POINT-LIKE UPPER SEMI-CONTINUOUS DECOMPOSITIONS OF §®

BY
JouN L. Bamwey!

In this paper it is shown that point-like upper semi-continuous decompo-
sitions of S* which satisfy certain conditions on the distribution of their non-
degenerate elements are topologically equivalent to S°. In [3], J. F. Wardwell
obtained similar results for arbitrary compact metric spaces but stronger hy-
potheses were necessary. The proof of Theorem 1 of [2] by R. H. Bing is used
to obtain a stronger result for S°. This proof shows that if for each arbitrary
open set U containing the nondegenerate elements of a point-like upper senii-
continuous countable decomposition G, if for each £ > 0 there exists a homeo-
morphism A of E* onto E* which shrinks each element of G into a set of diameter
less than ¢ and which is fixed on E* — U, then E°/G = E°. Ttis easy to see the
proof also applies to S°.

A point-like set in 8" is one whose complement is topologically equivalent to
the complement of a point. For a decomposition G we define

Hy(G) = {g eG : g is nondegenerate},
and define recursively
Hy(G) = {geHo(G) : gnlimsup H;(G) # 0, Vj < k}
This motivates a generalization for any ordinal number a:
H,(G) = {geHo(G): gnlimsup Hg(G) = B,V 8 < a}.

(In the following the symbol ="’ will also mean “is homeomorphic to”. It
should be clear from the context when this is meant and when strict equality is
meant. )

Converting his results to the notation which I will use, J. F. Wardwell
proved in [3]:

Lemma. If G is an upper seme-continuous decomposition of a compact metric
space M into poini-like sets and there exists a positive integer k such that
H,(G) = 0, then M/G = M.

TaeorEM. If G is an upper semi-continuous decomposition of a compact
metric space M into point-like sets, if Ni~o (lim sup H:(G)) s zero-dimensional,
and if for some countable ordinal o, Ho (G) = @;then M /G = M.

In Theorem 2 of this paper the above theorem is proved for S* with weakened
hypotheses. Theorem 2 is applied in Theorem 3 to show how ‘“bad” a point-
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like upper semi-continuous decomposition G of S® must be in order to have
S'/q = S,
The following Lemmas and Theorem lead up to Theorem 2.

DerintrioN. We will say that a decomposition G has P (o) when G has the
property that for each open set U containing Ho(G) and for each positive
number ¢ there is a homeomorphism % of S° onto itself, fixed on $* — U, which
shrinks each element of H,(G) to diameter less than e.

Lemma 1. If G is a point-like upper semi-continuous decomposition of S*
with a countable number of nond'egenemte'elements and if there is a countable ordinal
a such that G has P (o), then S°/G = S°.

Proof of Lemma 1. If G has P (0), the proof of the lemma is the same as the
proof of Theorem 1 of [2]. The method of proof will be to show that if G has
P (a) for some a, then G has P(0). Let U be an arbitrary open set containing
Hy(@) and ¢ an arbitrary positive number. The attack is to show that if A, is
a homeomorphism fixed on S* — U which shrinks each element of H., (@) to
diameter less than ¢, then there is an ordinal a4 less than a, and a homeo-
morphism %41, fixed on 8° — U, which shrinks each element of H,,,, (@) to
diameter less than e.  'We assume for the moment that we can do this, and we
suppose that G has P(a). We let @ = ag; ho will be the homeomorphism
guaranteed by P(a) for U and . We proceed as indicated above to find a
strictly decreasing sequence {a,} of ordinals. Since every strictly decreasing
sequence of ordinals is finite there will be a positive integer m such that o, = 0;
hum will be the homeomorphism which is fixed on 8° — U and which shrinks each
element of Ho(G) to diameter less than &. This will show that G has P (0).
It now remains to prove the following:

Sus-LEMMA. Let U be an arbitrary open set containing Ho(G) and € an arbi-
trary positive number. If there is a homeomorphism h fixed on S° — Uwhich
shrinks each element of Hg(G) to size less than ¢, then for some a < B there is a
homeomorphism h** fixed on 8 — U which shrinks each element of H,(G) to
diameter less than .

