REMARKS ON ALMGREN'S INTERIOR REGULARITY THEOREMS

BY
HarLEY FLANDERS'

1. Introduction

In [1] Almgren gives some interesting and deep results on minimal hyper-
surfaces in E* and E°. His proofs are based on two lemmas which in turn are
proved by extensive calculations. It is the purpose of this note to give alter-
nate versions of the calculations based on differential forms and moving
frames. These seem to us to be simple and more natural than the loecal co-
ordinate method which Almgren uses. We also include some material on the
n-dimensional situation and a result of J. Simons.

Let = be an oriented smooth surface smoothly immersed in S?, the standard
unit sphere |x| = 1in E'. We denote by x the moving point of £ so that
X is a function on = to S* which may also be considered as the outward unit
normal to S° at x. Locally we let e, , e, be a right-handed orthonormal mov-
ing frame for the tangent space to the image of =. Finally we select a unit
vector e so that X, e; , ;, e is a right-handed orthonormal frame in E*. Thus
e is the normal to £ inS’. (The vectors x, e are Almgren’s f, g respectively.)
Because of orthonormality we have

X X
€| €
(1) d (3 =0 €y
e e
where
0 o1 g2 0
(2) Q=" 0 @ —w

— 02 - 0 — W

0 w1 w2 0

is a skew-matrix of one-forms on £ (locally). The only special entry is the
zero at the end of the first row due to the fact that dx is in the tangent plane
to T which is spanned by e; and e, . Exterior differentiation of (1) leads to
the integrability conditions

e = @
which we spell out as
(3) do1 = woy, dos = —woy,
(4) dw = Bw; , dws, = —wwy ,
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(5) g1 Wy + g2 Wy = 0,
(6) dG)+O)10)2+O’10‘2=0.

(We omit the usual /\ for exterior multiplication.) The relation (5) asserts
the symmetry of the matrix expressing w; , w; as linear combinations of o, and
oy . (Clearly o1, o2 are independent so any differential on = can be expressed
in terms of them.) Thus

(7) w; = 7oy + Soq , Wy = 801 + tos .
The total (Gaussian) curvature of = is the scalar K given by
(8) dw + Koy 05 = 0.

The curvatures of = relative to the immersion in S* are the coefficients of the
characteristic polynomial of

The first or mean curvature is

(9) Ky = 3(r+1¢)

and the second curvature is

(9") K, = rt — &
Clearly w; w2 = K, 01 02 80 that (6) is the same as
(10) K=1+K,.

Henceforth we assume that = is immersed as a relative minimal surface,
i.e., that K; = 0. Thus equations (7), (9") become

(11) wy = To1 + 8oz, we = 801 — Tog,
(12) Ky, = —r — &

2. The first lemma

The invariant adjoint operator *, essentially rotation 90° in the tangent
plane to X is given by *¢; = o2, *02 = —oa; and linearity. By (11),

(13) *wp = —ws, *Wy = Wy .
Next we set

(14) & = ao1 + boy

so that

(15) doy = aoy o2, dog = boy o9
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by (3). By (4) and (11) we have

(16) dw; = —(ar + bs)ay o2, dws = (—as + br)oyos.
We now set
(17) dr=7'10'1+7'20'2, d8=8161+820'2.

We differentiate (11):
dwy = dr oy + ds oy + rdoy + s dos
= —ry0109 + 810109 + 100y 02 + Sboy o
= (—ry + 8 + ar + bs)oy o2

and similarly
dwz = (—82 — T + as — br)ol ag .

Comparing to (16) we have
(18) 71+ s = 2(as — br), 72 — 81 = 2(ar + bs).
Remark. We note two formulas which will not be used subsequently.
These are both the result of direct computation. First we have
dxdx = —20100X — 2K 0,00

8o that under our hypothesis K; = 0 we have for the invariant Laplacian on
Aon X, Ax + 2x = 0. Similarly, Ae — 2K,e = 0.

We now introduce an isothermal coordinate system on X locally. This is a
coordinate system u, v such that x, , X, are orthogonal and of the same length
k> 0. Thus

(19) Xu = kel y X, = kez

defines a moving tangent frame e, , e; and we work relative to this frame.
We have
o1 = k:du, gy = chv,

(20) doy = —kydudv = — (ko/k )1 02
d0'2 = ku du d7) = (ku/k2)0'1 g2,

so by (15),
a= —kJk, b= kK,
&= (—kyor + kyos)/K,
(21) # = — (ky oy + ky 02) /1,

= —(kudu + k, dv)/E,
s = —dk/k = —d(In k).
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We set
(22) U = kr, = —Fk’s.
Then by (21), (14) and (17),
AU = 2k dk r + K dr
= =2k’ (*w) + K dr
= —2k*(—boy + acs) + K (r101 + r202)
= K'[(r, + 2br)oy + (r; — 2ar)os],
dV = —2kdk s — k* ds
= 2k’s(*w) — K’ ds
= 21’s(—boy + acs) — K*(sy 01 + $2.02)

= ——kz[(sl + 2b8)0’1 + (82 - 2&8)0’2].
By (18) we have

(23) *»dQU = dV.
We set
(24) w = u 4+ W, W =U+V.

