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0. In this note we consider pro-P-G groups, where P is a property of finite
groups and G is a profinite group of operators. We define a free pro-P-G
group and a free pro-P-G product of two given groups, and investigate their
basic properties and the relation between them.

Free pro-P groups arise naturally as Galois groups. For example, the group
of the p-closure of a p-adic field not containing the pth roots of unity is free
pro-p [6], and the group of the solvable closure of the abelian closure of the
rationals is free pro-solvable [3]. Often a given Galois group is the semidirect
product of two known groups, N, and G, so it is determined by the action of
G on N. Koch [5] has studied an important class of cases where N is free
pro-p-G.
In 1 we establish some facts about the operation of one profinite group on

another. In 2 we define free pro-P-G group, Q-H-ification, and free pro-P-G
products, and establish their basic properties and relationships. In 3 we
deduce some information about the p-Sylows of a product from knowledge of
the p-Sylows of the factors. The proofs of 3.1 and 3.4 are derived from a
private communication from O. Kegel.
For the basic facts on profinite groups, in particular the notion of order and

the Sylow theorems, we refer the reader to [7].
Except where otherwise indicated the word "homomorphism" and its rela-

tives will imply continuity and "subgroup" will imply closure.

1. Let U be a profinite group and let A Av be the set of all automor-
phisms of U. A is naturally an (abstract) group; to topologize it we take any
fundamental system of neighborhoods of the identity, {Uli I}, in U and
let a f.s.n.i, in A be {A (U)li II, where

A(U) {A l(x)x-l. U, for all x e V}.

This topology is the topology of uniform convergence and is hence independent
of the particular f.s.n.i, choosen for U. The topological group A is totally
disconnected, (and hence so is any subgroup). A, (and hence any subgroup),
is complete with respect to the uniform structure it acquires as a topological
group; one need only check that the uniform limit of isomorphisms is a homo-
morphism and is invertible. A may, however, not be compact.
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LEMMA 1.1. A subgroup, B, of A, is compact if and only if U admits a
f.s.n.i, consisting of B-invariant normal subgroups.

Proof. Suppose there is such a f.s.n.i., {UlieI}. Since each U is
B-invariant any e B induces an automorphism ai of U/U. This givesmaps
B -- A/ with kernels B(U) (= { e B](x)x-1 e U, 11 x U} ). Since
the kernels ure open the maps are continuous, hence homomorphisms. For
every i, B (Ui) is of finite index in B, hence any ultrafilter contains u coset of
B (U). Hence any untrafilter in B is Cauchy and therefore converges.

Conversely suppose B is a compact subgroup of A. We need only show that
any open normal subgroup, U’, of U contains a B-invariant open normal
subgroup, U". B (U’) is an open neighborhood of the identity in B. Hence
C {eBI(U’) U’}, which contains B(U’), is open, hence of finite
index in B. Therefore there are only finitely many distinct z(U’) for e B,
and their intersection, U", which is B-invariant, is again open in U.
We sy that a set S c U generates U if U is the only subgroup of U con-

raining S. In this case there is an (algebraic) homomorphism from the
(discrete) free group on a set isomorphic to S into U, whose image is dense.
We call U finitely generated if there is a finite such S.
We leave the proofs of the following to the reader" (Use the corresponding

facts for discrete groups)

LEMMA 1.2. 1. A subgroup U’, of finite index, is finitely generated if and
only if U is.

2. If U is finitely generated there are onlyfinitely many subgroups of any given
finite index n.

THEOREM 1.3. If U is.finitely generated then Aj is compact.

Proof. By 1.2.2 any open subgroup has only finitely many images under
Av. Hence their intersection is still open. The result now follows from 1.1.

The following will be needed lurer"

LEMMA 1.4. If U has a f.s.n.i, consisting of characteristic subgroups (taken
into themselves by any endomorphism then any epimorphism of U to itself is
an isomorphism.

Proof. Letz: U- Ubeonto. Ira(x) 1, x 1, let Ubecharac-
teristic open subgroup such that x t U. Then induces a U/U --, U/U,
a homomorphism of finite groups which is onto but not one to one.

COROLlaRY 1.5. If U is finitely generated pro-p then any epimorphism is an
isomorphism.

