ON THE VARIETY OF ORBITS

BY A. SEIDENBERG¹

1. Statement of the main result

Let the algebraic group G have components G_1, \dots, G_s and let G operate regularly on the variety V, i.e., let the operation of G_i on V, for every i, be an everywhere defined rational map of $G_i \times V$ into V. (See 1 of §4, where the notes and remarks are assembled.) Let k be a field of definition for G, V, and the operation of G on V. Let $v \in V$ and let $g \in G_i$ be a generic point for G_i over k(v). k(v, g) is a regular extension of k(v), so by [W., p. 18, Prop. 20] k(v, gv) is also a regular extension of k(v); thus gv is a generic point over k(v) of a subvariety $\mathfrak{O}_{i}(v)$ of V having k(v) as a field of definition. On $(G_i \times v) \times O_i(v)$, which has k(v) as a field of definition, consider the subvariety W_i having ((g, v), gv) as generic point over k(v). The (algebraic) projection of W_i on $\mathcal{O}_i(v)$ is $\mathcal{O}_i(v)$. The variety W_i consists of the points $((\bar{g}, v), \bar{g}v)$, where \bar{g} varies over G_i , so $O_i(v)$ contains the part of the orbit of v due to G_i ; on the other hand, by [W, p. 169, Prop. 3], which also obviously applies in the abstract case, the set-theoretic projection of W_i on $O_i(v)$ contains a non-empty k(v)-open subset of $\mathcal{O}_i(v)$. Thus $\mathcal{O}(v) = \mathcal{O}_1(v)$ u · · · $\mathbf{u} \, \mathcal{O}_s(v)$ is the union of the orbit of v and a k(v)-closed subset of dimension less than dim O(v).

We want to show that there exists a proper G-invariant k-closed subset F such that on V' = V - F the orbits consist of closed sets having at most s components; and that these closed sets are in one to one correspondence with the points of a variety W defined over k in such a way that the mapping which associates to each point of V' its orbit is an everywhere defined rational map over k of V' into W.

The "variety of orbits" was defined in [R], by means of a generic point, and coincides to a large extent with our W, but its relation to the set of orbits was not considered, except for the remark that "[the variety of orbits] is a true variety of orbits only so far as *generic* orbits are concerned".

The motivation for the stated result lies in [E, Th. 5], or rather in its application to the classification of singular points of algebraic curves. This theorem says that if G is a connected solvable algebraic group operating regularly on an abstract variety V, then there exists a constructable subset W of V such that for each v in V there is a unique w in W with v in Gw. (See 2 of §4.) This rests on [R, Th. 10], which says that if τ is the natural rational map from V to its variety of orbits T, and if G is connected and solvable, then there exists a cross-section, i.e., a rational map $\sigma: T \to V$ with $\tau \sigma = 1$. The statement $\tau \sigma = 1$

Received December 8, 1967.

¹ Supported in part by a National Science Foundation grant. Written in Rome, Italy, Summer, 1967.

is in the sense of algebraic geometry—set-theoretically there may be exceptions; and the proof of [E, Th. 5] consists of a kind of spelling out of the exceptions and an inductive taking care of them. However, a prior consideration of the relation of the "variety of orbits" to the set of orbits appears to be needed for a complete proof. This matter is not touched upon in [E] or in its references.

The case that G and V are affine varieties suffices for the application mentioned, and a restriction to this case would yield many simplifications, both in detail and in conception. However, we thought it proper to consider matters with at least the generality occurring in [E, Th. 5]. Complete generality requires some, but not much, more detail.

Some background material on k-constructable sets, k-elementary formulae, and elimination theory is given in $[S_3]$.

2. Preliminary theorems

Let U, V, and W be varieties, and let τ be a rational map of $U \times V$ into W, all defined over k. Let $v \in V$. If τ is defined at (u_0, v) for some u_0 , then it is also defined at (u, v) for u a generic point of U over k(v), and $\tau(u, v)$ is a generic point over k(v) of a variety O(v); O(v) does not depend on which generic point u over k(v) is chosen; if τ is not defined at (u_0, v) for any u_0 , we place $O(v) = \emptyset$. If τ is defined at u_0 , v_0 , we write u_0 v_0 for $\tau(u_0, v_0)$.

THEOREM 1. Let U, V, W, τ, k be as just mentioned, and let U, V, W be affine. Then there is an integer N such that for every $v \in V$ there is a set of polynomials $f_i(\mathbf{V}, X)$ in $k[\mathbf{V}, X]$ of total degree $\leq N$ such that the $f_i(v, X)$ generate an ideal having $\mathfrak{O}(v)$ as associated locus.

Proof. Given a generic point $x = (x_1, \dots, x_n)$ of an affine variety V over k, one knows how to compute a basis for an ideal having V as associated locus. One forms r+1 linear combinations t_i x with indeterminate coefficients t_{ij} ($i=1,\dots,r+1$; $j=1,\dots,n$); these are algebraically dependent over $k(t) = k(t_1,\dots,t_{r+1})$; and the $-t_i$ x satisfy a polynomial

$$F(t; Z_1, \dots, Z_{r+1}) \in k[t; Z_1, \dots, Z_{r+1}] - 0,$$

which we may suppose is irreducible; into this one substitutes $-t_i X$ for Z_i ; and then the coefficients of $F(t; -t_1 X, \dots, -t_{r+1} X)$ considered as a polynomial in t yield the desired basis (see [v.d.W₁, Th. 6]).