The equation (23) is simply the Cauchy-Riemann equations asserting that
W is an analytic function of w. To see how this transforms when we pass to
an overlapping isothermal coordinate system we note that

dx de

For
ox/ow = L(x, — 1X,) = 3k(es — ie3)

by (19). On the other hand, by (1), (2), (11), and (20),
de = wye; + w e
= k[(rdu + sdv)e; + (sdu — rdv)e,]
= k[(re; + se;) du + (se; — res) dv],

so that
e, = k(re; + se;), e, = k(se; — rez),
de _ k[(re1 + se;) — i(ser — req)],
w 2
ox de Kk ) .
Ei il (G is) + (—is + r)]

and (25) follows.
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If 2,y,2=2 4w, X,Y,Z = X 4 ¢Y are the corresponding quantities
in another isothermal coordinate system, then

0x de 0x dw\ [de dw
Z=25%" 2(5@ az)(z.%a;)
and so

(26) Z = W(dw/dz)".
We now give Almgren’s Lemma 1 and its proof.

If = = S is smoothly immersed as a minimal surface S, then the immersion
is an imbedding onto an equator of S°.

For (26) shows that there is a quadratic differential W{dw]® = Z[dz]’ on
the Riemann sphere =. But the only quadratic differential on a closed Rie-
mann surface of genus zero is 0, hence

W=0 U=0 V=0 r=0, s=0,
w; = w, =0, de =0, e = constant.

Thus the immersion maps S into (hence onto) the equator S* of S° orthog-
onal to the constant unit vector e. This covering map must be one-one.

3. The second lemma

We pass to Almgren’s Lemma 2. The proof will be based on the formulas
of Section 1.

We now assume X is a compact oriented surface of positive genus. Thus
the Euler characteristic satisfies x < 0. By (10) and the Gauss-Bonnet
formula

(27) f/Kﬂ’lo'?:/f(K—1)0102S—ff0102=—A
b

2 z

where A4 is the total area of =.

We assume X is imbedded in S* as a minimal surface. The cone based on
¥ with apex 0 is the set of points ux where x e X, 0 < u < 1. As we shall
see shortly, except for its singularity at 0, this is a minimal hypersurface in
=*  The assertion of Almgren’s Lemma 2 is the following.

There is a radial variation of the cone leaving 0 and its boundary = fized, but
decreasing volume.

Such a variation is given by X = ux + hF(u)e where F(u) is a smooth
function on [0, 1] with supp ¢ < (0, 1). To find the volume V of our three
dimensional variation of the cone we use the formula

(28) 6dV n = [dX, dX, dX].
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Here n is the unit normal to the variation at X, and the right hand side is the
vector product in E* extended to vectors with one-form coefficients in the ob-
vious way (cf. Chern [2].) By (1) and (2).

dX = xdu + u(o1 € + o2 €) + hF due + hF(wi e + ws ;)
= dux + (uoy + hFw,)e; + (uos + hFw;)es + hF due.
Noting that du /\ du = 0, (28) yields
dV n = du(uos + hFw;)(uos + hFw,)e
— (uoy + hFw)(uos + hFwy)hF' du x.
By (11) and (12), oy w2 — o2 w1 = 0, wyws = K 0102, hence
(uoy + hFew)(ucy + hFw) = oy oy + hF (o1 wp — oy 1) + h'Fwy wp

= (u2 + h2F2K2)0'1 ags .
We have

(29) dVn = (4’ + KFK,)(du oy 0,)(e — hF x).
Thus since x and e are orthogonal unit vectors,
dv = (& + K'F°K,)(1 + B'F?)' du oy o,
= (4’ + BFK,)[1 + 3’F? + O(h*)] du o1 02
= [’ + B (F°K, + 3'F?) + O(h*)] du o1 05 .

Integrating leads to the desired variation formula

V= (j:uzdu)<fzf .naz)+h2[<folF2 du)<fzf szz)
+ %—(fol L du> sz m,)] + 0.

Thus the first variation of V vanishes, verifying that our cone is a minimal
hypersurface, and the second variation is

v

7 = (/;szalcrz)<folF(u)2du +§(j;lu2F'(u)2du>.

In view of (27) we have
&’V A fl ol N2 ! 2 ]
1= jaind —
b o 052[0 wF (u)® du 2]; F(u) dul.
We choose F to be the piecewise linear function whose polygonal graph
has the vertices (0, 0), (¢, 1), (1, 0), where ¢ is a small fixed number. One

(30)

(31) 3

(32)
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easily finds
1
fo WP (u) du = % + O(e),

1
[ P@?au = 3+ 0co),
0
hence
&v
ah?
for ¢ sufficiently small. Finally, one rounds off the corners on the graph of
F to create a smooth variation with smaller volume.

