
ON THE VARIETY OF ORBITS

BY

A. SEIDENBERG

1. Statement of the main result
Let the algebraic group G have components G1, G and let G operate

regularly on the variety V, i.e., let the operation of G on V, for every i, be an
everywhere defined rational map of G X V into V. (See 1 of 4, where
the notes and remarks are assembled.) Let ] be a field of definition for G,
V, and the operation of G on V. Let v e V and let g e G be a generic point
for G over/c(v). /(v, g) is a regular extension of k(v), so by [W., p. 18,
Prop. 20] k(v, gv) is also a regular extension of ](v); thus gv is a generic point
over/c(v) of a subvariety (9(v) of V having k(v) as a field of definition. On
(G X v) X (v), which has ](v) as a field of definition, consider the sub-
variety W having ((g, v), gv) as genetic point over k(v). The (algebraic)
projection of W on (v) is (9(v). The variety W consists of the points
((, v), v), where varies over G, so O(v) contains the part of the orbit
of v due to G; on the other hand, by [W, p. 169, Prop. 3], which also ob-
viously applies in the abstract case, the set-theoretic projection of W on O(v)
contains a non-empty ](v)-open subset of 9(v). Thus )(v) 01(v) u
u O,(v) is the union of the orbit of v and a k(v)-closed subset of dimension less
than dim O (v).
We want to show that there exists a proper G-invariant k-closed subset F such

that an V V F the orbits consist of closed sets having at most s components;
and that these closed sets are in one to one correspondence with the points of a
variety W defined over k in such a way that the mapping which associates to each
point of V its orbit is an everywhere defined rational map over k of V into W.
The "variety of orbits" was defined in [R], by means of a generic point, and

coincides to a large extent with our W, but its relation to the set of orbits
was not considered, except for the remark that "[the variety of orbits] is a
true variety of orbits only so far as generic orbits are concerned".
The motivation for the stated result lies in [E, Th. 5], or rather in its appli-

cation to the classification of singular points of algebraic curves. This theo-
rem says that ifG is a connected solvable algebraic group operating regularly on an
abstract variety V, then there exists a constructable subset W of V such that for
each v in V there is a unique w in W with v in Gw. (See 2 of 4.) This rests
on JR, Th. 10], which says that if r is the natural rational map from V to its
variety of orbits T, and if G is connected and solvable, then there exists a cross-
section, i.e., a rational map ( T -+ V with ra 1. The statement ra 1
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is in the sense of algebraic geometry--set-theoretically there may be excep-
tions; and the proof of [E, Th. 5] consists of a kind of spelling out of the ex-
ceptions and an inductive taking care of them. However, a prior considera-
tion of the relation of the "variety of orbits" to the set of orbits appears to
be needed for a complete proof. This matter is not touched upon in [E] or
in its references.
The case that G and V are affine varieties suffices for the application men-

tioned, and a restriction to this case would yield many simplifications, both
in detail and in conception. However, we thought it proper to consider
matters with at least the generality occurring in [E, Th. 5]. Complete
generality requires some, but not much, more detail.
Some background material on/-constructable sets, k-elementary formulae,

and elimination theory is given in [S].

2. Preliminary theorems
Let U, V, and W be varieties, and let r be a rational map of U X V into

W, all defined over k. Let v e V. If r is defined at (u0, v) for some u0,
then it is also defined at (u, v) for u a generic point of U over k(v), and r(u,
is a generic point over k(v) of a variety 9(v); )(v) does not depend on which
generic point u over ](v) is chosen; if r is not defined at (u0, v) for any u0,
we place 0(v) 0. If r is defined at u0, v0, we write u0 v0 for r(u0,

THEOREM 1. Let U, V, W, r, k be as just mentioned, and let U, V, W be
ajne. Then there is an integer N such that for every v e V there is a set of poly-
nomials f(V, X) in k[V, X] of total degree <_ N such that the f(v, X) generate
an ideal having )(v) as associated locus.