Let v be an arbitrary point of V and u a generic point of U over k(v). If τ is not defined at (u, v), then τ is also not defined at (u, v) for any k-specialization v_0 of v. If τ is defined at (u, v), then, using the generic point uv, we compute a basis for $\mathfrak{O}(v)$ over k(v) in the way indicated. Let Y be the k-closure of v (so v is a "generic point" for Y over k). (See 3 of §4.) We now examine how uniform these computations are as v_0 varies over Y. Let $r = \dim \mathfrak{O}(v)$. We first examine dim $\mathfrak{O}(v_0)$ as v_0 varies over Y. The coor-

dinates w_i of uv may be written as rational functions in u, v. Let these be $P_i(u, v)/d(u, v)$, where P_i , d are polynomials over k. We may assume that only a k-algebraically independent subset of the coordinates of u occur in d(u, v). Let v_0 be another point of Y. We may suppose u generic for U over $k(v, v_0)$: this does not change the computations for O(v) in any way, but prepares them to be correct for v_0 . In particular, elements of k(u) algebraically independent over k remain such over $k(v_0)$. Let c(v) be one of the coefficients of $d(\mathbf{U}, v)$, $c(v) \neq 0$. Making exception of the k-closed subset of V defined by v0 and v0, a generic point of v0, over v0. Any v0 are the coordinates of v0, a generic point of v0, over v0. Let

$$f(v; P_1(u, v)/d(u, v), \cdots, P_{r+1}(u, v)/d(u, v)) = 0$$

be a non-trivial polynomial relation over k. Making exception of a proper k-closed subset of Y, we get the non-trivial polynomial relation

$$f\left(v_0; \frac{P_1(u, v_0)}{d(u, v_0)}, \cdots, \frac{P_{r+1}(u, v_0)}{d(u, v_0)}\right) = 0.$$

The argument is repeated for every (r+1)-tuple of the w_i . Thus, with exception of a k-closed subset of Y, dim $\mathfrak{O}(v_0) \leq r$. Now let w_1, \dots, w_r (say) be algebraically independent over k(v). Let $H_i(\mathbf{U}) = 0$ be a finite set of polynomial equations over k having U as associated locus; and let $K_j(\mathbf{V}) = 0$ be a similar set for Y. Consider the conjunction (for all i, j, and for $k = 1, \dots, r$) of

(*)
$$H_i(\mathbf{U}) = 0$$
, $K_i(\mathbf{V}) = 0$, $P_k(\mathbf{U}, \mathbf{V})/d(\mathbf{U}, \mathbf{V}) = C_k$, $d(\mathbf{U}, \mathbf{V}) \neq 0$.

Eliminating **U** (see say [T, p. 39, Th. 1 and p. 54, note 16] or [S₁, p. 370, Th. 3 and p. 373, Remark (c)] or [S₂, p. 237, Th. 1] or [S₃]; see also [C]), we get a finite disjunction of finite conjunctions of polynomial equations and inequalities over k in **V**, C. (See 4 of §4.) At least one of these conjunctions, which we may assume involves a sole inequality $e(\mathbf{V}, C) \neq 0$, is satisfied by $\mathbf{V} = v$, $C_k = P_k(u, v)/d(u, v)$; let us consider just this one. Let $f(\mathbf{V}, C) = 0$ be one of the equalities in it. Since w_1, \dots, w_r are algebraically independent over k(v), we have f(v, C) = 0. Hence for any v_0 , c satisfying $e(v_0, c) \neq 0$, one can solve (*) for **U**. We make exception of a k-closed subset of Y defined by a non-zero coefficient of $e(\mathbf{V}, C)$ regarded as a polynomial in C; and take for c_1, \dots, c_r quantities algebraically independent over $k(v_0)$. Let \bar{u} be a solution of (*) for $\mathbf{V} = v_0$, C = c. Then $P_k(\bar{u}, v_0)/d(\bar{u}, v_0)$, $k = 1, \dots, r$ are algebraically independent over $k(v_0)$. Hence with exception of a proper k-closed subset of Y, dim $\mathfrak{O}(v_0) = r$.

We now form F(v, t, Z) as mentioned; we may assume $F(V, t, Z) \in k[V, t, Z]$, which we do. Making exception of a proper k-closed subset of Y, we will have $F(v_0, t, Z) \neq 0$. We note that $F(v_0, t, -t \cdot uv_0) = 0$, since v_0 is a specialization of v over k(u); in fact, since u and v are independent over k and k(u)

is regular over k, k(u) and k(v) are linearly disjoint over k, by [W, p. 18, Th. 5], and by [W, p. 15, Th. 3], v_0 remains a specialization of v over k(u). Hence if $F(v_0, t, Z)$ is irreducible over $k(v_0)$, then the coefficients of $F(v_0, t, -tX)$ yield the desired basis. The condition of (absolute) irreducibility places another polynomial condition on v_0 . (See [v.d.W₁, Th. 3] and [v.d.W₂, p. 707]). Altogether, with exception of a proper k-closed subset of Y, the computations proceed uniformly. (See 5 of §4.) In a similar way, we take care of the exceptional set, and get a bound on the total degree of the $f_i(\mathbf{V}, X)$ at least for v_0 varying over Y (i.e., we take a k-component of the exceptional set, make a computation at a "generic point" thereof, find a smaller exceptional set; etc.). By taking Y = V, i.e., by taking v generic for V over k, we complete the proof.

Let U, V, W be varieties, τ a rational map of $U \times V$ into W, and let U, V, W, τ be defined over k. Let $v \in V$ and u a generic point for U over k(v). If τ is defined at (u_0, v) , then (u_0, v) is a k-specialization of (u, v), τ is defined at (u, v), and $\tau(u_0, v)$ is a k(v)-specialization of $\tau(u, v)$. Hence $\mathfrak{O}(v)$ is the k(v)-closure of the set of points $\tau(u_0, v)$, where u_0 ranges over the points for which $\tau(u_0, v)$ is defined.

THEOREM 2. Let U, V, W, τ, k be as just mentioned. Then the set of points (x, v) in $W \times V$ such that $x \in O(v)$ is k-constructable.