(SA=3+0() <-4 <0

4, The second variation in E*™

In this section we sketch the situation in higher dimensions. We assume
X is an n-dimensional oriented manifold imbedded in S™** < E™** as a mini-
mal hypersurface in S"*'. We select a right-handed moving orthonormal
frame X, €;, - - , €, , € where X is the moving pointon = and €;, - - , €, i8
a right-handed orthonormal frame in the tangent plane to = at x. The
equations of structure are

X X

€ 0 s 0 el-l
(33) di: =| - & ‘w

e,.J 0 - O e,.J

e e
where

‘7=<°’1,"'ya'n)’ w=(w1"",wn)3
o= ||, n X nskew,

are matrices of one-forms. The integrability conditions d@ = @, where Q@

is the 3 X 3 matrix of blocks above, are
do = ow, c'w =0,
(34) o bt
dw = e, (dw — &) + ‘o0 + ‘wo = 0.

We write w = ¢4, A = ‘A, with the matrix A of functions symmetric by
(34) The relative curvatures K;, K., --- are given by

(35) |+ A= t"+(?>K1t”"l+<g>K2t"‘2+ i + K,

Since we are assuming X is minimal in 8"*', we have
(36) K, =0.

The cone with apex 0 over X is a hypersurface in E™* given by X = ux,
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0<u<1 xeXxE. We consider a variation of this cone of the form
(37) X = ux + hF(u)e

where A is a small parameter and supp F(u) < (0, 1). The volume V of
this variation is obtained from

(38) (n + 1)1dVn = [dX, ---, dX],
where n is the unit normal to the new hypersurface. We have, using (33),

dX = dux + ) (uo; + hFw;)e; + hF' du e.
By (34),

dV n = du(ue:s + hFw;) - - - (ue, + hFw,)e
+ hF' du(uoy + hFw;) -+ (uon + hFw,)x
= du[u"oy - on + hFu”“IZ g1 Opl Wn

+ h2F2u”—2z 01" Opng Wn1 Wn + 0(h3)](e =+ hF'X).
Now we have

Za-l...a-”_‘lwn = (Zaii)al"'an =nK10'1"' Op = 0’

2
Z 01" Op—1 Wn—1 Wp = ZK]’ (@i @j; — @ij)or -+ on
n
() oo,

(39) dVan= [u + (g) WP K+ O(hs)] (e &= hF'x)(du o1 -+ + on).

hence

Comparing lengths,
av = [u + <;‘> W'Fu" K, + 0(h3>] 1+ B*F™"*(du o1 -+ - on)

which gives us

v = {u + B [(;‘) FW K, + 3 F'2u”:|

(40)
-+ O(ha)} (dw o1 +++ op).

This yields the desired formula for the second variation:

Qe ([
n (f - (,n) (];1 U (u)? du)

(41)
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As an application we obtain a result of J. Simons [3]. This is the stability
of the cone on 8° X §° < 8"

Let y eS° and let €1, €2, €; be a movmg frume on a neighborhood of y.
Similarly let ' be another point on S* and let e , es , e; be a moving frame
for a neighborhood of y'. Set

(42) x = (1AV/2)(y,5) eS" C E.
On the two neighborhoods of 8° we have respectively

dy = Xloie:, dy = idgejw
Hence
(43) dx = 201 (0:/4/2)(e:, 0) + 21 (557/2)(0, €)).
We deduce that an orthonormal basis of one-forms to S* X S is given by
(44) o = (1/2/2)(01, 02, 03, 01, 05, 03).
The vector field
(45) e = (1A2)(~y,5)
is normal to x, (e;, 0), and (O, e;-), hence

x, (e1,0), -+, (0, e3), e
is the moving frame we seek.
We have

(46) = (=1/A/2) 2% oi(es, 0) + (1A/2) 251 05(0, €])
and consequently
(47) w = (1A/2)(—01, —02, —03, 01, 03, 03).
This implies that the matrix 4 is
(48) 4 = (1A/2) diag {—1, —1, —1, 1, 1, 1}.

We readily compute K; = 0, (3)K, = —3. Thus we haveS® X S* imbedded
in 7 as a minimal hypersurface £ and (41) specializes to

2 1 1
av =|=| (f WP () du — Gf w'F(u)? du> .
0 0

(49) T
This is non-negative for any F, in fact we have the following result.

Lemma. If F is a € function on [0, 1] such that supp F < (0, 1), then

fo CF W) du > (25/4) fo P du.
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Proof. Set F(u) = u"**Q(u) so that supp @ < (0, 1). Then
1 1 2
f WF (w)? du = f [uG'2 — 566 + ﬁci] du.
0 0 4 u
Since u@* > 0 and [§ GG du = 1G*|§ = 0, we have
1 1 1
[ du > (25/9) fo G (dufu) = (25/4) fo W) du.
0

A variational approach to this inequality indicates that %% is the best con-
stant.
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