Proof. Let U U, Ui U[U, U]. Then the U are characteristic.
Since U is finitely generated they are open. It is well known that their inter-
section is trivial; hence they are a f.s.n.i.
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Remarts. 1. Corollary 1.5 extends easily to the case of a pronilpotent U
with finitely generated p-Sylows. The automorphism group of such a U is a
direct product of compact groups by 1.3. On the other hand if the number of
generators of a p-Sylow is not a bounded function of p, U is not finitely gen-
erated, so the hypothesis of 1.3 is not necessary for compactness of A.

2. The property of being finitely generated is not usually inherited by A,
hence does not guarantee the compactness of A. The total completion of
the integers is an example.

2. If G is a given profinite group we call a profinite group U a G-group if
there is given a homomorphism of G into A v. By 1.1. such a group can be
written as a proiective limit of a system of finite G-groups and G-homomor-
phisms. Conversely the limit of any such system is a G-group in a natural
way.

If P is a property of finite groups preserved under passage to subgroups,
quotients and finite direct sums we let C be the category of all finite P-groups
and homomorphisms and Cp the category of all pro-P groups (projective limits
of P-groups) and homomorphisms.
We may combine the above concepts and consider the category whose ob-

jects are pro-P groups which are also G-groups and whose maps are G-homo-
morphisms. We call these groups pro-P-G, and denote the category by Cpa.

If U is pro-P-G and S U we say that S generates U (as a G-group) if U
is the smallest G-invariant subgroup of U containing S. We call S a set of
generators for U if, in addition, any open subgroup U U contains almost
all (all but finitely many elements) of S. (Thus the induced topology on S
is discrete.) We say that U is free pro-P-G on S c U if

1. U is pro-P-G,
2. any open U’ c U contains almost all of S,
3. for any pro-P-G group V and any function f: S -o V such that any

open V’ V contains almost all of f(S), there is a unique G-homomorphism
U - V extending f.
(The uniqueness part of 3 implies that S generates U, hence, by 2, is a set

of generators.
This definition is equivalent to that given in [5] for the case considered there.

PgOPOSTXON 2.1. For any discrete set T there is a group U which is free
pro-P-G on a set S, homeomorphic to T. If U’ is free pro-P-G on S, also homeo-
morphic to T, then a homeomorphism (correspondance) S " S’ induces an
isomorphism U U’.

Proof. The uniqueness is standard. A construction in the case where G is
trivial is given in [3]. (The countability of S is used only to insure the separa-
bility of the result.) If G is finite let S’ G X S and let U be free pro-P
on S’. The action of G on S’ induces an action on U which makes U free
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pro-P-G on {1} X S. If Gi--, G. is a homomorphism of finite groups,
X 1 G X S -- G X S gives rise to a map k on the corresponding free

pro-P groups U and Uj. So if G lim G we let U lim U where U is
free pro-P-G on {lo} X S. The identification of the appropriate copy of S
in U and the proof that U is free on this set are routine, since any pro-P-G
group, V, is the limit of pro-P-G groups.

COnOLLARY 2.2. Any pro-P-G group is the image of a free pro-P-G group.

Proof. This follows from the existence of a set of generators, which can
be shown by a simple modification of the ideas of [1].

If P and Q are properties of the type described above such that Q P
and we are given a fixed homomorphism of profinite groups r G -- Hand
U e Cvo, we call (U’, ) a Q-H-ification of U if

1. U’ e CQx,
2. U U’ is a G-map (G acting on U’ through r)
3. If (U’, ) satisfies 1 and 2 there is a unique H-map v U’ Usuch

that .
PROPOSITION 2.3. Given P, Q and G -- H as above, there is a Q-H-ifica-

tion (U, ). If (U, b) is another such there is a unique H-isomorphism
U’ -- U such that .

Proof. The uniqueness is routine. We sketch the construction.

First form a Q-G-ification (U, )by letting U be the limit of all finite
Q-G-quotients, U, of U and be the limit of the maps U - U. Then
form a Q-(G)-ifiction (U, b) of U by letting U be the quotient of U
by the normal subgroup generated by ll x-x, x e U, g ker (), and
the canonicul map.