Proof. Let U be defined via affine varieties U_{α} (and birational transformations $T_{\alpha\beta}$), let V be defined via affine varieties V_{γ} , and W via affine varieties W_{δ} . Let $\mathfrak{O}_{\delta}(v)$ denote the representative of $\mathfrak{O}(v)$ on W_{δ} if there is one, and otherwise place $\mathfrak{O}_{\delta}(v) = \emptyset$; let δ' indicate an index such that $\mathfrak{O}_{\delta'}(v) \neq \emptyset$ for some v. For every α, γ, δ' , the mapping τ induces a rational mapping

$$\tau_{\alpha\gamma\delta'}\colon U_{\alpha}\times V_{\gamma}\to W_{\delta'}$$
.

If v has a representative v_{γ} in V_{γ} , then $\mathcal{O}_{\delta'}(v)$ is just the same as $\mathcal{O}_{\delta'}(v_{\gamma})$ as previously defined relative to $U_{\alpha} \times V_{\gamma} \to W_{\delta'}$. We may write $\mathcal{O}_{\delta'}(v) = \mathcal{O}_{\delta'}(v_{\gamma})$ to indicate this.

Let u, v be independent generic points for U, V over k, and let u_{α} , v_{γ} be the representatives of u, v in U_{α} , V_{γ} . Let w = uv. Then $w_{\delta'}$ can be written in a finite number of ways as rational functions over k in u_{α} , v_{γ} , each time with a common denominator, in such a way that $U_{\alpha} \times V_{\gamma} \to W_{\delta'}$ is defined at $(u_{0\alpha}, v_{0\gamma})$ if and only if one of the denominators does not vanish at $(u_{0\alpha}, v_{0\gamma})$ (in this connection see [W, p. 171, Th. 2, Proof]). Thus the statement that $\tau_{\alpha\gamma\delta'}$ is defined at $(u_{0\alpha}, v_{0\gamma})$ can be written as a finite disjunction of finite conjunctions of polynomial equations and inequalities over k in $u_{0\alpha}$, $v_{0\gamma}$. (See 6 of §4.)

Let $x_{\delta'}$ be a point in $W_{\delta'}$ and v_{γ} a point of V_{γ} . Then $x_{\delta'}$ is in $\mathcal{O}_{\delta'}(v_{\gamma})$ if and only if every polynomial $f(v_{\gamma}, X)$ in $k(v_{\gamma})[X]$ which vanishes over $\mathcal{O}' = \{\tau_{\alpha\gamma\delta'}(u_{0\alpha}, v_{\gamma})\}$ vanishes at $x_{\delta'}$; here $u_{0\alpha}$ varies over the points for which $\tau_{\alpha\gamma\delta'}$ is defined at $(u_{0\alpha}, v_{\gamma})$. We may suppose $f(v_{\gamma}, X) \in k[v_{\gamma}, X]$ and, by

Theorem 1, can place a bound N on the total degree of $f(\mathbf{V}, X)$. Moreover, one can relax the condition that f have its coefficients in k, as any $f \in \Omega[X] - \Omega$, the universal domain—which vanishes over \mathfrak{O}' vanishes over $\mathfrak{O}_{\delta'}(v_{\gamma})$; in fact, if k' is a field containing k, v_{γ} , and the coefficients of f, and if $u_{0\alpha}$ is a generic point of U over k', then, dismissing the case $\mathfrak{O}_{\delta'}(v_{\gamma}) = \emptyset$ as trivial, f vanishes at $\tau_{\alpha\gamma\delta'}(u_{0\alpha}, v_{\gamma})$ and hence over $\mathfrak{O}_{\delta'}(v_{\gamma})$. The set of polynomials $f(\mathbf{V}, X) \in \Omega[\mathbf{V}, X]$ of total degree $\leq N$ is parametrized by the points c of an affine space. Hence the statement $x_{\delta'} \in \mathfrak{O}_{\delta'}(v_{\gamma})$ can be written as a finite disjunction, properly quantified, of finite conjunctions of polynomial equations and inequalities over k in $x_{\delta'}$, v_{γ} , $u_{0\alpha}$, and c. (See 7 of §4.) Eliminating the parameters $u_{0\alpha}$, c (say by $[S_1, pp. 370, 373]$ or $[S_3]$), we see that the set of points $(x_{\delta'}, v_{\gamma})$ in $W_{\delta'} \times V_{\gamma}$ such that $x_{\delta'} \in \mathfrak{O}_{\delta'}(v_{\gamma})$ is k-constructable.

By [W, p. 188, Prop. 10], the V_{γ} , W_{δ} are k-open covers of V, W; and similarly the $W_{\delta} \times V_{\gamma}$ are a k-open cover of $W \times V$. As $x \in \mathcal{O}(v)$ if and only if for some γ , δ' , x has a representative $x_{\delta'}$ in $W_{\delta'}$ and v has a representative v_{γ} in V_{γ} and $x_{\delta'} \in \mathcal{O}_{\delta'}(v_{\gamma})$, the set of (x, v) in $W \times V$ for which $x \in \mathcal{O}(v)$ is the union of the sets $(x_{\delta'}, v_{\gamma})$ for which $x_{\delta'} \in \mathcal{O}_{\delta'}(v_{\gamma})$. Hence the set of (x, v) in $W \times V$ for which $x \in \mathcal{O}(v)$ is k-constructable.

THEOREM 3. Let U, V, τ, k be as in Theorem 2. Let s be an integer ≥ -1 . Then the set S of points v such that $\dim \mathfrak{O}(v) \neq s$ is k-constructable.

