is a regular extension of k(»), so by [W., p. 18,
Prop. 20] k(v, gv) is also a regular extension of k(v); thus gv is a generic point
over k(v) of a subvariety 0;(v) of V having k(v) as a field of definition. On
(G: X v) X 0;(v), which has k(v) as a field of definition, consider the sub-
variety W, having ((g, v), gv) as generic point over k(v). The (algebraic)
projection of W; on 0;(v) is 0:;(v). The variety W, consists of the points
((g, v), gv), where § varies over G, so 0;(v) contains the part of the orbit
of v due to G: ; on the other hand, by [W, p. 169, Prop. 3], which also ob-
viously applies in the abstract case, the set-theoretic projection of W, on 0;(v)
contains a non-empty k(v)-open subset of 9;(v). Thus 0(v) = O (») U - -
U 05(v) is the union of the orbit of v and a k(v)-closed subset of dimension less
than dim 0(v).

We want to show that there exists a proper G-invariant k-closed subset F such
that on V' = V — F the orbits consist of closed sets having at most s components;
and that these closed sets are in one to one correspondence with the points of a
variety W defined over k in such a way that the mapping which associates to each
point of V' its orbit is an everywhere defined rational map over k of V' into W.

The “variety of orbits” was defined in [R], by means of a generic point, and
coincides to a large extent with our W, but its relation to the set of orbits
was not considered, except for the remark that “[the variety of orbits] is a
true variety of orbits only so far as generic orbits are concerned”.

The motivation for the stated result lies in [E, Th. 5], or rather in its appli-
cation to the classification of singular points of algebraic curves. This theo-
rem says that 7f G is a connected solvable algebraic group operating regularly on an
abstract variety V, then there exists a constructable subset W of V such that for
each v in V there is a unique w in W with v in Gw. (See 2 of §4.) This rests
on [R, Th. 10], which says that if 7 ©s the natural rational map from V to its
variety of orbits T, and if G is connected and solvable, then there exists a cross-
section, t.e., a rational map ¢ : T — V with ¢ = 1. The statement 70 = 1
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is in the sense of algebraic geometry—set-theoretically there may be excep-
tions; and the proof of [E, Th. 5] consists of a kind of spelling out of the ex-
ceptions and an inductive taking care of them. However, a prior considera-
tion of the relation of the “variety of orbits” to the set of orbits appears to
be needed for a complete proof. This matter is not touched upon in [E] or
in its references.

The case that G and V are affine varieties suffices for the application men-
tioned, and a restriction to this case would yield many simplifications, both
in detail and in conception. However, we thought it proper to consider
matters with at least the generality occurring in [E, Th. 5]. Complete
generality requires some, but not much, more detail.

Some background material on k-constructable sets, k-elementary formulae,
and elimination theory is given in [S;].

2. Preliminary theorems

Let U, V, and W be varieties, and let 7 be a rational map of U X V into
W, all defined over k. Let ve V. If 7 is defined at (up, v) for some wuo,
then it is also defined at (u, v) for  a generic point of U over k(v), and 7(u, v)
is a generic point over k(v) of a variety 0(v); ©(v) does not depend on which
generic point % over k(v) is chosen; if 7 is not defined at (uo, v) for any uo ,
we place O(v) = @. If 7 is defined at wo, vo , we write up vo for 7(uo , vo).

TueoreMm 1. Let U, V, W, 7, k be as just mentioned, and let U, V, W be
affine. Then there is an integer N such that for every v ¢ V there is a set of poly-
nomials f;(V, X) in k[V, X] of total degree < N such that the fi(v, X ) generate
an ideal having O(v) as associated locus.

r

Proof. Given a generic point * = (21, -+, &) of an affine variety V
over k, one knows how to compute a basis for an ideal having V as associated
locus. One forms r + 1 linear combinations ¢; ¢ with indeterminate coeffi-
cients £;;(¢2=1,---, r+1; j=1,---, n); these are algebraically de-
pendent over k(¢) = k(t, -+, tr1); and the —¢; x satisfy a polynomial

F(t;ZI; "',Z,+1)€k[t;Z1,"',Z,-+1]—'O,

which we may suppose is irreducible; into this one substitutes —¢; X for Z; ;
and then the coefficients of F(¢; —#; X, - -+, —t.41 X) considered as a poly-
nomial in ¢ yield the desired basis (see [v.d.Wy, Th. 6]).