Finally, to Q-H-ify U, let U have a set, S, of generators. Let V be free
pro-Q-r (G) on R S and W free pro-Q-H on T R and let a V -- U,V -- W be the G-maps induced by the homeomorphisms of R, S and T
(again letting G act on W through v). Let N be the smallest H-invariant
subgroup of W containing f (ker (a)), let Ua WIN and let , W --+ Ua be
the canonical mp. Let a be the unique map making a ,/. We leave
to the reader the diagram chasing needed to verify that (Ua, a .) is a
Q-H-ification.
The following properties of Q-H-ifications are routine to verify"

LEMMA 2.4. 1. If r G -- G’, r’ G’ -- G’, P P’, P P, then if
(U’, q) is a P’-G’-ification of U e Cva and (U’, q’) a P"-G-ification of U’,
(U’, ’ is a P-G"-ification of U.

2. If is onto then so is .
3. is one to one if and only if U CQ and ker() acts trivially on U.
4. If U is free pro-P-G on S then U is free pro-Q-H on (S).
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Since Co. is a subcategory of C.a the construction, for each U C.a of a
Q-H-ification (U, ), provides a functor ff Cea -- Co, and a natural trans-
formation from the identity functor to if, defined by if(U) U’ for all
U e C.a for a U --, V, ff (a) a’, the unique H-map from U to V making
the obvious diagram commutative, and (U) . If we consider the
category of such pairs (ff, ), the above results shown that (if, ) is an initial
object.

If we are given P, Q and G -- H as above and U, V e Ceo, we define a
free pro-Q-H product of U and V to be a triple (W, , ) such that

1. WeC,,
2. U -- W, V ---> W are G-maps (usual G-action on W),
3. if (W’, ’, b’) satisfies 1 and 2 there is a unique H-map v W -- W’

such that ’ and ’.
PROPOSITION 2.5. For any P, Q and r G --, H as above there is a free

pro-Q-H product (W, , b) of U and V. If (W’, q’, b) is another such, there
is a unique H-isomorphism v W ---> W’ such that q q and b’.

Proof. Again uniqueness is routine. We construct the product first in the
case P Q and r is an isomorphism. Let S and T be sets of generators for
U and V respectively, let S --- S, T’ T be disjoint sets of the corresponding
cardinalities, let R S u T’, let X, Y, Z be free pro-P-G on S’, T’, R’, respec-
tively, and let a X -. U, Y -- V, , X --* Z, Y --. Z be G-maps in-
duced by S S, T’

_
T, S’ R’, T’ R’, respectively. Let N c Z be the

smallest normal G-subgroup of Z containing (ker (a)) and i (ker (fl)), let
W Z/N and e be the canonical map. There are unique G-maps U -- W,V --. W such that a ,, Cf ; the proof that (W, , ) is a free
pro-P-G product is elementary diagram chasing.

To construct the free pro-Q-H product for general Q and H one can either
Q-H-ify U and V and take the free pro-Q-H product, or first take the free
pro-P-Q product and then Q-H-ify.

Note. If we omit the hypothesis Q P then we can use the same defini-
tions of Q-H-ification and free pro-Q-H product, but they will be simply the
R-H-ification and free pro-R-H product, where R is the coniunction of P
and Q.
The following properties follow directly from the definition"
LEMMA 2.6. 1. If U’ is the smallest H-subgroup of W containing (U)
then (U’, ) is a Q-H-ification of U.
2. q (U) and b (V) generate W as an H-group.
3. If U and V are free pro-P-G on S and T, respectively, then W is free

pro-Q-H on (S) u (T).
4. If U Ym U, V lim V and (W, , )are free pro-Q-H

products of U and V, then W lim W, together with the obvious maps,
is a free pro-Q-H product of U and V.
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Remarlcs. 1. By a fairly standard abuse of language we shall sometimes
refer to IV itself as the free pro-Q-H product, the maps being understood, and
write it as U .Q V. It is easy to see that

(U ,. U’) ,, U" U ,, (U’,.U").
2. When P Q and r G H then (w, e, k) is the categorical sum (or

coproduct) in C.o.
The following shows a relationship between the notions of free products and

free operator groups:

PROPOSITION 2.7. Suppose property P is, in addition, preserved under
exact sequences. Let U, V e Cp, r 1} V, and let (U’, rp) be a P-V-ifica-
tion of U. Let W be the semidirect product, defined, as a set, as U X V with
the product topology; multiplication is defined by

(u, (u’, v’ (uv (u’ ), w’ ).