Proof. Let γ , δ' be two indices (with δ' as in the proof of Theorem 2). Suppose we know that $\dim \mathfrak{O}_{\delta'}(v_{\gamma}) \neq s$ on a k-constructable set W^* and a subset of a k-constructable set W (which we do for $W^* = \emptyset$ and $W = V_{\gamma}$). W (unless empty) is the finite union of sets each of which is a k-irreducible algebraic set minus a proper relatively k-closed subset. Let W_1 be one of these k-irreducible sets and W'_1 the associated relatively k-closed subset. Then W is the union of a k-constructable set W' disjoint from W_1 , $W_1 - W'_1$, and a k-constructable subset of W'_1 . Let v_1 be a "generic point" for W_1 over k. If $\mathfrak{O}_{\delta'}(v_1) \neq \emptyset$, then by note 5 of §4, $\dim \mathfrak{O}_{\delta'}(v_2) = \dim \mathfrak{O}_{\delta'}(v_1)$ for $v_2 \in W_1$ with possible exception of the points v_2 in a proper k-closed subset W_2 ; and the same is true if $\mathfrak{O}_{\delta'}(v_1) = \emptyset$, as then $\mathfrak{O}_{\delta'}(v_2) = \emptyset$ for every $v_2 \in W_1$. If $\dim \mathfrak{O}_{\delta'}(v_1) = s$, we throw away $W_1 - W_2$, and otherwise keep it (i.e., adjoin it to W^*). Then we examine $W' \cup W_2 \cup W'_1$, etc. In this way we come to the desired conclusion. (See 8 of §4.)

By a k-atomic formula we mean a formula of the form $(x_1, \dots, x_s) \in F$, where x_i is a free variable ranging over a variety V_i defined over k and F is a k-closed subset of $V_1 \times \cdots \times V_s$. By a k-elementary formula we mean a formula built up in a finite number of steps from k-atomic formulae by negation, conjunction, disjunction, and quantification of the form $\exists x_i(\cdots)$. One checks easily that the set of points satisfying a k-elementary formula is k-constructable, and conversely. A k-elementary formula involving only bound variables is called a k-elementary sentence.

For example, let U and V be varieties, and τ a rational map of U into V,

all defined over k. Then the expression " τ is defined at u" is, or can be written as, a k-elementary formula; in fact, we saw this in the case U, V are affine, and the extension to arbitrary varieties offers no difficulty. The expression

 τ is defined at u and has there the value v

is also a k-elementary formula. In fact, let Γ_{τ} be the graph of τ . Then the mentioned expression can be written as

$$\tau$$
 is defined at u and $(u, v) \in \Gamma_{\tau}$.

THEOREM 4. Let U, V, τ, k be as in Theorem 2. Let $\mathfrak{O}'(v) = \{\tau(u, v)\}$, where u varies over the points such that τ is defined at (u, v). Then the set S of points x such that for some $v, x \in \mathfrak{O}(v)$ but $x \notin \mathfrak{O}'(v)$ is k-constructable.

Proof. The expression $x \in \mathcal{O}'(v)$ is a k-elementary formula, as it can be written as

$$\exists u(\tau \text{ is defined at } (u, v) \text{ and } x = \tau(u, v)).$$

The formula $x \in O(v)$ is also k-elementary, by Theorem 2. Hence the formula

$$\exists v(x \in \mathfrak{O}(v) \text{ and } x \notin \mathfrak{O}'(v))$$

is k-elementary.

THEOREM 5. Let U, V, W, τ, k be as in Theorem 2, and let F be a k-closed subset of W. Then the set S of points v such that $O(v) \subset F$ is k-constructable.

Proof. Let $\mathfrak{O}'(v)$ be as in Theorem 4. As $\mathfrak{O}(v)$ is the k(v)-closure of $\mathfrak{O}'(v)$, we have $\mathfrak{O}(v) \subset F$ if and only if $\mathfrak{O}'(v) \subset F$. The set of v satisfying $\mathfrak{O}'(v) \subset F$ is the same as the set satisfying $\forall u \exists y \ (\tau \text{ is not defined at } (u, v) \text{ or } \tau \text{ is defined at } (u, v) \text{ and has there the value } y \text{ and } y \in F$). Hence S is k-constructable. (See 9 of §4.)

3. The case
$$U = G_i$$
 (and $W = V$)

To get the picture of the $\mathcal{O}_i(v)$ (§1) clear, we recall some facts about G. Let G_1 be a component of G containing the identity e. As a generic point of G_i cannot lie in any other component, one has $G_1 G_i \subset G_i$ and $G_i G_1 \subset G_i$; hence, in particular, there is only one component containing e. Hence if $G_i G_j$ contains e, then $G_i G_j \subset G_1$, whence G_1 is a normal subgroup of G and the G_i are its cosets.

Let $\mathcal{O}_i'(v) = \{gv \mid g \in G_i\}$. Then $\mathcal{O}_i(v)$ is the k(v)-closure of $\mathcal{O}_i'(v)$. If $g_i \in G_i$, then $G_i = G_1 g_i$, so $\mathcal{O}_i'(v) = \{gg_i v \mid g \in G_i\} = \mathcal{O}_i'(g_i v)$; so an orbit under G is made up of s (or fewer) orbits under G_1 . Let $v \in V$ and g a generic point of G_1 over k(v); then gv is a generic point over k(v) of $\mathcal{O}_1(v)$. Let g_i be a point of G_i algebraic over k; then $g_i gv \in \mathcal{O}_i(v)$. As $k(v, g_i, g_i gv) = k(v, g_i, gv)$, dim $\mathcal{O}_i(v) \geq \dim \mathcal{O}_1(v)$; and similarly dim $\mathcal{O}_1(v) \geq \dim \mathcal{O}_i(v)$. Thus for every v, all the $\mathcal{O}_i(v)$ have the same dimension. Let $g_i \in G_i$, $g \in G$. Then

$$[\mathfrak{O}'_1(v), \cdots, \mathfrak{O}'_s(v)] = [\mathfrak{O}'_1(g_1 v), \cdots, \mathfrak{O}'_1(g_s v)]$$

and

$$[\mathfrak{O}'_1(gv), \cdots, \mathfrak{O}'_s(gv)] = [\mathfrak{O}'_1(g_1 gv), \cdots, \mathfrak{O}'_1(g_s gv)].$$

As $g_i g$, $g_j g$ are in different cosets if g_i , g_j are, $[\mathfrak{O}'_1(gv), \dots, \mathfrak{O}'_s(gv)]$ is a permutation of $[\mathfrak{O}'_1(v), \dots, \mathfrak{O}'_s(v)]$; and similarly for the k(v, g)-closures $\mathfrak{O}_i(v)$, $\mathfrak{O}_i(gv)$.