Let v be an arbitrary point of V and u a generie point of U over k(v). If
r is not defined at (u, v), then 7 is also not defined at (u, 1) for any k-special-
ization v of v. If 7 is defined at (u, v), then, using the generic point uv,
we compute a basis for ©(v) over k(v) in the way indicated. Let Y be the
k-closure of v (so v is a ‘“generic point” for ¥ over k). (See 3 of §4.) We
now examine how uniform these computations are as v, varies over Y. Let
r = dim 0(v). We first examine dim O(wv,) as vy varies over Y. The coor-
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dinates w; of uv may be written as rational functions in u, v. Let these be
Pi(u, v)/d(u, v), where P;, d are polynomials over k. We may assume
that only a k-algebraically independent subset of the coordinates of u occur
in d(u, v). Let v, be another point of ¥. We may suppose u generic for U
over k(v, v): this does not change the computations for O(v) in any way,
but prepares them to be correct for v,. In particular, elements of k(u)
algebraically independent over k remain such over k(v). Let ¢(v) be one of
the coefficients of d(U, v), ¢(v) % 0. Making exception of the k-closed sub-
set of Y defined by ¢(V) = 0, we have d(u, v) # 0; and P;(u, v)/d(u, v)
are the coordinates of uvy, a generic point of ©(v) over k(v). Any r + 1
of the w;, say wi, -+, wr1, are algebraically dependent over k(v). Let

f(v; Pl(uy v)/d(u, 1)), Tt Pr+1(u; v)/d(uy 7))) =0

be a non-trivial polynomial relation over k. Making exception of a proper
k-closed subset of Y, we get the non-trivial polynomial relation

Py, ) Prya(y, o)
d (”"’ T T d )

The argument is repeated for every (r + 1)-tuple of the w;. Thus, with
exception of a k-closed subset of Y, dim 0(v) < r. Now let wy, « -+, w,
(say) be algebraically independent over k(v). Let H;(U) = 0 be a finite
set of polynomial equations over k having U as associated locus; and let
K;(V) = 0 be a similar set for Y. Consider the conjunction (for all z, j,
andfork =1, ---,7r)of

(x) Hi(U) =0, Ki(V) =0, P(U, V)/d(U, V) = C, d(T, V) 0.

Eliminating U (see say [T, p. 39, Th. 1 and p. 54, note 16] or [S;, p. 370,
Th. 3 and p. 373, Remark (¢)] or [S:, p. 237, Th. 1] or [Ss]; see also [C]),
we get a finite disjunction of finite conjunctions of polynomial equations and
inequalities over k in V, C. (See 4 of §4.) At least one of these conjunc-
tions, which we may assume involves a sole inequality e(V, C) # 0, is
satisfied by V = v, C;, = Pi(u, v)/d(u, v); let us consider just this one. Let
J(V, C) = 0 be one of the equalities in it. Since w;, - - , w, are algebraically
independent over k(v), we have f(v, C) = 0. Hence for any v, ¢ satisfying
e(vy, ¢) # 0, one can solve (x) for U. We make exception of a k-closed sub-
set of Y defined by a non-zero coefficient of e(V, C') regarded as a polynomial
in C; and take for ¢, ---, ¢ quantities algebraically independent over
k(vw). Let @ be a solution of (%) for V. = v, C = ¢. Then Pi(4, v)/
d(a@,n), k =1, --- , r are algebraically independent over k(v). Hence with
exception of a proper k-closed subset of Y, dim 0(v) = r.

We now form F(v, ¢, Z) as mentioned; we may assume F(V, ¢, Z) ¢ Ek[V, ¢, Z],
which we do. Making exception of a proper k-closed subset of Y, we will
have F(v,t,Z) % 0. We note that F (v, ¢, —t-uvy) = 0, since vy is a special-
ization of » over k(u); in fact, since % and v are independent over k and k()

= 0.
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is regular over k, k(u) and k(v) are linearly disjoint over k, by [W, p. 18,
Th. 5], and by [W, p. 15, Th. 3], v, remains a specialization of v over k(u).
Hence if F (v, &, Z) is irreducible over k(w,), then the coefficients of F (v, ¢,
—tX) yield the desired basis. The condition of (absolute) irreducibility
places another polynomial condition onv, . (See [v.d.Wy, Th. 3] and [v.d. W,
p. 707]). Altogether, with exception of a proper k-closed subset of Y, the
computations proceed uniformly. (See 5 of §4.) In a similar way, we take
care of the exceptional set, and get a bound on the total degree of the f;(V, X)
at least for v, varying over Y (i.e., we take a k-component of the exceptional
set, make a computation at a ‘“‘generie point” thereof, find a smaller excep-
tional set; etc.). By taking ¥ = V, i.e., by taking v generic for V over k,
we complete the proof.