Proof. Given a generic point x (xl, x) of an affine variety V
over k, one knows how to compute a basis for an ideal having V as associated
locus. One forms r -t- 1 linear combinations t x with indeterminate coeffi-
cients t.(i 1,-.., r W 1; j 1,-.., n); these are algebraically de-
pendent over k(t)= k(tl, tr+); and the -tx satisfy a polynomial

F(t; Z Zr+) e k[t; Z ..., Zr+l] 0,

which we may suppose is irreducible; into this one substitutes -t X for Z
and then the coefficients of F(t; -t X,..., --t+ X) considered as a poly-
nomial in yield the desired basis (see [v.d.W, Th. 6]).

Let v be an arbitrary point of V and u a generic point of U over k(v). If
r is not defined at (u, v), then r is also not defined at (u, v0) for any k-special-
ization Vo of v. If r is defined at (u, v), then, using the generic point uv,
we compute a basis for (v) over k(v) in the way indicated. Let Y be the
k-closure of v (so v is a "generic point" for Y over k). (See 3 of 4.) We
now examine how uniform these computations are as v0 varies over Y. Let
r dim O(v). We first examine dim 9(v0) as v0 varies over Y. The coor-
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dinates wi of uv may be written as rational functions in u, v. Let these be
P(u, v)/d(u, v), where P, d are polynomials over k. We may assume
that only a k-algebraically independent subset of the coordinates of u occur
in d(u, v). Let v0 be another point of Y. We may suppose u generic for U
over/(v, v0): this does not change the computations for (9(v) in any way,
but prepares them to be correct for v0. In particular, elements of k(u)
algebraically independent over/ remain such over/(v0). Let c(v) be one of
the coefficients of d(U, v), c(v) O. Making exception of the/c-closed sub-
set of Y defined by c(V) 0, we have d(u, Vo) 0; and Pi(u, Vo)/d(u, Vo)
are the coordinates of UVo, a generic point of 9(v0) over k(Vo). Any r -b 1
of the wi, say wl, wr+l, are algebraically dependent over k(v). Let

f(v; P(u, v)/d(u, v), Pr+(u, v)/d(u, v) 0

be a non-trivial polynomial relation over k. Making exception of a proper
k-closed subset of Y, we get the non-trivial polynomial relation

v
P(u, Vo)

f 0; d(u, vo)
P,.+(u, Vo)]’ O.
d(u, vo)

The argument is repeated for every (r -b 1)-tuple of the wi. Thus, with
exception of a k-closed subset of Y, dim )(v0)

_
r. Now let wl, ..., w,

(say) be algebraically independent over ](v). Let Hi(U) 0 be a finite
set of polynomial equations over / having U as associated locus; and let
K-(V) 0 be a similar set for Y. Consider the conjunction (for all i, j,
and for] 1,..-,r) of

(.) Hi(U) 0, K-(V) 0, Pk(U, V)/d(U, V) Ck, d(U, V) 0.

Eliminating U (see say IT, p. 39, Th. 1 and p. 54, note 16] or [S, p. 370,
Th. 3 and p. 373, Remark (c)] or [S, p. 237, Th. 1] or [$3]; see also [C]),
we get a finite disjunction of finite conjunctions of polynomial equations and
inequalities over/ in V, C. (See 4 of 4.) At least one of these conjunc-
tions, which we may assume involves a sole inequality e(V, C) 0, is
satisfied by V v, C P(u, v)/d(u, v); let us consider just this one. Let
f(V, C) 0 be one of the equalities in it. Since w, w are algebraically
independent over/(v), we have f(v, C) 0. Hence for any v0, c satisfying
e(Vo, c) O, one can solve (.) for U. We make exception of a k-closed sub-
set of Y defined by a non-zero coefficient of e(V, C) regarded as a polynomial
in C; and take for c,-.., c, quantities algebraically independent over
k(v0). Let be a solution of (.) for V v0, C c. Then P(, v0)/
d(, v0),/c 1, r are algebraically independent over/(v0). Hence with
exception of a proper ]-closed subset of Y, dim )(v0) r.
We now form F(v, t, Z) as mentioned; we may assume F(V, t, Z) e k[V, t, Z],