Theorem 6. If $v_1 \in \mathcal{O}(v)$, then $\mathcal{O}(v_1) \subset \mathcal{O}(v)$.

Proof. As O(v) is closed and $O(v_1)$ is the closure of the orbit of v_1 , it suffices to show that the orbit of v_1 is in O(v). Let, then, $g' \in G$. Then $g'gv \in O(v)$ for every $g \in G$. Let $v_1 \in O_i(v)$ and let g be a generic point of G_i over k(v, g'). Then v_1 is a specialization of gv over k(v, g'), whence $g'v_1$ is a specialization of g'gv over k(v, g'). Hence $g'v_1 \in O(v)$, Q.E.D.

COROLLARY. The set S of points v_1 such that for some v, v_1 is in O(v) but not in the orbit of v, is a G-invariant k-constructable set.

The expressions $v_1 \in \mathcal{O}_i(v)$, $v_1 \in \mathcal{O}'_i(v)$ are k-elementary formulae, so S is k-constructable; it is G-invariant by the theorem.

THEOREM 7. Let F be a k-closed subset of V. The set S of points v such that for some i, $O_i(v) \subset F$ is k-constructable and (obviously) G-invariant. The set S_1 of points v such that for some i dim $O_i(v) \neq r$, where $r = \dim O_1(v)$ for a generic point v of V over k, is k-constructable and (obviously) G-invariant.

This follows at once from our previous theorems. Here too (cf. Theorem 5) S is k-closed.

Theorem 8. The k-closure \tilde{S} of a k-constructable G-invariant set S containing no generic point of V/k is proper and G-invariant.

Proof. S (unless empty) is the union of a finite number of sets, each a k-irreducible set F_i minus a proper k-closed subset. $\bar{S} = \bigcup F_i$ and is proper if no F_i equals V. If $\bar{P} \in \bar{S}$, then there is a $P \in S$ with $P \to \bar{P}$ over k. Let g_i be a generic point of G_i over $k(P, \bar{P})$. Then $P \to \bar{P}$ also over $k(g_i)$. Hence $g_iP \to g_i\bar{P}$ over k. g_iP is in some F_j , say F_1 . Then $g_i\bar{P} \subset F_1$; and, as $g_i\bar{P}$ is a generic point for $O_i(\bar{P})$ over $k(\bar{P})$, $O_i(\bar{P}) \subset F_1$. Hence the orbit of \bar{P} is in \bar{S} .

In what follows we fix an index γ and speak of the Chow form of an $\mathcal{O}_i(v)$ if $\mathcal{O}_{i\gamma}(v)$ is not empty, and then mean thereby the Chow form of $\mathcal{O}_{i\gamma}(v)$. We may write $F'_i(v, t, Z)$ for this form; the point v need not have a representative in V_{γ} . We speak of the Chow form of $\mathcal{O}(v)$ if each $\mathcal{O}_i(v)$ has a Chow form, and then mean thereby $\prod_{i=1}^s F'_i(v, t, Z)$. Each $\mathcal{O}_i(v)$ occurs the same number of times amongst $\mathcal{O}_1(v)$, \cdots , $\mathcal{O}_s(v)$, so every irreducible factor in the Chow form occurs with the same multiplicity. Hence the Chow form depends only on the locus $\mathcal{O}(v)$, not on v.

If v is generic for V over k, then v has a representative in V_{γ} . Hence $\mathfrak{O}_{\gamma}(v) \neq \emptyset$, as $v \in \mathfrak{O}_{1}(v)$. We have $\mathfrak{O}_{i}(v) = \mathfrak{O}_{1}(g_{i}v)$ for $g_{i} \in G_{i}$. Since $k(g_{i}, g_{i}v) = k(g_{i}, v)$, by taking g_{i} independent from v over k, $g_{i}v$ remains generic for V over k. Hence $\mathfrak{O}_{i\gamma}(v) \neq \emptyset$. Thus we may speak of the Chow form of $\mathfrak{O}(v)$ if v is generic for V over k.

Let F(v, t, Z) be the Chow form of $\mathfrak{O}(v)$ with v generic for V over k. The coefficients of F (considered as a polynomial in t, Z) are the coordinates of a generic point P over k of a variety in projective space, the "variety of orbits". Let τ be the rational map defined by the generic point (v, P) over k. τ is defined at v_1 if, F having been normalized by making some coefficient = 1, the coefficients are defined at v_1 . Let $g \in G$. Take v generic for V over k(g); then gv is also generic for V over k and $\mathfrak{O}(gv) = \mathfrak{O}(v)$. Hence $\tau(gv) = \tau(v)$, whence τ and τg are the same rational map on V. Now let τ be defined at v_1 . Then τg is defined at $g^{-1}v_1$, so τ is defined at $g^{-1}v_1$. (See 10 of §4.) Thus the set S of points v_1 at which τ is defined is G-invariant; it is also k-constructable. Hence

Theorem 9. The set S of points v_1 at which τ is defined is k-constructable and G-invariant.

THEOREM 10. Let v be generic for V over k and let F(v, t, Z) be the Chow form of O(v). Then the set S of points v_1 at which F(v, t, Z), after a suitable normalization, is defined and such that then $F(v_1, t, Z)$ yields the Chow form of $O(v_1)$ is k-constructable and G-invariant.