Let U, V, W be varieties, r a rational map of U X V into W, and let U,
V, W, 7 be defined over k. ILet v e V and u a generic point for U over k(v).
If 7 is defined at (uo, v), then (uo, v) is a k-specialization of (u, v), 7 is defined
at (u, v), and 7(uo, v) is a k(v)-specialization of 7(u, v). Hence O(v) s the
k(v)-closure of the set of points 7(uy , v), where uy ranges over the points for which
7(uo , v) 18 defined.

TuroreMm 2. Let U, V, W, 1, k be as just mentioned. Then the set of points
(x,v) in W X V such that x € ©(v) s k-constructable.

Proof. Let U be defined via affine varieties U, (and birational transfor-
mations Tg), let V be defined via affine varieties V., and W via affine
varieties Ws. Let 95(v) denote the representative of O(v) on Wi if there is
one, and otherwise place 0;(v) = ;let 8’ indicate an index such that 0; (v) = 0
for some v. For every a, v, 8, the mapping  induces a rational mapping

Tayd Ua X V'y — W .

If v has a representative v, in V,,, then 05 (v) is just the same as 05 (v,) as
previously defined relative to U, X V, — Wy . We may write 0y (v) =
05 (v,) to indicate this.

Let u, v be independent generic points for U, V over k, and let u, , v, be
the representatives of u,vin Uy, V,. Letw = wv. Then wsy can be written
in a finite number of ways as rational functions over k in u, , v, , each time
with a common denominator, in such a way that U, X V., — W, is defined
at (Uoa , Vo) if and only if one of the denominators does not vanish at (o , Yoy )
(in this connection see [W, p. 171, Th. 2, Proof]). Thus the statement that
Tays 18 defined at (woe, v04) can be written as a finite disjunction of finite
conjunctions of polynomial equations and inequalities over k in %, Voy -
(See 6 of §4.)

Let x5 be a point in W, and v, a point of V,. Then zs is in Oy (v,) if
and only if every polynomial f(v,, X) in k(v,)[X] which vanishes over
0" = {Tay (Uoa , v)} vanishes at z; ; here uo, varies over the points for which
Taye i defined at (upe, v4). We may suppose f(v,, X) eklv,, X] and, by
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Theorem 1, can place a bound N on the total degree of f(V, X). Moreover,
one can relax the condition that f have its coefficients in k, as any f ¢ Q[X]—Q,
the universal domain—which vanishes over ©' vanishes over 0 (v,); in fact,
if &’ is a field containing k, v, , and the coefficients of f, and if uo, is a generic
point of U over &', then, dismissing the case 0y (v,) = @ as trivial, f vanishes
at Tays (Ua , ) and hence over 9 (v,). The set of polynomials f(V, X) €
Q[V, X] of total degree < N is parametrized by the points ¢ of an affine
space. Hence the statement z; € Oy (v,) can be written as a finite disjunc-
tion, properly quantified, of finite conjunctions of polynomial equations and
inequalities over k in zs , v, U, and ¢. (See 7 of §4.) Eliminating the
parameters o, , ¢ (say by [S;, pp. 370, 373] or [S;]), we see that the set of
points (x5 , v4) in Wi X V, such that x5 € 95 (v,) is k-constructable.

By [W, p. 188, Prop. 10], the V,, W; are k-open covers of V, W; and
similarly the W; X V., are a k-open cover of W X V. As ze0(v) if and
only if for some v, &,  has a representative z; in Wy and v has a representa-
tive v, in V,, and 5 € 05 (v, ), the set of (x, ») in W X V for which z ¢ 0(v)
is the union of the sets (xs , v,) for which z; € 95 (vy). Hence the set of
(., v) in W X V for which z ¢ 9(v) is k-constructable.

Tueorem 3. Let U, V, 7, k be as in Theorem 2. Let s be an integer > —1.
Then the set S of points v such that dim 0(v) # s is k-constructable.