Define ’ U W’, ’ V W’ by ,p’(u) (,p’(u), 1), g,’(v) (1, v).
Then (W’, ’, b’) is a free pro-P product of U and V.

Proof. W’ is clearly compact and totally disconnected. Since the action
of V on U is continuous, the multiplication in W is, hence W’ is a profinite
group. From the exact sequence

{1} - U’ W’ W’/U’ ---. {1},

W’/U’ ._ V, we see W’ is pro-P.
If (W, , b) is a free pro-P product of U and V, the maps ’, b’ induce

0 W --. W’ such that O ’, Ob k’,
To construct an inverse to 0 note that V acts, through k, on IV by inner

automorphism. Hence U --* IV induces a V-map n U -- IV such that
n" . Define O’ W’ --* W by O’ (u, v) n (u)b (v). It is easy to check
that 00’ and 0’0 are the identity maps.

Remark,. It follows easily from this that if IV is a free pro-P product of
pro-P groups U and V, and X is the kernel of the map IV --. V induced by the
identity on V and the trivial map on U, then the pair (X, U --. X) is a V-ifica-
tion of U under {1} --. V.

LEMMA 2.8. Let U and V be profinite and let (W, o, k) be a free pro-p product
of U and V. For any x, y e W define o, U W, bu V W by o,(u
x-lo (u)x, u (v) y-lk (v)y. Then (W, o, bu) is also a free pro-p product of
U and V.

Proof. First assume that U, V, and hence W are finitely generated. The
maps , ku induce 0 W --* W such that 0 ,, 0k . The map 0 is
onto by Proposition 23 bis of [7], hence an isomorphism by 1.5. Since any
U and V are limits of finitely generated groups the general result follows from
2.6.4.
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3. We now investigate the relation between the p-Sylow subgroups of the
factors and those of the product. In this section, the properties P and Q,
in addition to being preserved under passage to subgroups and quotients,
will be supposed preserved under exact sequences.

THEOREM 3.1. Let U, V e C. have finite orders m and n, respectively. Let
X be the kernel of the natural map U ,. V ---, U @ V. Then X is free pro-P
on a set of (m 1) (n 1) generators.

Proof. Let F be the (discrete) free product of U and V. Its P-completion,
W, together with the obvious maps U -- W, V -- W, satisfies the mapping
properties for a free pro-P product. Let E be the kernel of the natural map
F -- U @ V. E is free (discrete) on (m 1)(n 1) generators, (see [4])
and the closure of E in W is just X. It therefore suffices to show that the
topology induced on E by the P-topology of F is the same as the P-topology
on E.

If D is a normal subgroup of F such that F/D is a finite P-group then
E/E n D is a finite P-group. Conversely if C is a normal subgroup of E
such that E/C is a finite P-group then it has only finitely many coniugates
in F. Let D be their intersection. Then E/D is a finite P-group and hence
so is F/D.

COOLLAaY 3.2. The p-Sylows of X are free pro-p.

Proof. This is immediate from results in [7].

COROLLARY 3.3. If all p-groups are P-groups but not all P-groups are
p-groups and (m 1)(n 1) > 1 then the p-Sylows of X are not finitely
generated.

Proof. It suffices to show that the p-Sylows of a free pro-P group on h _> 2
generators are not finitely generated and for this it is enough to show that
free (discrete) group, F, on h generators has finite P-quotients whose p-Sylow
subgroups have arbitrarily many generators.

Let q divide the order of some finite P-group, q p. Then all q-groups are
P-groups. F has subgroups of index q for any r, hence normal subgroups of
index q" where s may be made arbitrarily large. Let E be normal of index
Then E is normal and of finite index and E/E, a p-Sylow of FIE has
(h 1 )q8 - 1 generators, (see [4] ), a number which may be made arbitrarily
large.

COrOLLArY 3.4. If p is an odd prime such that all p-groups are P-groups
but not all P-groups are p-groups, and U and V have non-trivial p-ifications
then a p-Sylow of U ,e V is not finitely generated.