which we do. Making exception of a proper k-closed subset of Y, we will
have F(v0, t, Z) 0. We note that F(Vo, t, -t. UVo) O, since v0 is a special-
ization of v over/(u); in fact, since u and v are independent over/ and k(u)
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is regular over/, /(u) and k(v) are linearly disjoint over k, by [W, p. 18,
Th. 5], and by [W, p. 15, Th. 3], vo remains a specialization of v over/(u).
Hence if F(vo, t, Z) is irreducible over/(v0), then the coefficients of F(vo, t,
--tX) yield the desired basis. The condition of (absolute) irreducibility
places another polynomial condition on v0. (See [v.d.W1, Th. 3] and [v.d.W2,
p. 707]). Altogether, with exception of a proper k-closed subset of Y, the
computations proceed uniformly. (See 5 of 4.) In a similar way, we take
care of the exceptional set, and get a bound on the total degree of the fi(V, X)
at least for v0 varying over Y (i.e., we take a/c-component of the exceptional
set, make a computation at a "generic point" thereof, find a smaller excep-
tional set; etc.). By taking Y V, i.e., by taking v generic for V over k,
we complete the proof.

Let U, V, W be varieties, r a rational map of U X V into W, and let U,
V, W, r be defined over k. Let v e V and u a generic point for U over k(v).
If r is defined at (u0, v), then (u0, v) is a k-specialization of (u, v), r is defined
at (u, v), and r(u0, v) is a k(v)-specialization of r(u, v). Hence 9(v) is the
k(v)-closure of the set of points r(u0, v), where Uo ranges over the points for which
r(Uo, v) is defined.
THEOREM 2. Let U, V, W, r, k be as just mentioned.

(x, v) in W V such that x e )(v) is k-constructable.
Then the set of points

Proof. Let U be defined via affine varieties U (and birational transfor-
mations T), let V be defined via affine varieties V, and W via affine
varieties W. Let (v) denote the representative of e(v) on W if there is
one, and otherwise place %(v) 0; let ’ indicate an index such that e, (v)
for some v. For every a, % , the mapping r induces a rational mapping

If v has a representative v in V, then O,(v) is just the same as O,(v) as
previously defined relative to U X V -+ W,. We may write 0, (v)
0, (v) to indicate this.

Let u, v be independent generic points for U, V over k, and let u, v be
the representatives of u, v in U, V. Let w uv. Then w, can be written
in a finite number of ways as rational functions over/ in u, v, each time
with a common denominator, in such a way that U X V -- W, is defined
at (u0, v0) if and only if one of the denominators does not vanish at (u0, v0)
(in this connection see [W, p. 171, Th. 2, Proof]). Thus the statement that
r, is defined at (u0, Vo) can be written as a finite disjunction of finite
conjunctions of polynomial equations and inequalities over / in u0, vo.
(See 6 of 4.)
Let x, be a point in W, and v a point of V. Then x, is in e,(v) if

and only if every polynomial f(v, X) in /(v)[X] which vanishes over
O’ r,(u0, v)} vanishes at x, here u0 varies over the points for which
r, is defined at (uo, v). We may suppose f(v, X) e k[v, X] and, by
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Theorem 1, can place a bound N on the total degree of f(V, X). Moreover,
one can relax the condition that f have its coefficients in k, as any f e 2[X]--2,
the universal domain--which vanishes over vanishes over ),(v); in fact,
if k’ is a field containing k, v, and the coefficients of f, and if u0, is a generic
point of U over k’, then, dismissing the case V,(v) 0 as trivial, f vanishes
at r,,(u0,, v) and hence over O,(v). The set of polynomials f(V, X) e

f[V, X] of total degree _< N is parametrized by the points c of an affine
space. Hence the statement x, e O,(v) can be written as a finite disjunc-
tion, properly quantified, of finite conjunctions of polynomial equations and
inequalities over k in x,, v, u0, and c. (See 7 of 4.) Eliminating the
parameters u0,, c (say by [S, pp. 370, 373] or [Sa]), we see that the set of
points (x,, v) in W, X V such that x, O,(v) is k-constructable.
By [W, p. 188, Prop. 10], the V, W are k-open covers of V, W; and

similarly the W X V are a k-open cover of W X V. As x e 0(v) if and
only if for some ,, , x has a representative x, in W, and v has a representa-
tive v in V and x, O,(v), the set of (x, v) in W X V for which x 0(v)
is the union of the sets (x,, v) for which x, O,(v). Hence the set
(x. v) in W X V for which x e O (v) is k-constructable.