Proof. We first confine ourselves to the points v_1 for which τ is defined, for which $\mathfrak{O}(v_1)$ has a Chow form, and for which $\dim \mathfrak{O}(v_1) = \dim \mathfrak{O}(v)$ (so the Chow forms of $\mathfrak{O}(v_1)$, $\mathfrak{O}(v)$ involve the same t and Z); this is a k-constructable G-invariant set. Let v_1 be such that $F(v_1, t, Z)$, i.e., $F(v, t, Z)|_{v=v_1}$ after a suitable normalization of F, is the Chow form of $\mathfrak{O}(v_1)$. Then by note 4 of §4, $F(\bar{v}_1, t, Z)$ is the Chow form of $\mathfrak{O}(\bar{v}_1)$ for almost all k-specializations \bar{v}_1 of v_1 . Now let v_1 be such that $F(v_1, t, Z)$ is not the Chow form of $\mathfrak{O}(v_1)$; let $G(v_1, t, Z)$ be the Chow form of $\mathfrak{O}(v_1)$. Let a_i , b_i be corresponding coefficients of $F(v_1, t, Z)$, $G(v_1, t, Z)$; then $d(v_1) = a_j b_k - a_k b_j \neq 0$ for some j, k. For almost all k-specializations \bar{v}_1 of v_1 , $F(\bar{v}_1, t, Z)$ remains defined, $G(\bar{v}_1, t, Z)$ is the Chow form of $\mathfrak{O}(\bar{v}_1)$, and $d(\bar{v}_1) \neq 0$, so $F(\bar{v}_1, t, Z)$ is not the Chow form of $\mathfrak{O}(\bar{v}_1)$. By note 8 of §4, S is k-constructable. It is also obviously G-invariant.

The main result (§1) now follows quickly. Let S be the set of points v_1 such that for some v_1' with $\dim \mathfrak{O}(v_1') = \dim \mathfrak{O}(v)$ for v a generic point of V/k, $v_1 \in \mathfrak{O}(v_1')$ but v_1 is not in the orbit of v_1' ; or $\dim \mathfrak{O}(v_1) \neq \dim \mathfrak{O}(v)$, where v is generic for V over k; or $\mathfrak{O}(v_1)$ does not have a Chow form; or τ is not defined; or τ is defined but does not yield the Chow form of $\mathfrak{O}(v_1)$. (See 11 of §4.) Then S is a k-constructable G-invariant subset of V containing no generic point of V/k, and so is its k-closure \tilde{S} . The image under τ of $V - \tilde{S}$

contains a non-empty k-open subset W of the "variety of orbits"; as τ induces a k-continuous map of $V - \bar{S}$ (cf. [W, p. 171, Th. 2]), the counterimage of W on $V - \bar{S}$ is a k-open G-invariant subset V - F of V. Then V' = V - F and W (viewed as a variety) satisfy the statement of §1.

The proof of [E, Th. 5] can now also be quickly completed. Before doing so, we prefix a remark which will give a somewhat stronger version of that theorem: Let V, W be (say) affine varieties defined over an algebraically closed field k, let τ be a rational map of V into W defined over k, and assume there exists a rational map σ of W into V such that $\tau \sigma = 1$; then there also exists a rational map $\bar{\sigma}$ of W into V defined over k and such that $\tau \bar{\sigma} = 1$. In fact, let σ be defined over a field k' containing k. Let y be a generic point of W over k' and $\sigma(y) = (\sigma_1(y), \dots, \sigma_t(y)) \in V$. Write $\tau \sigma(y) = y$. More explicitly one can write $\tau_i(x) = P_i(x)/Q(x)$, where x is a generic point of V over k, P_i , Q are polynomials over k, $Q(\sigma_1(y), \dots, \sigma_t(y)) \neq 0$, and

$$P_i(\sigma_1(y), \cdots, \sigma_t(y))/Q(\sigma_1(y), \cdots, \sigma_t(y)) = y_i$$
.

The $\sigma_j(y)$ are rational functions over k'. The σ_j , having been written out in some explicit way with a common denominator in k'[y], involve only a finite number of coefficients in k'; let these, arranged in some order, be designated σ . Let $d(\sigma, y) \in k[\sigma, y]$ be the denominator mentioned. Then $d^{\rho}Q(\sigma_1(y), \dots, \sigma_t(y)) = Q_1(\sigma, y)$ is a polynomial over k in σ , y for some ρ . Now specialize (σ, y) over k to a k-rational point $(\bar{\sigma}, \bar{y})$ in such way that $d(\bar{\sigma}, \bar{y})Q_1(\bar{\sigma}, \bar{y}) \neq 0$. A fortiori $d(\bar{\sigma}, y)Q_1(\bar{\sigma}, y) \neq 0$. Let $\sigma_i(y) = n_i(\sigma, y)/d(\sigma, y)$, $\bar{\sigma}_i(y) = n_i(\bar{\sigma}, y)/d(\bar{\sigma}, y)$ and let $\bar{\sigma}$ be defined by

$$\bar{\sigma}(y) = (\bar{\sigma}_1(y), \cdots, \bar{\sigma}_t(y)).$$

As $(\bar{\sigma}, y)$ is also a specialization of (σ, y) over k, we have $\bar{\sigma}(y) \in V$ and $\tau \bar{\sigma}(y) = y$. Thus $\bar{\sigma}$ is a desired map.

Let now G be a connected algebraic group operating regularly on a variety V and let k be an algebraically closed field of definition for G, V, and the operation of G on V. Let W be the "variety of orbits" and τ the natural map of V into W; W and τ are also defined over k. Assume that for every V there exists a rational map σ of W into V such that $\tau \sigma = 1$ (which by [R, Th. 10] will be the case if G is solvable). Then we will show there exists a k-constructable (and not merely constructable) subset C of V such that every orbit meets the set C in precisely one point. In fact, let F and W be as stated in the main result (§1), and let $\tau: V - F \to W$. By the last paragraph we may assume σ is defined over k. σ is defined except on a k-closed subset G of W. Let V - F' be the inverse image of W - G (under τ). The image of W - G under σ is a k-constructable subset C' of V contained in V - F'; and every orbit in V - F' meets C' in precisely one point. Replacing V by F', we would be through by induction on dim V, except that V is replaced not by a variety but by a bunch of varieties (of smaller dimension).