Proof. Let v, 8 be two indices (with 8" as in the proof of Theorem 2).
Suppose we know that dim Oy (v,) # s on a k-constructable set W* and a
subset of a k-constructable set W (which we do for W* = §and W = V,).
W (unless empty ) is the finite union of sets each of which is a k-irreducible
algebraic set minus a proper relatively k-closed subset. Let W; be one of
these k-irreducible sets and W{ the associated relatively k-closed subset.
Then W is the union of a k-constructable set W’ disjoint from Wy, Wy — W ,
and a k-constructable subset of Wi. Let v; be a “generic point” for W
over k. If 0y(v1) ¥ @, then by note 5 of §4, dim 05 (v;) = dim 04 (v,) for
vy € Wy with possible exception of the points v, in a proper k-closed subset W ;
and the same is true if 05 (v;) = @, as then 05 (v2) = @ for every v; e Wy. If
dim 05/ (v,) = s, we throw away W; — W, , and otherwise keep it (i.e., adjoin
it to W*). Then we examine W’ U W, U Wy, ete. In this way we come
to the desired conclusion. (See 8 of §4.)

By a k-atomic formula we mean a formula of the form (21, --- ,%,) ¢ F,
where z; is a free variable ranging over a variety V; defined over k and F is
a k-closed subset of Vi X -+ X V,. By a k-elementary formula we mean a
formula built up in a finite number of steps from k-atomic formulae by nega-
tion, conjunction, disjunction, and quantification of the form Jz;(---). One
checks easily that the set of points satisfying a k-elementary formula is
k-constructable, and conversely. A k-elementary formula involving only
bound variables is called a k-elementary sentence.

For example, let U and V be varieties, and 7 a rational map of U into V,
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all defined over k. Then the expression “r is defined at w” is, or can be
written as, a k-elementary formula; in fact, we saw this in the case U, V are
affine, and the extension to arbitrary varieties offers no difficulty. The ex-
pression

7 is defined at » and has there the value v

is also a k-elementary formula. In fact, let I'; be the graph of 7. Then the
mentioned expression can be written as

r is defined at » and (u, v) eT,.

TueoreM 4. Let U, V, 7, k be as in Theorem 2. Let ©'(v) = {r(u, v)},
where u varies over the points such that  is defined at (u, v). Then the set S
of points x such that for some v, x ¢ O(v) but & ¢ ©' (v) 4s k-constructable.

Proof. The expression ¢ ¢ ©'(v) is a k-elementary formula, as it can be
written as
Ju(r is defined at (u, v) and 2 = 7(u, v)).

The formula z € ©(») is also k-elementary, by Theorem 2. Hence the formula

Hv(z e 0(v) and z ¢ 0’ (v))
is k-elementary.

TueoreMm 5. Let U, V, W, r, k be as in Theorem 2, and let F be a k-closed
subset of W. Then the set S of points v such that O(v) C F 18 k-construciable.

Proof. Let ©'(v) be as in Theorem 4. As 0(v) is the k(v)-closure of ©'(v),
we have 0(») C F if and only if ©'(v) € F. The set of v satisfying 0’ (v) C F
is the same as the set satisfying Yu3dy (r is not defined at (u, v) or 7 is de-
fined at (u, v) and has there the value y and y ¢ ). Hence S is k-con-
structable. (See 9 of §4.)

3.Thecase U = G; (and W = V)

To get the picture of the 0;(v) (§1) clear, we recall some facts about G.
Let G be a component of G containing the identity e. As a generic point of
@; cannot lie in any other component, one has G; G; C G; and G; Gy C G ;
hence, in particular, there is only one component containing e. Hence if
G G; contains e, then G; G; C G, whence G; is a normal subgroup of G and
the G; are its cosets.

Let 0i(v) = {gv]| g €eG}. Then 0.,(v) is the k(v)-closure of 0i(v). If
gi Gy, thenG; = Gyg:,500:(v) = {gg:v| g e G} = 0:(giv); s0 an orbit under
@ is made up of s (or fewer) orbits under Gy . Let v e V and g a generic point
of Gy over k(v); then gv is a generic point over k(v) of ©;(v). Let g; be a
point of G; algebraic over k; theng; gv € 9:(v). Ask(v,g:,g9:9v) = k(v, gi, gv),
dim 0;(v) > dim 0:(v); and similarly dim 0;(v) > dim 0;(v). Thus for
every v, all the 0;(v) have the same dimension. Let g; ¢Gi, g eG. Then

[O;(U), ] O:(v)] = [O;(gl 1)), Tt ei(gs U)]
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and
[01(gv), -+, Os(g0)] = [01(grg), - - , O1(gs g0))-

Asgig, 9;9 a;rein differer,lt cosets if ¢; , g; are, [@{(gv), cee, (‘);(gv)] 1S G permu-
tation of [01(v), ++-,0:(v)]; and similarly for the k(v, g)-closures 0,(v),
0:(gv).