THEOREM 3. Let U, V, r, k be as in Theorem 2. Let s be an integer >_ -1.
Then the set S of points v such that dim )(v ) s is k-constructable.

Proof. Let % be two indices (with ’ as in the proof of Theorem 2)
Suppose we know that dim 0,(v) s on a k-constructable set W* and a
subset of a k-constructable set W (which we do for W* 0 and W V).
W (unless empty) is the finite union of sets each of which is a/-irreducible
algebraic set minus a proper relatively k-closed subset. Let W be one of
these k-irreducible sets and W the associated relatively k-closed subset.
Then W is the union of a k-constructable set W disjoint from W, W W’,
and a k-constructable subset of W’. Let v be a "generic point" for W
over k. If 0, (v) 0, then by note 5 of 4, dim 0, (v.) dim 0, (v) for
v e W with possible exception of the points v. in a proper k-closed subset W
and the same is true if O,(v) 0, as then 0,(v.) 0 for every v e W. If
dim 0, (v) s, we throw away W W, and otherwise keep it (i.e., adjoin
it to W*). Then we examine W’ [J W (J W, etc. In this way we come
to the desired conclusion. (See 8 of 4.)
By a k-atomic formula we mean a formula of the form (x, x,) e F,

where x, is a free variable ranging over a variety V defined over/ and F is
a k-closed subset of V X X V,. By a k-elementary formula we mean a
formula built up in a finite number of steps from k-atomic formulae by nega-
tion, conjunction, disjunction, and quantification of the form x(-.. ). One
checks easily that the set of points satisfying a k-elementary formula is
k-constructable, and conversely. A k-elementary formula involving only
bound variables is called a k-elementary sentence.
For example, let U and V be varieties, and r a rational map of U into V,
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all defined over It. Then the expression "r is defined at u" is, or can be
written as, a k-elementary formula; in fact, we saw this in the case U, V are
affine, and the extension to arbitrary varieties offers no difficulty. The ex-
pression

r is defined at u and has there the value v

is also a k-elementary formula. In fact, let F be the graph of r. Then the
mentioned expression can be written as

r is defined at u and (u, v)

THEORE 4. Let U, V, r, be as in Theorem 2. Let O’(v) {r(u, v)},
where u varies over the points such that r is defined at (u, v). Then the set
of points x such that for some v, x (v) but x (v) is k-constructable.

Proof. The expression x e (v) is a k-elementary formula, as it can be
written as

u(r is defined at (u, v) and x r(u, v)).

The formula x e 0 (v) is also It-elementary, by Theorem 2. Hence the formula

v(x e V(v) and x (v))
is k-elementary.

THEORE 5. Let U, V, W, r, be as in Theorem 2, and let F be a k-closed
subset of W. Then the set S of points v such that O(v) c F is ]c-constructable.

Proof. Let O(v) be as in Theorem 4. As 0(v) is the k(v)-closure of o(v),
we have O(v) c F if and only if O’ (v) F. The set of v satisfying 0 (v) c F
is the same as the set satisfying Wuy (r is not defined at (u, v) or r is de-
fined at (u, v) and has there the value y and y e F). Hence S is k-con-
structable. (See 9 of 4.)

3. The case U G (and W V)
To get the picture of the )(v) (1) clear, we recall some facts about G.

Let G be a component of G containing the identity e. As a generic point of
G cannot lie in any other component, one has G G G and G G G
hence, in particular, there is only one component containing e. Hence if
G G. contains e, then G G G, whence G is a normal subgroup of G and
the G are its cosets.

