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1. Introduction
In [1] Almgren gives some interesting and deep results on minimal hyper-

surfaces in E and E. His proofs are based on two lemmas which in turn are
proved by extensive calculations. It is the purpose of this note to give alter-
nate versions of the calculations based on differential forms and moving
frames. These seem to us to be simple and more natural than the local co-
ordinate method which Almgren uses. We also include some material on the
n-dimensional situation and a result of J. Simons.

Let be an oriented smooth surface smoothly immersed in S3, the standard
unit sphere xl 1 in E. We denote by x the moving point of so that
x is a function on to S which may also be considered as the outward unit
normal to S at x. Locally we let el, e2 be a right-handed orthonormal mov-
ing frame for the tangent space to the image of . Finally we select a unit
vector e so that x, el, e2, e is a right-handed orthonormal frame in E. Thus
e is the normal to in S. (The vectors x, e are Almgren’s f, g respectively.
Because of orthonormality we have

x x
el el(1) d

where

(2) 2

0 0-1 0"2 0
--0"1 0 5 --(1

--0"2 --5 0 --2

0 0 2 0

is a skew-matrix of one-forms on (locally). The only special entry is the
zero at the end of the first row due to the fact that dx is in the tangent plane
to which is spanned by e and e. Exterior differentiation of (1) leads to
the integrability conditions

d
which we spell out as

(3) d0-1 50-2, d0-. --50"1,

(4) d 52, d2 -51,
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(5) 0 -b . 0,

(6) d -t- -b . 0.

(We omit the usual/k for exterior multiplication.) The relation (5) asserts
the symmetry of the matrix expressing , as linear combinations of and
g. (Clearly , g are independent so any derential on can be expressed
in terms of them.) Thus

The total (Gaussian) curwture of is the scalar K ven by

(8) d + KI 2 0.

The curvatures of relatNe to the immersion in S are the coefficients of he
characteristic polynoal of

The first or mean curvature is

(9)

and the second curvature is

(9’)

(:

Clearly ol 2 K. z2 so that (6) is the same as

(10) K= 1

Henceforth we assume that 21 is immersed as a relative minimal surface,
i.e., that K1 0. Thus equations (7), (9’) become

(11) 501 rrl -I- 8q2, o2 8(:rl- rq2,

(12) K2 -r2- s2.

2. The first lemma
The invariant adjoint operator ,, essentially rotation 90 in the tangen

plane to 21 is given by ,al 2, *. -al and linearity. By (11),

(13) ,0 -, ,0. .
Next we set

(14) w az -k ba2

so that

(15) dzl azl , dz2 bzl
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by (3). By (4) and (11) we have

(16) d (ar + bs)

We now set

(17) dr rl 0.1 + r2 0.2,

We differentiate 11 ):

and similarly

(--as -t- br 0.1 0.

ds 81 0.1 -- 82 0-2

Comparing to (16) we have

(18) rl -t- s. 2(as br), r2 sl 2(ar -t- bs).

Remark. We note two formulas which will not be used subsequently.
These are both the result of direct computation. First we have

d dx -20.1 0.2 x 2K1 0.1 0.. e

so that under our hypothesis K1 0 we have for the invariant Laplacian on
A on 2;, hx - 2X 0. Similarly, Ae 2K2 e 0.
We now introduce an isothermal coordinate system on 2 locally. This is a

coordinate system u, v such that x, x are orthogonal and of the same length
k > 0. Thus

defines a moving tangent frame el, e2 and we work relative to this frame.
We have

0.1 k du, 0.2 k dr,

(20) d k du dv (k/k)

d k du dv (/)
so by (15),

a --k/k, b /k,
(21) , -( , + , )/,

--(l du + k dv)/k,

--dl/] -d(ln/c).
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We set

(22) U t2r V k2s
Then by (21), (14) and (17),

dU 2ldlr +tdr
2]r(*) -t- k dr

-22r(-bl + a.) + k2(rl + r. )

k[(r + 2br)a + (r. 2ar

dV --2k dk s k ds

2]s(,) ds

k2[(si -t- 2bs)al -t- (s 2as)z.].
By 18 we have

(23)

We set

(2)

dU dV.

w u+iv, W U+iV.