TueoreEM 6. If v; € O(v), then 0(v) C O(v).

Proof. As©(v) is closed and 0(»;) is the closure of the orbit of v, , it suffices
to show that the orbit of v, is in ©(v). Let, then, g’ e @. Then ¢'gv e 0(v)
for every g e G. Let v; € 9;(v) and let ¢ be a generic point of G; over k(v, ¢').
Then v, is a specialization of gv over k(v, ¢’), whence g'v, is a specialization
of ¢'gv over k(v, g’). Hence ¢'v; e 0(v), Q.E.D.

CoroLLARY. The set S of points v1 such that for some v, vy is in O(v) but not
in the orbit of v, 1s a G-invariant k-constructable set.

The expressions v; € 9;(v), v; ¢0i(v) are k-elementary formulae, so S is
k-constructable; it is G-invariant by the theorem.

TaEOREM 7. Let F be a k-closed subset of V. The set S of points v such
that for some 1, 0;(v) C F s k-consiructable and (obviously) G-invariant.
The set Sy of poinis v such that for some ¢ dim 0;(v) # r, wherer = dim 0,(v)
for a generic point v of V over k, is k-consiructable and (obviously)
G-invariant.

This follows at once from our previous theorems. Here too (ef. Theorem 5)
S is k-closed.

TueorEM 8. The k-closure S of a k-constructable G-invariant set S containing
no generic point of V/k is proper and G-invariant.

Proof. S (unless empty) is the union of a finite number of sets, each a
k-irreducible set F; minus a proper k-closed subset. S = UF; and is proper
if no F; equals V. If P ¢S, then thereis a P e S with P — P over k. Let
g: be a generic point of G'; over k(P,P). Then P — P also overk(g:). Hence
gtP — ¢; P over k. ¢;P is in some F,, say Fy. Theng; P C F,;and, as
g,P isa generlc point for 0,(P) over k(P), 0;(P) < F,. Hence the orbit of
Pisin S.

In what follows we fix an index v and speak of the Chow form of an 9:(v)
if O:y(v) is not empty, and then mean thereby the Chow form of 0;,(v). We
may write Fi(v, t, Z) for this form; the point » need not have a representative
in V.,. We speak of the Chow form of 0(v) if each 9;(v) has a Chow form,
and then mean thereby H,,sl F: :(v,t,Z). Each 0,(v) occurs the same number
of times amongst 0;(v), - -+, 0,(v), so every irreducible factor in the Chow
form occurs with the same multiplicity. Hence the Chow form depends
only on the locus ©(v), not on .
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If » is generic for V over k, then v has a representative in ¥, . Hence
0,(v) # @, as ve0O:(v). We have 0:(v) = 0:(g:v) for ¢;eG;. Since
k(g:, g:v) = k(g:, v), by taking ¢; independent from v over k, ¢g; v remains
generic for V over k. Hence 0;,(v) # @. Thus we may speak of the Chow
form of ©(v) if v is generic for V over k.

Let F (v, t, Z) be the Chow form of ©(v) with v generic for V over k. The
coeflicients of F (considered as a polynomial in ¢, Z) are the coordinates of a
generie point P over k of a variety in projective space, the ‘“variety of orbits”.
Let 7 be the rational map defined by the generic point (v, P) over k. 7 is
defined at v, if, F having been normalized by making some coefficient = 1,
the coefficients are defined at v; . Let g e G. Take v generic for V over k(g);
then gv is also generic for V over k and 0(gv) = 0(v). Hence 7(gv) = =(v),
whence 7 and 7g are the same rational map on V. Now let 7 be defined at v, .
Then g is defined at ¢ ", so = is defined at ¢ 'v;. (See 10 of §4.) Thus
the set S of points v1 at which T is defined is G-invariant; it is also k-constructable.
Hence

TuroreEM 9. The set S of points vy at which 7 is defined is k-constructable and
G-invariant.