Let O(v) {gvlg e e}. Then O,(v) is the k(v)-closure of )(v). If
g eG, thenG Gg, so)(v) {ggl g eG} O(gv); so an orbit under
G is made up of s (or fewer) orbits under G. Let v e V and g a generic point
of G over ](v); then gv is a generic point over k(v) of 0(v). Let g be a
pointofG algebraic overk; thenggv e O(v). As k(v, g ggv) k(v, g gv),
dim 0(v) >_ dim 0(v); and similarly dim V(v) >_ dim 0(v). Thus for
every v, all the O(v) have the same dimension. Let g e G, g e G. Then

to’,(,), ..., v), ..., o (a. v)l
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and
e(gv)] [e(g gv), .., o( g)].[O(gv),

As g g, g. g are in different eosets if g, g. are, [0’ (gv), ..., O’(gv)] is a permu-
tation of [0(v), ..., O’,(v)]; and similarly for the k(v, g)-elosures O(v),
o().

T,o, 6. If v e 0 (v), hen 0 (v) 0 (v).

Proof. As 0 (v) is closed and 0 (v) is the closure of the orbit of vt, it suffices
to show that the orbit of v is in O(v). Let, then, g’ e G. Then g’gv
for every g e G. Let v e O(v) and let g be a generic point of G over k(v, g’).

gtThen v is a specialization of gv over k(v, ), whence g v is a specialization
g!of g gv over k(v, ). Hence g v e O(v), Q.E.D.

COnOL5Am. The set S of points v such hat for some v, vt is in O(v) but no
in the orbit of v, is a G-invarian l-consructable set.

The expressions v e O(v), v e O(v) are k-elementary formulae, so S is
k-constructable; it is G-invariant by the theorem.

THEORE 7. Let F be a k-closed subset of V. The set S of points v such
that for some i, O(v) F is k-constructable and (obviously) G-invariant.
The set S of poinls v such tha for some i dim O(v) r, where r dim O(v)
for a generic point v of V over k, is k-constructable and (obviously)
G-invariant.

This follows at once from our previous theorems. Here too (cf. Theorem 5)
S is k-closed.

THEOREM 8. The k-closure S of a k-consructable G-invariant set S containing
no generic point of V/k is proper and G-invariant.

Proof. S (unless empty) is the union of a finite number of sets, each a
k-irreducible set F minus a proper k-closed subset. N UF and is proper
if no F equals V. If/5 e N, then there is a P e S with P --/5 over k. Let
g be a generic point of G over k(P, ). Then P --+/5 also over k(g). Hence
gP ---+ g[ over k. gP is in some F., say F. Then g/5 F and, as
g/5 isa generic point for 0(/5) over k(/5), 0(/5) Ft. Hence the orbit of
/5 is in N.

In what follows we fix an index 7 and speak of the Chow form of an O(v)
if O,(v) is not empty, and then mean thereby the Chow form of O,(v). We
may write F’(v, t, Z) for this form; the point v need not have a representative
in V,. We speak of the Chow form of O(v) if each O(v) has a Chow form,
and then mean thereby II.=x F’(v, t, Z). Each O(v) occurs the same number
of times amongst O(v),..., O,(v), so every irreducible factor in the Chow
form occurs with the same multiplicity. Hence the Chow form depends
only on the locus O(v), not on v.
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If v is generic for V over /, then v has a representative in V. Hence
9(v) 0, as v eVl(v). We have (9(v) (%(gv) for g eG. Since
/(gi, g v) /(g, v), by taking g independent from v over/, g v remains
generic for V over/. Hence (9(v) t. Thus we may speak of the Chow
form of (9(v) if v is generic for V over k.

Let F(v, t, Z) be the Chow form of (O(v) with v generic for V over/. The
coefficients of F (considered as a polynomial in t, Z) are the coordinates of a
generic point P over/ of a variety in projective space, the "variety of orbits".
Let r be the rational map defined by the generic point (v, P) over/, r is
defined at v if, F having been normalized by making some coefficient 1,
the coefficients are defined at v. Let g e G. Take v generic for V over l(g);
then gv is also generic for V over/ and O(gv) V(v). Hence r(gv) r(v),
whence r and rg are the same rational map on V. Now let r be defined at v.
Then rg is defined at g-vl, so r is defined at g-lye. (See 10 of 4.) Thus
the set S of points vl at which r is defined is G-invariant; it is also/c-constructable.
Hence

THEOREM 9.
G-invariant.