The equation (23) is simply the Cauchy-Riemann equations asserting that
W is an analytic function of w. To see how this transforms when we pass to
an overlapping isothermal coordinate system we note that

(5) w 2 o.o__e.
Ow Ow

For

by (19).

so that

ox/Ow 1/2(x. ix) 1/2(e- ie)

On the other hand, by 1 ), (2), 11 ), and (20),

de e -t-o e

][(r du -t- s dv)el -t- (s du r dv)e]

k[(re + se) du + (se re) dr],

e t re + se ), e, k(se re.),

0e k
Ow 2

[(re + se) i(sel re)],

2 --.-
Ow Ow 2

[(r is) + (--is + r)l

and (25) follows.
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If X, y, Z X + iT, X, Y, Z X + iY are the corresponding quantities
in another isothermal coordinate system, then

Z 20x Oe
2

Ox dw
o’o - -and so

(26) Z W(dw/dz)..
We now give Almgren’s Lemma 1 and its proof.

If Y, S is smoothly immersed as a minimal surface Sa, then the immersion
is an imbedding onto an equator of Sa.
For (26) shows that there is a quadratic differential W[dw] Z[dz] on

the Riemann sphere 2:. But the only quadratic differential on a closed Rie-
mann surface of genus zero is 0, hence

W 0, U 0, V 0, r 0, s 0,

ol 0. 0, de 0, e constant.

Thus the immersion maps S into (hence onto) the equator S of S orthog-
onal to the constant unit vector e. This covering map must be one-one.

3. The second lemma
We pass to Almgren’s Lemma 2. The proof will be based on the formulas

of Section 1.
We now assume 2: is a compact oriented surface of positive genus. Thus

the Euler characteristic satisfies x _< 0. By (10) and the Gauss-Bonnet
formula

A

where A is he oal area of 1:.
We assume x is imbedded in S as a minimal surface. The cone based on

x wih apex 0 is he se{ of points ux where x e l:, 0 _< u _< 1. As we shall
see shortly, exeep for is singularity a O, ghis is a minimal hypersurfaee in
I:*. The assertion of. Almgren’s Lemma 2 is he following.

There is a radial variation of the cone leaving 0 and its boundary , fixed, but
decreasing volume.

Such a variation is given by X ux + hF(u)e where F(u) is a smooth
function on [0, 1] with supp c (0, 1). To find the volume V of our three
dimensional variation of the cone we use the formula

(28) 6 dV r [dX, dX, dX].
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Here n is the unit normal to the variation at X, and the right hand side is the
vector product in E extended to vectors with one-form coefficients in the ob-
vious way (cf. Chern [2].) By (1) and (2).

dX x du -t-" u(o’ e_ --[- o. e) + hF’ du e --F hF(o e -[- 0. e.)

du x --F (uo- -t-- hFo)e --[- (u(r. -{-. hFco.)e. --[- hF’ due.
Noting that du / du O, (28)yields

dV n du(uo --F hF uo- -t-- hFco. )e

(uo. + hFco) (u(r,. "F hFco,.)hF’ du x.

By (11) and (12), a co. a co 0, 0 c0. K. a., hence

(u W hEK)a
We have

(29) dV a (u + h F K)(du a a)(e hE’ x).

Thus since x and e are orthogonal ut vectors,

dV (u + hFK)(1 + hF’) du a a

(u + hFK)[1 + ,. + 0(h’)] du a a
[u + h (FK + uF’) + 0(h)] du a,

Integrating leads to the desired variation formula

(30)
O(h).

Thus the first variation of V vanishes, verifying that our cone is a minimal
hypersurface, and the second variation is

"l (f: ,)(:.’ )(31) 1/2 K.o’, a F(u) du -t-

In view of (27) we have

(3) < uF’(u) du 2 F(u) du-- o-We choose F to be the piecewise liaear function whose polygonal graph
hs the vertices (0, 0), (v, I), (I, 0), where is smll fixed number. One
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easily finds

hence

uF’(u) du 1/2 + 0(),

F(u) du - + 0(),

dV <_ A(- 1/2 zr- O(e) < A
dh < 0

for c sufficiently small. Finally, one rounds off the corners on the graph of
F to create a smooth variation with smaller volume.