TueoreM 10. Let v be generic for V over k and let F(v, ¢, Z) be the Chow
form of ©(v). Then the set S of points v, at which F(v, t, Z), after a suitable
normalization, is defined and such that then F(vy, t, Z) yields the Chow form of
0(v1) 18 k-constructable and G-invariant.

Proof. We first confine ourselves to the points »; for which 7 is defined,
for which 0(»;) has a Chow form, and for which dim 0(v;) = dim 0(v) (so
the Chow forms of ©(v1), O(v) involve the same ¢ and Z); this is a k-construe-
table G-invariant set. Let v; be such that F (v, ¢, Z), i.e., F(v, t, Z) | vmo,
after a suitable normalization of F, is the Chow form of ©(v;). Then by
note 4 of §4, F (%1, ¢, Z) is the Chow form of 0 (%) for almost all k-specializations
7, of 1. Now let v; be such that F(», ¢, Z) is not the Chow form of 0(v,);
let G(v1, t, Z) be the Chow form of ©(v1). Let a;, b; be corresponding co-
efficients of F(v, ¢, Z), G(v1, t, Z); thend(v1) = a;by — axb; % 0 for some
7, k. Tor almost all k-specializations #; of v1, F(%1, t, Z) remains defined,
G(%y, t, Z) is the Chow form of 0(#:), and d(#) #= 0, so F(.1, t, Z) is not
the Chow form of O(7:). By note 8 of §4, S is k-constructable. It is also
obviously G-invariant.

The main result (§1) now follows quickly. Let S be the set of points
v1 such that for some v; with dim ©(v;) = dim ©(v) for v a generic point of
V/k, v e o(v;) but v, is not in the orbit of vy ; or dim O(v;) # dim 0(v), where
v is generic for V over k; or ©(v;) does not have a Chow form; or 7 is not
defined; or 7 is defined but does not yield the Chow form of 0(v;). (See 11
of §4.) Then S is a k-constructable G-invariant subset of V' containing no
generic point of V/k, and so is its k-closure S. The image under r of V — §
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contains a non-empty k-open subset W of the “variety of orbits”; as = induces
a k-continuous map of V. — § (cf. [W, p. 171, Th. 2]), the counterimage of
W on V — §is a k-open G-invariant subset V.— F of V. Then V' =V — F
and W (viewed as a variety) satisfy the statement of §1.

The proof of [E, Th. 5] can now also be quickly completed. Before doing
80, we prefix a remark which will give a somewhat stronger version of that
theorem: Let V, W be (say) affine varieties defined over an algebraically closed
field k, let 7 be a rational map of V into W defined over k, and assume there exists
a rational map o of W into V such that ra = 1; then there also exists a rational
map & of W into V defined over k and such that ¢ = 1. In fact, let o be defined
over a field k' containing k. Let y be a generic point of W over &’
and o(y) = (o1(y), -+ ,0:(y)) e V. Write 7a(y) = y. More explicitly
one can write 7;(x) = Pi(z)/Q(x), where z is a generic point of V over k,
P;, Q are polynomials over k, Q(a1(y), - -+, 0:(y)) # 0, and

Pi(a1(y), -+, 0u(y))/Q(or(y), - -+, 0:(¥)) = s

The ¢;(y) are rational functions over k'. The o¢;, having been written out
in some explicit way with a common denominator in k'[y], involve only a
finite number of coefficients in &’; let these, arranged in some order, be desig-
nated o¢. Let d(s, y) ekls, y] be the denominator mentioned. Then
a'Q(a1(y), - -+, 0:(y)) = Qi(o, y) is a polynomial over k in o, y for some p.
Now specialize (o, y) over k to a k-rational point (&, §) in such way that
d(s, 7)Qu(a, 7) # 0. A fortiori d(&, y)Qi(d,y) # 0. Let oi(y) = ni(o,y)/
d(e, y), 6:(y) = ni«(a, y)/d(a, y) and let & be defined by

a(y) = (61(y), -+, 5:(y))-

As (&,y) is also a specialization of (o, y) over k, we have &(y) eV
and 76(y) = y. Thus ¢ is a desired map.