The set S of points v at which r is defined is k-constructable and

THEOREM 10. Let v be generic for V over t and let F(v, t, Z) be the Chow
form of O(v). Then the set S of points v at which F(v, t, Z), after a suitable
normalization, is defined and such that then F(v t, Z) yields the Chow form of
0 (vl) is l-constructable and G-invariant.

Proof. We first confine ourselves to the points v for which r is defined,
for which 0 (v) has a Chow form, and for which dim 0(v) dim 0 (v) (so
the Chow forms of O(v), O(v) involve the same and Z); this is a k-construe-
table G-invariant set. Let vl be such that F(v, t, Z), i.e., F(v, t, Z) i=
after a suitable normalization of F, is the Chow form of O(v). Then by
note 4 of 4, F(, t, Z) is the Chow form of (9() for almost all/c-specializations
1 of v. Now let v be such that F(v, t, Z) is not the Chow form of 0(v);
let G(vl, t, Z) be the Chow form of O(v). Let a, be be corresponding co-
efficients of F(v t, Z), G(v t, Z); then d(v) ab ab 0 for some
j, /c. For almost all/-specializations of v, F(I, t, Z) remains defined,
G(I, t, Z) is the Chow form of 0(), and d() 0, so F(, t, Z) is not
the Chow form of 0(). By note 8 of 4, S is k-constructable. It is also
obviously G-invariant.
The main result (1) now follows quickly. Let S be the set of points

vl such that for some v with dim O(v) dim (9(v) for v a generic point of
V/t, v O(v’) but vl is not in the orbit of v or dim O(v) dim 0(v), where
w is generic for V over/; or O(v) does not have a Chow form; or r is not
defined; or r is defined but does not yield the Chow form of 0(v). (See 11
of 4.) Then S is a/-constructable G-invariant subset of V containing no
generic point of V/k, and so is its/-closure $. The image under r of V $
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contains a non-empty k-open subset W of the "variety of orbits"; as r induces
a k-continuous map of V (cf. [W, p. 171, Th. 2]), the counterimage of
W on V is a k-open G-invariant subset V F of V. Then V’ V F
and W (viewed as a variety) satisfy the statement of 1.
The proof of [E, Th. 5] can now also be quickly completed. Before doing

so, we prefix a remark which will give a somewhat stronger version of that
theorem: Let V, W be (say) ane varieties defined over an algebraically closed
field k, let r be a rational map of V into W defined over k, and assume there exists
a rational map a of W into V such that ra 1; then there also exists a rational
map of W into V defined over k and such that r 1. In fact, let a be defined
over a field k’ containing k. Let y be a generic point of W over k
and a(y) (al(y),’",a(y)) e V. Write ra(y) y. More explicitly
one can write r(x) P(x)/Q(x), where x is a generic point of V over k,
P, Q are polynomials over k, Q(a(y), a(y) ) O, and

P(a(y), a(y))/Q(a(y), at(y)) y.

The a.(y) are rational functions over ]r. The a, having been written out
in some explicit way with a common denominator in k’[y], involve only a
finite number of coefficients in k’; let these, arranged in some order, be desig-
nated a. Let d(a, y)e/[a, y] be the denominator mentioned. Then
dPQ(a(y), (y)) Q(a, y) is a polynomial over k in a, y for some p.
Now specialize (a, y) over k to a k-rational point (, 7) in such way that
d(, )QI(, 7) 0. Afortiori d(, y)Q(, y) O. Let a,(y) n(a, y)/
d(a, y), e(y) n(, y)/d(, y) and let be defined by

(y) ((y), t(y)).

As (e,y) is also a specialization of (, y) over k, we have (y) eV
and r(y) y. Thus is a desired map.