Proof of Sub-Lemma. (If Hg(G) = @, the homeomorphism % may be as-
sumed to be the identity map. If this happens, @’ as defined below isequal
to G.)

Case I. fis not a limit ordinal. Then for some o, 8 = o + 1.

Claim 1. Only a finite number of elements of H,(G') have diameter greater
than or equal to ¢.

Proof of Clatm 1. Because h is a homeomorphism, the decomposition
@ = {h(g): ge @G} of S is also upper semi-continuous and for any ordinal v,

Hy(G') = {k(g) : ge Hy(G)}.
Thus if ¢’ e Hg(G") the diameter of ¢’ is less than . Now suppose thereare
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more than a finite number of elements of H,(G’) with diameter greater than or
equal to £. Pick a countable set of these and label it {gﬁ}:;l . For each 7,
pick a point p; belonging to gi . Since S° is compact, the set {pi} 7=1 has at least
one cluster point po. By upper semi-continuity of @, po must belong to an
element of ¢’ with diameter greater than or equal to . Call this element gq.
But since po is a cluster point of the pi, gon lim sup H,(G’) is nonempty.
This implies that go e Hs(G’). But the diameter of go is not less than ¢, a
contradiction, Q.E.D. Claim 1.

Denote the elements of H,(G’) of diameter greater than or equal to ¢ by
{gi}7= . We shall now define £**. Since no g; belongs to Hg(G') we can find
mutually disjoint open sets {V:}i= such that for all 7, g, € V; € U and if
geH,(@), g 5 g:,thengn V; = @. Because each g; is point-like it is possible
to find a homeomorphism %; of S° onto S° fixed on §* — V; such that the di-
ameter of 4;(g;) is less than e.

Now define

B (z) = if zeS®— UinV;

= h‘(x) if eri.

Since there are only a finite number of V;, all are mutually disjoint, and each
h; is fixed on 8* — V;, h* is a homeomorphism. If all elements of H,(G")
have diameter less than &, 1™ can be taken as the identity map.

Let B**(z) = h* (b (z)). Obviously, s** is a homeomorphism. LetgeH.(G).
If g = A7 (g{), then

diameter (5**(g)) = diameter (A*(A(h™'(g:)))) = diameter (h:i(gi)) < e.
If ge Ho(G) — {h " (g:)} i1, then h(g) e 8 — Ui V4, s0
diameter (h(g)) < e.

But A**(9) = k*(h(g)) = h(g) so diameter (h**(g)) < &. So B** is a
homeomorphism of S° onto S* shrinking every element of H, (G') to diameter less
than . Since both & and h* are fixed on §* — U, h** is fixed there also.

Case II. fis a limit ordinal.

Claim 2. Thereis an @ < g such that if g ¢ H,(G), then the diameter of
h(g) is less than e.

Proof of Claim 2. Suppose that for all @ < g there is a g, ¢ H. (G') such that
diameter (h(g.)) = €. Pick a sequence of a; < 8 such that lim;.. a; = 8.
Pick gieH,;(G) such that diameter (h(gs)) > &. For each ¢, pick
pieh(g:) = gi . The {p} i have an accumulation point po since S* is com-
pact and po will belong to some go in @’. By upper semi-continuity of G,
diameter (go) > €. Observe that if g e Ho(G) then g e Hy(G) for all ¥ < a.
So, since lim;.o a; = 6,

gonlimsup Ha(G') # @ forall a < B.
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Therefore gq e Hg(G’) implying that go = A (go) e Hg(®). This contradicts
the hypothesis that diameter ((g)) < ¢ for all g e Hg(G), Q.E.D. Claim 2.

In this case 2** can be taken to be the identity map, Q.E.D. sub-lemma and
lemma.

The lemma enables us to prove the following theorem, which is just Ward-
well’s theorem for S* with weakened hypothesis. Notice that the hypothesis
that H.(G) be empty in the following theorem necessarily limits G to at most
a countable number of nondegenerate elements.