To meet this last point, let V_1 be a component of F'. Let $g \in G$ and v

a generic point of V_1 over k(g). If $\bar{v} \in V_1$, then (g, \bar{v}) is a k-specialization of (g, v) and $g\bar{v}$ is a k-specialization of gv, so gV_1 is in the k-component of F' which contains gv. Thus every element of G carries every component of F' into, and hence also onto, another component; and the set $\{gV_1 \mid g \in G\}$ is finite. Let H be the subset of G leaving V_1 invariant; H is obviously a subgroup of G. Let Γ be the graph of the operation of G on V. Then the expression $hv \in V_1$ can be written in the form

$$\exists (y)(h \in G, v \in V, (h, v, y) \in \Gamma \text{ and } y \in V_1),$$

and hence is k-elementary. Then $\forall (v) \ (v \in V_1 \Rightarrow hv \in V_1)$ is k-elementary, so H is k-constructable. Now one proves that H is k-closed (cf. note 6 of §4). Then G is a finite union of k-closed sets of the form $g^{-1}Hg$. As G is connected, $G = g^{-1}Hg$ for some g, whence G = H. Thus V_1 is invariant under G. Let V_2 be another component of F' and $v \in V_1 \cap V_2$; then the orbit of v is contained in $V_1 \cap V_2$. Hence if K is the set of points P in V_1 and in another component of F', then K is k-closed and for every $v \in V_1 - K$, the orbit of v is in $V_1 - K$. By induction on dim V, we take care of $V_1 - K$; and then similarly the rest of F'. In this way we complete the proof.

4. Notes and remarks

- 1. Our terminology is mainly that of [W]. From the definition of algebraic group, we recall that the product $g_i g_j$ of $g_i \in G_i$, $g_j \in G_j$ is given by an everywhere defined rational map of $G_i \times G_j$ into one of the components G_k ; and similarly for g_i^{-1} . From the definition of operate regularly, $g_1(g_2(v)) = (g_1 g_2)(v)$ and e(v) = v for e the identity of G. (See [R].)
- 2. G is said to be *connected* if s=1, i.e., if the underlying set is a variety. A subset W of V is said to be *constructable* if it is the finite union of sets each of which is the intersection of a closed set and an open set; the k-constructable subsets of a variety V defined over k are similarly defined. The complement in V of a k-constructable set and the finite union and finite intersection of k-constructable sets are k-constructable; and the set-theoretic projection of a k-constructable subset of a product $V \times W$ on a factor is k-constructable. (See $[S_3]$; see also [C, p. 38, Cor. to Th. 3].) The notion of solvability does not enter into our considerations.
 - 3. The quotation marks indicate a deviation from the terminology of [W].
- 4. By a finite conjunction of polynomial equations and inequalities (or inequations) over k we mean a finite conjunction $f_1(x_1, \dots, x_n) = f'_1(x_1, \dots, x_n)$ and \dots and $f_s(x_1, \dots, x_n) = f'_s(x_1, \dots, x_n)$ and $g_1(x_1, \dots, x_n) \neq g'_1(x_1, \dots, x_n)$ and \dots and $g_t(x_1, \dots, x_n) \neq g'_t(x_1, \dots, x_n)$, where the f_i , f'_i , g_j , g'_j are polynomials over k and the x_i are free variables (ranging over the universal domain Ω). Usually a conjunction of this kind can be replaced without loss of generality by an equivalent one,

i.e., one having the same solutions; and this is frequently tacitly done. Thus we may suppose all the f'_t , g'_j to be zero. Adjoining 0 = 0 and $1 \neq 0$, we may suppose s > 0 and t > 0. With t > 0 and the $g'_j = 0$, we may suppose t = 1 as we replace $g_1 \neq 0$ and \cdots and $g_t \neq 0$ by $g_1 \cdots g_t \neq 0$. The theorem being used here (above) amounts to this: the projection of a k-constructable set is k-constructable.