Let now G be a connected algebraic group operating regularly on a variety
V and let k be an algebraically closed field of definition for G, V, and the
operation of G on V. Let W be the "variety of orbits" and r the natural
map of V into W; W and r are also defined over k. Assume that for every V
there exists a rational map a of W into V such that ra 1 (which by [R, Th. 10]
will be the case if G is solvable). Then we will show there exists a t-constructa-
ble (and not merely constructable) subset C of V such that every orbit meets the
set C in precisely one point. In fact, let F and W be as stated in the main
result (1), and let r: V F --* W. By the last paragraph we may assume
a is defined over ]. is defined except on a k-closed subset G of W. Let
V F’ be the inverse image of W G (under r). The image of W G
under a is a k-constructable subset C’ of V contained in V and every
orbit in V F meets C in precisely one point. Replacing V by F’, we
would be through by induction on dim V, except that V is replaced not by
a variety but by a bunch of varieties (of smaller dimension).
To meet this last point, let V be a component of F. Let g e G and v



ON WH VamTV O OTS 737

a generic point of V1 over k(g). If e V1, then (g, ) is a k-specialization of
(g, v) and g is a k-specialization of gv, so gV is in the k-component of F’
which contains gv. Thus every element of G carries every component of F’
into, and hence also onto, another component; and the set {gVlg e G} is
finite, Let H be the subset of G leaving V invariant; H is obviously a sub-
group of G. Let F be the graph of the operation of G on V. Then the
expression hve V can be written in the form

.(y)(h e G, v e V, (h, v, y) e F and y e V1),

and hence is It-elementary. Then Y(v (v V hv V) is k-elementary,
soH is/c-constructable. Now one proves that H is/c-closed (cf. note 6 of 4).

-HThen G is a finite union of k-closed sets of the form g g. As G is connected,
G g-Hg for some g, whence G H. Thus V is invariant under G. Let
be another component of F’ and v e V a V. then the orbit of v is contained
in V1 V. Hence if K is the set of points P in V and in another component
of F, then K is k-closed and for every v e V K, the orbit of v is in V K.
By induction on dim V, we take care of V K; and then similarly the rest
of F’. In this way we complete the proof.

4. Notes and remarks
1. Our terminology is mainly that of [W]. From the definition of alge-

braic group, we recall that the product g g of g e G, g. e G. is given by an
everywhere defined rational map of Gi X G into one of the components Gk
and similarly for g-l. From the definition of operate regularly, g(g(v))
(gl g.)(v) and e(v) v for e the identity of G. (See [R].)

2. G is said to be connected if s 1, i.e., if the underlying set is a variety.
A subset W of V is said to be constructable if it is the finite union of sets each
of which is the intersection of a closed set and an open set; the k-constructable
subsets of a variety V defined over k are similarly defined. The complement
in V of a k-constructable set and the finite union and finite intersection of
k-constructable sets are k-constructable; and the set-theoretic projection of a
k-constructable subset of a product V X W on a factor is k-constructable.
(See [S,]; see also [C, p. 38, Cot. to Th. 3]. The notion of solvability does not
enter into our considerations.

3. The quotation marks indicate a deviation from the terminology of [W].

4. By a finite conjunction of polynomial equations and inequalities (or
inequations) over k we mean a finite conjunction f(x,... ,x,,)
f(x x,,) and and fs(xl x,,) f:(xl x,,) and
g(x x,,) g(x x,,) and and g(x x,,)
gt(x, x,,), where the f, f, g., g are polynomials over k and the x are
free variables (ranging over the universal domain t). Usually a coniunction
of this kind can be replaced without loss of generality by an equivalent one,
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i.e., one having the same solutions; and this is frequently tacitly done. Thus
we may suppose all the f, g. to be zero. Adjoining 0 0 and 1 0, we
may suppose s :> 0 and > 0. With > 0 and the gj 0, we may suppose
t= laswereplacegl0and.., andgt0bygl-..gt0. The theorem
being used here (above) amounts to this" the projection of a/c-constructable
set is k-constructable.