Proof. Since U and V can be mapped onto U’ and V’, each cyclic of order
p and a p-Sylow of U ,p V gets mapped onto a p-Sylow of U’ , V it suffices
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to show that the latter is not finitely generated. Let X be a p-Sylow of
X ker U’ V’ U V U V,p -- @ and We a p-Sylow of W ,p containing
it. Consider the exact sequence

{1} -+ X-+ W-+ U’ @ V’ -+ {1}.

The result now follows from 3.3 and 1.2.1.

THEOREM 3.5. Let Q be a property possessed by all finite p-groups. Let
U, V and W be p-Sylow subgroups of profinite groups U, V, and U , V
respectively. Then there are maps

a U,V-+W and " W--+U,V
such that a is onto and if U and V have normal complements then a is an
isomorphism.

Proof. Any pro-p subgroup of U , V is conjugate to a subgroup of W.
Therefore if , are maps making (U , V, e, b) a free pro-Q product then
--1x q (U)x and y- (V)y are in W for some x and y in U , V. This induces
maps U --+ W and V -+ W, hence a map a U , V -- W.The map is the restriction to W of that induced on U , V by the natural
maps U -+ U , V, V -+ U , V. The images, in U , V, of (U) and @ (V)
are the same as the images of (U) and (V), hence generate U , V. But
a(U , V) contains subgroups conjugate to these images; hence, since
U , V is pro-p, a(U ,, V) U , V.

If U and V have normal complements then they are isomorphic to the
p-ifications of U and V, respectively. Hence we may think of a as taking
U , V to itself. The result now follows from 2 R

THEOREM 3.6. Let Q be a property possessed by all p-groups and let, U, V
and W be p-Sylow subgroups of pro-Q groups U, V and U , V resectiel.
Then W, is free pro-p if and only if U and V are.

Proof. Since U and V are pro-Q the maps and b making (U , V, ,
a free pro-Q product are monomorphisms. Hence W contains subgroups
isomorphic to each of U and V. Since subgroups of free pro-p groups
free pro-p (see [7] we have the "only if" part.
Now from [7] we know that the freeness of a p-Sylow of a group X is equiva-

lent to having p-cohomological dimension _<_ 1, and that this in turn holds if
and only if, whenever maps v X -- Z, s" Y -+ Z, of profinite groups are
given with onto and ker() pro-p, there is i" X -+ Y such that
In view of our definition of pro-Q product by mapping properties the "if"
part is elementary diagram chasing.

Remar]. This result has been extended by Brumer (unpublished) who
showed that c d(U , V) max(c d U, c d V).
We have now shown that if p is odd and U and V are non-trivial pro-p

groups (or, more generally, have non-trivial p-Sylows admitting normal corn-
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plements) and P as in 3.4, then letting U, V and W denote p-Sylows of
U, V and their free pro-p product, respectively, there is an exact sequence

{i}--+K-+W-+G--{1},

where G U , V nd K is free pro-p. To describeW completely it there-
fore suffices to describe the ction of G on K induced by a. (We know K is
not finitely generated.) We show that in the cse where U nd V re free
pro-p K is free pro-p-G group, or equivalently (by 2.7 thatW a (G) , K’
for some free pro-p K’.

In this cse W is free pro-p by 3.6. It is enough to show that if U nd
re free pro-p on S nd T respectively then W is free pro-p on a (S u T) u R
for some R. Let] nd denote W/(W) nd G/G respectively (see 1.5).
The mp induces # -- ; since a (G) c (W), a induces a
Clerly # is the ideatity. In the ctegory of belin profinite groups of
exponent p every subgroup is complemented nd every group is free. If
] () @ I let/ be bsis for/ nd choose set, R, of representatives
in W for R. The fct that W is free pro-p on a (S u T) R now follows
from Proposition 23 bis of [7].
Remark. Some of the above results can be used to give results about

fields. For example Iwasaw’s result mentioned earlier, together with 3.4,
gives the following"

If K is the solvable closure of Q (), (all the roots of 1 ), let its Galois group
be free pro-solvable on S {i i 1, 2, }. Let p be odd and let L be the
fixed field of al, a, all a, i 1, 2, and their conjugates. Then there exist
finite subextensions M and N of L/Q () with M D N and [M* n N* N*]
arbitrurily large. To see this note that G(L/Q () is the free pro-solvable
product of two groups of order p. The rest is 3.4 and Kummer theory.
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