- 5. F(v, t, Z) is the so-called Chow form of $\mathfrak{O}(v)$, except that the Chow form is understood to be defined only up to a constant factor $\rho \neq 0$. Dropping the condition $F(V, t, Z) \in k[V, t, Z]$ (i.e., allowing it to be in k(V) [t, Z]), we have just proved that if F(v, t, Z) is the Chow form of $\mathfrak{O}(v)$, then for almost all k-specializations \bar{v} of v (i.e., for all $\bar{v} \in Y$ except perhaps those lying in a proper k-closed subset) the coefficients of F(v, t, Z) are defined at \bar{v} , $\mathfrak{O}(\bar{v}) \neq \emptyset$, and $F(\bar{v}, t, Z)$ is the Chow form of $\mathfrak{O}(\bar{v})$.
- 6. Let d_1, \dots, d_s be the denominators mentioned—they are polynomials over k—let $g_1 = 0, \dots, g_t = 0$ be a finite set of polynomial equations over k for the locus U_{α} , and let $h_1 = 0, \dots, h_u = 0$ be a set for V_{γ} . If $u_{0\alpha}$, $v_{0\gamma}$ are understood to vary over U_{α} , V_{γ} , as will be the case later, the condition mentioned can be written as $d_1(u_{0\gamma}, v_{0\gamma}) \neq 0$ or \cdots or $d_s(u_{0\alpha}, v_{0\gamma}) \neq 0$. For the present we write $(g_1(u_{0\alpha}) = 0 \text{ and } \cdots \text{ and } g_t(u_{0\alpha}) = 0 \text{ and } h_1(v_{0\gamma}) = 0$ and \cdots and $h_u(v_{0\gamma}) = 0$ and $h_1(v_{0\gamma}) = 0$ and
- 7. Let d_1, \dots, d_s be the denominators mentioned in the last paragraph and let $d_1 \tau_{\alpha \gamma \delta'}^{(1)}$, \cdots , $d_s \tau_{\alpha \gamma \delta'}^{(s)}$ be the corresponding numerators. Let $g_1 = 0$, \cdots , $g_t = 0$ be a finite set of polynomial equations over k defining the locus U_{α} , and let $h_1 = 0, \dots, h_u = 0$ be a set for V_{γ} . Let $f(c; \mathbf{V}, X)$ be the "general" polynomial of total degree N in V, X with coefficients c. Then the statement that $x_{\delta'} \in \mathcal{O}_{\delta'}(v_{\gamma})$ can be written as the following disjunction, properly quantified, for $i = 1, \dots, s: (g_1(u_{0\alpha}) \neq 0 \text{ or } \dots \text{ or } g_t(u_{0\alpha}) \neq 0)$ or $(g_1(u_{0\alpha}) = 0 \text{ and } \cdots \text{ and } g_t(u_{0\alpha}) = 0 \text{ and } d_i(u_{0\alpha}, v_{\gamma}) = 0) \text{ or } [(g_1(u_{0\alpha}) = 0)]$ and \cdots and $g_t(u_{0\alpha}) = 0$ and $h_1(v_{\gamma}) = 0$ and \cdots and $h_u(v_{\gamma}) = 0$ and $d_i(u_{0\alpha}, v_{\gamma}) \neq 0$ and $(d_i(u_{0\alpha}, v_{\gamma}))^N f(c; v_{\gamma}, \tau_{\alpha\gamma\delta'}^{(i)}(u_{0\alpha}, v_{\gamma})) = 0 \Rightarrow$ $f(c, v_{\gamma}, x_{\delta'}) = 0$]. We write these, with obvious abbreviations, as $(g_1(u_{0\alpha}) \neq$ $0 \text{ or } \cdots \text{ or } g_i(u_{0\alpha}) \neq 0) \text{ or } A_i \text{ or } [B_i \text{ and } (C_i \Rightarrow D_i)], \text{ where } A_i, B_i \text{ are finite}$ conjunctions of polynomial equations and inequalities over k in $x_{\delta'}$, v_{γ} , $u_{0\alpha}$, and c; and C_i , D_i are polynomial equations over k. We rewrite A_i or $[B_i$ and $(C_i \Rightarrow D_i)$] as A_i or $[B_i$ and $(D_i$ or not $C_i)$] and then as A_i or $[(B_i$ and $D_i)$ or $(B_i \text{ and not } C_i)$]. Then $g_1(u_{0\alpha}) \neq 0$ or \cdots or $g_t(u_{0\alpha}) \neq 0$ or A_1 or $(B_1$ and $D_1)$ or $(B_1$ and not $C_1)$ or \cdots or A_s or $(B_s$ and $D_s)$ or $(B_s$ and not C_s), is a desired disjunction. Of course, this disjunction is to be quantified for all $u_{0\alpha}$ over the ambient space of U_{α} and over all c.

- 8. The proof shows that a set S is k-constructable if and only if for every P (in V) if P is not in S then almost all k-specializations of P are not in S and if P is in S then almost all k-specializations of P are in S. On the basis of this characterization one may give a simple proof that the set-theoretic projection of a k-constructable set is k-constructable. (See $[S_3]$.)
- 9. The set S is even k-closed. To show that a k-constructable set S is k-closed it suffices to show that every k-specialization of every P in S is in S. Let, then, v be in S and let \bar{v} be a k-specialization of v. Setting aside trivial cases, let O(v), $O(\bar{v})$ be $\neq \emptyset$. Let u be generic for U over $k(v, \bar{v})$. Then uv, $u\bar{v}$ are generic for O(v), $O(\bar{v})$ over $k(v, \bar{v})$; and $uv \in F$. As (u, \bar{v}) is a k-specialization of (u, v), $u\bar{v}$ is a k-specialization of uv, and $u\bar{v} \in F$. Hence $O(\bar{v}) \subset F$. This illustrates a useful technique for proving that a closed set is closed.
 - 10. Compare this part of the argument with [E, p. 461].
- 11. The first condition, along with the second, assures us that the orbits in the G-invariant set V-S are (relatively) closed. However, this follows also from the second condition alone (deleting the first condition). In fact, if v_1 is in the closure $\mathcal{O}(v)$ of the orbit $\mathcal{O}'(v)$ of v but not in $\mathcal{O}'(v)$, then the orbit $\mathcal{O}'(v_1)$ cannot meet $\mathcal{O}'(v)$, hence lies in $\mathcal{O}(v)-\mathcal{O}'(v)$, which is contained in a closed set K of dimension less than $\dim \mathcal{O}(v)$. Then the closure $\mathcal{O}(v_1)$ of $\mathcal{O}'(v_1)$ is contained in K. This is impossible, as $\dim \mathcal{O}(v_1) = \dim \mathcal{O}(v)$.

REFERENCES

- C: C. CHEVALLEY, Sur la théorie des variétés algébriques, Nagoya Math. J., vol. 8 (1955), pp. 1-44.
- E: S. Ebey, The classification of singular points on algebraic curves, Trans. Amer. Math. Soc., vol. 118 (1965), pp. 454-471.
- R: M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math., vol. 78 (1956), pp. 401-443.
- S₁: A. Seidenberg, A new decision method for elementary algebra, Ann. of Math., vol. 60 (1954), pp. 365-374.
- S₂: ——, Some remarks on Hilbert's Nullstellensatz, Arch. Math., vol. 7 (1956), pp. 235-240.
- S₃: ——, On k-constructable sets, k-elementary formulae, and elimination theory, to appear in Crelle's J.
- T: A. Tarski, A decision method for elementary algebra and geometry, A Rand Corporation publication, Santa Monica, California, 1948 (2nd. ed., Berkeley, 1951).
- v.d.W₁: B. L. VAN DER WAERDEN, Zur algebraischen Geometrie 19. Grundpolynom und zugeordnete Form, Math. Ann., vol. 136 (1958), pp. 139-155.
- v. d. W₂: ———, Zur algebraischen Geometrie X. Über lineare Scharen von irreduziblen Mannigfaltigkeiten, Math. Ann., vol. 113 (1937), pp. 705-712.
- W: A. Weil, Foundations of algebraic geometry, 2nd edition, Amer. Math. Soc. Colloq. Publ., vol. 29, Amer. Math. Soc., Providence, R. I., 1962.

University of California Berkeley, California