4. The second variation in E+

In this section we sketch the situation in higher dimensions. We assume
2 is an n-dimensional oriented manifold imbedded in S+1 c t"+ as a mini-
mal hypersurface in S"+1. We select a right-handed moving orthonormal
frame x, el, en, e where x is the moving point on 2 and el, e, is
a right-handed orthonormal frame in the tangent plane to 2; at x. The
equations of structure are

el 0 0 e

where
(,, ..., .), (,...

w [lwo’l[, n Xnskew,

are matrices of one-forms. The integrability conditions dft t, where
is the 3 X 3 matrix of blocks above, are

da aa, a 0,
(34)

&o oa, (da a) + ta + t 0.

We write w aA, A tA, with the matrix A of functions symmetric by
(34) The relative curvatures K, K,... are given by

(35) tl -4- A t" --I- () Kt"- + () Kt’- + + K,,.

Since we are assuming is minimal in $"+, we have

(36) K 0.

The cone with apex 0 over 1 is a hypersurface in E"+ given by X ux,
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0 _< u _< 1, x e ;. We consider a variation of this cone of the form

(37) X ux + hF(u)e

where h is a small parameter and supp F(u) (0, 1). The volume V of
this variation is obtained from

(38) (n - 1) dY n [dX, -.., dX],

where n is the unit normal to the new hypersurface. We have, using (33),

dX du x (uo- hFco)e hF’ due.
By (34),

dV n du(uzl + hFool) (uon hFn)e

-+- hF’ du(uo-1 -t- hFl) (uo-, -t- hF,,)x
du[u%l...o-, -t-- hFu’-l_, o1...o,,_1

d-- h2Fu-_, o1.., o.,_ n-1 + 0 h (e =i= hF’x)
Now we have

’ o1. o,_1
_. a,)ol o, ngl o1. o-, O,

hence

(39) dV n u’ -t a, u -t- O(h)

Comparing lengths,

dV u +
which gives us

(40)

e :i: hF’x) (du o"1 o’,,).

O(h)1 [1 -t-

u + 1/2 F’u

+ O(h)t (du

This yields the desired formula for the second variation"

(41)

dV
dh

+ (f -, -,) (:o’
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As an application we obtain a result of J. Simons [3]. This is the stability
of the cone onS XS3CS7.

Let y e S and let el, e2, e3 be a moving frame on a neighborhood of y.
Similarly let y’ be another point on S and let el, e2, e3 be a moving frame
for a neighborhood of y’. Set

(42) x (1//2)(y, y’)S c E8.

On the two neighborhoods of S we have respectively

Hence

(43) dx (0-//2)(ei, 0)q- :’ (0-./%/2)(0, e).
We deduce that an orthonormal basis of one-forms to S X S is given by

,V/a (1 2)(0-, 0-2,0-3,0-1,0-, 0-3).(44)

The vector field

(45) y’e (l/V/2) (--y,)

is normal to x, (e, 0), and (0, e), hence

x, (e, 0), (0, e), e

is the moving frame we seek.
We have

(46) de (--1/%/2) 0-,(e,, 0) q- (1//2)Y’ 0-(0, e)
.and consequently

(47)

This implies that the matrix A is

(48) A (1//2) diag 1,

0-3 0-1 0"2 0-3 ).

--1, --1, 1, 1, 1}.

We readily computeK 0, ()K. 3. Thus we have S X S imbedded
in S as a minimal hypersurface 2: and (41) specializes to

(:o’ :0’ )l ;I uF’(u) du 6 uF(u) du(49)
dh

This is non-negative for any F, in fact we have the following result.

CLEMMA If F is a function on [0, 1] such that supp F c (0, 1), then

fo UF’(u) du (25/4) uF(u) du.
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Proof. Set F(u) u-51G(u) so that supp G c (0, 1). Then

u6F u du uG’ 5GG’ + du.

Since uG’ >_ 0 and ]0 GG’ du 1/2G O, we have

u6F’(u) du >_ (25/4) G"(du/u) (25/4) u’F(u)" du.

A variational approach to this inequality indicates that- is the best con-
stant.
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