5. F(v, t, Z) is the so-called Chow form of O(v), except that the Chow
form is understood to be defined only up to a constant factor p 0. Drop-
ping the condition F(V, t, Z)ek[V, t, Z] (i.e., allowing it to be in /(V)
[t, Z]), we have just proved that if F(v, t, Z) is the Chow form of V(v), then
for almost all k-specializations of v (i.e., for all e Y except perhaps those lying
in a proper k-closed subset) the coecients of F(v, t, Z) are defined at , () ,
and F S, t, Z) is the Chow form of e ).

6. Let dl, d8 be the denominators mentioned--they are polynomials
over/--let gl O, gt 0 be a finite set of polynomial equations over/
for the locus U,, and let h 0, hu 0 be a set for V. If u0,, v0 are
understood to vary over U,, V, as will be the case later, the condition
mentioned can be written as d(u0, v0) 0 or or ds(u0,, v0) 0. For
the present we write (g(Uo,) 0 and and gt(uo,) 0 and h(vo.) 0
and and hu(vo.r) 0 and d(uo,, v0) 0) or or (g(uo,) 0 and
and gt(uo,) 0 and h(vo) 0 and and h(v0) 0 and d,(uo,, Vo.)
0). This is a desired disjunction.

7. Let d, d be the denominators mentioned in the last paragraph
urs, ,.-., rs, be the corresponding numerators. Let g 0,

g 0 be a finite set of polynomial equations over/ defining the locus
U,, and let h 0,...,h 0be aset for V. Letf(c; V, X) bethe
"general" polynoal of total degree N in V, X with coefficients c. Then the
statement that xs, e V,(v) can be written as the following disjunction,
properly quantified, for i 1, s: (g(uo,) 0 or or gt(,) 0) or
(g(u0,) 0 and and gt(uo,) 0 and d(uo,, v) 0) or [(gl(u0,) 0
and and g(uo) 0 and h(v) 0 nd and h(v) 0

(), v,)) 0and ;(0, v,) O) and (;(0, v))(c; v (0
f(c, v,, xa,) 0]. We write these, with obvious abbreviations, as ((0)
0 or or t(u0) O) or A; or [B; and (C; D;)3, where A, B are finite
conjunctions of polynoal equations and inequalities over k in ,, v, o,
and c; and ;, D are polynomial equations over . We rewrite A; or [B; and
(C, D)] s A, or [B; nd (D or not C;)] and then s A; or [(B; nd
or (B nd not C)]. Then g(uo) 0 or or gt(Uo) 0 or
A or (B nd D) or (B nd not C) or or A or (B nd D) or (B
nd not C), is desired disjunction. Of course, this disjunction is to be
quantified for ll u0 over the mbient spce of U nd over ll c.
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8. The proof shows that a set S is tc-constructable if and only if for every P
(in V) if P is not in S then almost all ]-specializations of P are not in S and
if P is in S then almost all of P are in S. On the basis of this
characterization one may give a simple proof that the set-theoretic projection
of a ]-constructable set is ]-constructable. (See [$3].)

9. The set S is even ]-closed. To show that a/c-constructable set S is
k-closed it suffices to show that every It-specialization of every P in S is in S.
Let, then, v be in S and let be a k-specialization of v. Setting aside trivial
cases, let co(v), co() be 9. Let u be generic for U over It(v, ). Then
uv, u are generic for CO(v), CO() over ](v, ); and uv 6F. As (u, ) is a
k-specialization of (u, v), uO is a/-specialization of uv, and uO e F. Hence
co(0) c F. This illustrates a useful technique for proving that a closed set
is closed.

10. Compare this part of the argument with [E, p. 461].

11. The first condition, along with the second, assures us that the orbits
in the G-invariant set V S are (relatively) closed. However, this follows
also from the second condition alone (deleting the first condition). In fact,
if vl is in the closure c0(v) of the orbit co’(v) of v but not in co’(v), then the
orbit co’ (vl) cannot meet co’ (v), hence lies in c0(v) co’ (v), which is contained
in a closed set K of dimension less than dim co(v). Then the closure co(v1)
of co’(vl) is contained in K; This is.impossible, as dim co(v) dim co(v).
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