Let now @ be a connected algebraic group operating regularly on a variety
¥V and let k& be an algebraically closed field of definition for G, V, and the
operation of G on V. Let W be the “variety of orbits’” and 7 the natural
map of V into W; W and 7 are also defined over k. Assume that for every V
there exists a rational map o of W into V such that ¢ = 1 (which by [R, Th. 10]
will be the case if G is solvable). Then we will show there exists a k-constructa-
ble (and not merely constructable) subset C of V such that every orbit meets the
set C in precisely one point. In fact, let F and W be as stated in the main
result (§1), and let 7: V — F — W. By the last paragraph we may assume
o is defined over k. ¢ is defined except on a k-closed subset G of W. Let
V — F’ be the inverse image of W — @ (under 7). The image of W — G
under ¢ is a k-constructable subset €' of V contained in V — F’; and every
orbit in ¥V — F’ meets C” in precisely one point. Replacing V by F', we
would be through by induction on dim V, except that V is replaced not by
a variety but by a bunch of varieties (of smaller dimension).

To meet this last point, let V; be a component of F'. Let g eG and v
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a generic point of V; over k(g). If 5 ¢ Vi, then (g, 7) is a k-specialization of
(g9, v) and g7 is a k-specialization of gv, so gV is in the k-component of F
which contains gv. Thus every element of @ carries every component of F’
into, and hence also onto, another component; and the set {gVi|g e G} is
finite, Let H be the subset of G leaving V; invariant; H is obviously a sub-
group of G. Let T be the graph of the operation of G on V. Then the
expression hv € Vy can be written in the form

A(y)heG veV, (h,v,y) el and y e Vy),

and hence is k-elementary. Then V(v) (v e Vy= hv e V;) is k-elementary,
8o H is k-constructable. Now one proves that H is k-closed (cf. note 6 of §4).
Then @ is a finite union of k-closed sets of the form g *Hg. As G is connected,
G = g 'Hg for some g, whence @ = H. Thus V is invariant under G. Let V,
be another component of F andveVinV, ; then the orbit of v is contained
in V1n V,. Henceif K is the set of points P in V; and in another component
of F', then K is k-closed and for every v e Vi — K , the orbit of visin V; — K.
By induction on dim V, we take care of V; — K; and then similarly the rest
of F'. 1In this way we complete the proof.

4. Notes and remarks

1. Our terminology is mainly that of [W]. From the definition of alge-
braic group, we recall that the product g; g; of g: ¢ Gi, g; € G; is given by an
everywhere defined rational map of G; X G; into one of the components G ;
and similarly for g;'. From the definition of operate regularly, g1(g.(v)) =
(91 92)(v) and e(v) = v for e the identity of G. (See [R].)

2. @ is said to be connected if s = 1, i.e., if the underlying set is a variety.
A subset W of V is said to be constructable if it is the finite union of sets each
of which is the intersection of a closed set and an open set; the k-constructable
subsets of a variety V defined over k are similarly defined. The complement
in V of a k-constructable set and the finite union and finite intersection of
k-constructable sets are k-constructable; and the set-theoretic projection of a
k-constructable subset of a product V' X W on a factor is k-constructable.
(See [S;]; see also [C, p. 38, Cor. to Th. 3].) The notion of solvability does not
enter into our considerations.

3. The quotation marks indicate a deviation from the terminology of [W].

4. By a finite conjunction of polynomial equations and inequalities (or

inequations) over ¥ we mean a finite conjunction fi(21, -+ ,%s) =
fi@, o za) andccand fu(@n, o ,@a) = fu(w, e ,2.) and
gl;(xl; e )xn) = gl(‘”l) e )xn) ,and .-+ and gt(xly e ,:U,.) #
g:(21, - ++ , x,), where the f;, jJ. , §i y 9; are polynomials over k and the z; are

free variables (ranging over the universal domain ©). Usually a conjunction
of this kind can be replaced without loss of generality by an equivalent one,
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i.e., one having the same solutions; and this is frequently tacitly done. Thus
we may suppose all the f:- , g;~ to be zero. Adjoining 0 = 0 and 1 # 0, we
may suppose s > 0 and ¢ > 0. With ¢ > 0 and the g; = (, we may suppose
t=1laswereplaceg; # 0and --- and g, #O0by g - -+ g: # 0. The theorem
being used here (above) amounts to this: the projection of a k-constructable
set is k-constructable.

5. F(u, t, Z) is the so-called Chow form of ©(v), except that the Chow
form is understood to be defined only up to a constant factor p % 0. Drop-
ping the condition F(V, ¢, Z) ¢k[V, t, Z] (i.e., allowing it to be in k(V')
[t, Z]), we have just proved that ¢f F(v, t, Z) is the Chow form of ©(v), then
for almost all k-specializations o of v (z.e., for all 5 € Y except perhaps those lying
in a proper k-closed subset) the coefficients of F (v, t, Z) are defined at o, 0(7) # @,
and F(3, t, Z) is the Chow form of (7).

6. Letd;, - ,ds be the denominators mentioned—they are polynomials
over k—let g3 = 0, --- , g, = 0 be a finite set of polynomial equations over k
for the locus U, ,and let by = 0, - -+ , hy = O be a set for V... If ugq , vo, are
understood to vary over U,, V., as will be the case later, the condition
mentioned can be written as di (%o, , voy) 3= 0 or - -+ or ds(%a , to,) # 0. For
the present we write (g1(%,) = 0 and --- and g:(we) = 0 and hi(ve,) = 0
and - - - and hy(voy) = 0 and di(Uoe , voy) 5% 0) or - - - or (g1(Uoe) = Oand - -+
and g:(toa) = 0 and hy(vy,) = 0 and -+ and hu(voy) = 0 and ds(Uoe , voy)
0). This is a desired disjunction.

7. Let dy, ---,ds be the denominators mentioned in the last paragraph
and let dir$ysr , -+ , deToys be the corresponding numerators. Let g; = 0,
-++,g: = 0 be a finite set of polynomial equations over & defining the locus
U,,and let by = 0, ---,h, = 0 be a set for V,. Let f(¢c; V, X) be the
“general’” polynomial of total degree N in V, X with coefficients ¢. Then the
statement that xs €Oy (v,) can be written as the following disjunction,
properly quantified, for¢ = 1, - -+, 8: (g1(toe) # 0 or - -+ or g,(Ue) % 0) or
(91(oe) = 0 and --- and g.(ua) = 0 and di(Uoa , v4) = 0) or [(g1(ue) = 0
and --- and ¢.(uwe) = 0 and M(v,) = 0 and --- and hu.(vy) = 0
and di(%oe,vy) # 0) and (di(UOa:UV))Nf(C; Uy nyri'z'é'(an; vy)) = 0=
Sle, vy, x5) = 0]. We write these, with obvious abbreviations, as (g1(%a) #
Oor --- or g.(ue) % 0) or A; or [B; and (C; = D,)], where 4., B; are finite
conjunctions of polynomial equations and inequalities over k in x5 , v, , %oa ,
and ¢; and C; , D; are polynomial equations over k. We rewrite 4; or [B; and
(C; = D;)] as A; or [B; and (D; or not C;)] and then as A4; or [(B; and D)
or (B; and not C;)]. Then gi(ua) # 0 or --- or g.(ue) # 0 or
Ay or (By and D) or (B; and not C;) or --- or 4, or (Bs and D;) or (B,
and not C,), is a desired disjunction. Of course, this disjunction is to be
quantified for all %y, over the ambient space of U, and over all c.
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8. The proof shows that a set S ¢s k-constructable if and only if for every P
(¢n V') if P 4s not in S then almost all k-specializations of P are not in S and
of P is in S then almost all k-specializations of P are in S. On the basis of this
characterization one may give a simple proof that the set-theoretic projection
of a k-constructable set is k-constructable. (See [S3].)

9. The set S is even k-closed. To show that a k-constructable set S is
k-closed it suffices to show that every k-specialization of every P in S is in S.
Let, then, v be in S and let # be a k-specialization of ». Setting aside trivial
cases, let O(v), 0(7) be = 0. Let u be generic for U over k(v, 7). Then
upy, ub are generic for O(v), 0(3) over k(v, 7); and wv e F. As (u, 7) is a
k-specialization of (u, v), ud is a k-specialization of uv, and uv ¢ F. Hence
O(p) < F. This illustrates a useful technique for proving that a closed set
is closed.

10. Compare this part of the argument with [E, p. 461].

11. The first condition, along with the second, assures us that the orbits
in the G-invariant set V' — S are (relatively) closed. However, this follows
also from the second condition alone (deleting the first condition). In fact,
if v, is in the closure ©(v) of the orbit ©'(v) of » but not in ©'(v), then the
orbit ©'(v;) cannot meet ©'(v), hence lies in ©(») — ©'(v), which is contained
in a closed set K of dimension less than dim O(v). Then the closure 0(v;)
of ©’(v;) is contained in K. This is impossible, as dim 0(v,) = dim 0(v).
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