TuroreM 1. If G is an upper semi-continuous decomposition of S° into point-
like sets and if there is a countable ordinal o such that Ho(G) = 0 then S*/G = S’

Proof. @ has P(a); the theorem follows from Lemma 1.
Theorem 1 may be generalized by using the following lemma:

Lemma 2. Let G and G, be upper semi-continuous decompositions of S° into
point-like elements, and suppose the set of nondegenerate elements of G s a subset
of the set of nondegenerate elements of G. Let my be the natural map of S° onto
S%/Gy and let Gy = {m2(g)| g € G}, a decomposition of S*/Gy. If /Gy = S* and
S/Gy = 8, then 8%/G = §°.

Proof of Lemma 2. 'The following situation arises:

s g
Lok
Sa = Sa/ G2 Sa/G

A

8 = 876G, = (§°/G2)/6Gy

x, 1 , and m are natural maps as indicated. We define f taking (S°/Gz)/G:
onto §*/G by f(z) = wmox; oxi (x). Notice that upper semi-continuity of
@G and G, implies that of G, .

Claim. f1is a homeomorphism.

Proof of claim. The proof consists essentially of using the definition of open
sets in a decomposition space.

1. fisafunction. Letz belongto (8°/G2)/Gy, 1 (x)is a single element of
Gy, the decomposition of S°/G,. By definition of G; , 71 (z) = m(g) for some
geG. Therefore 73 om; (x) = g, forsomegeG. Somwomg 0wy (x) is a sin-
gle point of $*/G and f is a well-defined function.

2. f4s a function from S*°/Q to (S°/G,)/G1. Notice that

— —1 . .
momonm ‘of = fomomon ' = identity map,

sof (@)=momeox ‘(). If z belongs to S°/G, then = '(z) = g, a unique
element of G. Thus m(g) belongs to Gy, 50 m o m(g) = momon '(z)is a
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unique point of (S*/Gz)/G1. Thusf ' is a well-defined function. This shows
directly that f is one-to-one and onto.

In parts three and four g will denote an element of a decomposition, g' the
corresponding point of the decomposition space.

3. fisopen. Let W be an open set in (S*/Gz)/Gi. Since w1 and ; are
continuous, U = 73" 0«1 (W) is open.

Sub-claim. =(U) = {g'eS*/G: g C U}.

Proof of sub-claim. (1) Itis clear that

T(U) D {g eS/G:g S U}
(2) Let ¢’ en(U). This implies gn U 5~ @ and mom(g) e W. So
U=myom (W) Dz omi (mom(g)) = g.

Tt follows that = (U) C {¢' ¢ 8°/G : ¢ C U}, Q.E.D. sub-claim.
That = (U) is open follows directly from the sub-claim and the definition of
open sets in an upper semi-continuous decomposition space. So

JW) =zom oay' (W) = = (U)
and f is open.

4. fiscontinuous. Let U be an open set in S°/@. Continuity of = implies
that = (U) is open. An application of the proof of the sub-claim shows that
mow "(U)isopen. Another application shows that w0 mon *(U) = f(U)
is open, proving that f is continuous, Q.E.D. claim.

Since f is a homeomorphism of (S°/G)/G: onto $*/G and (S*/Gz)/Gy =8,
it follows that 8°/G = §°, Q.E.D. Lemma 2.

The following theorem is a corollary of Theorem 1 and Lemma 2; it
strengthens Theorem 1.

TaeoreM 2. If G is an upper semi-continuous decomposition of S? into point-

like sets and if for some countable ordinal o, Gy is a decomposition of S® such that
Hy(Gy) = H.(G) and 8%/G, = S* then S*°/G = §°.

Proof of Theorem 2. Let Gy = {m(g) : g ¢ G} be a decomposition of S°/Gs,
where ., is the natural map of S onto 8°/G.. Since Ho(G:) = H.(G) the
upper semi-continuity of G implies that of Gy and G .

Claim. Hq(Gy) = §.

Proof of clatm. Suppose g e H,(G1). Then g n lim sup Hg(G:) #= @ for
all B <a. So w3 (g) n 73 (lim sup Hg(G1)) # @ for all 8 <a. Now

7z (lim sup Hg(Gy)) = lim sup He({mz'(g) : g e G4})

= limsup Hg({g : ge Hy(@) — Ho(@)}) = limsup Hg(G),
S0
72 (g) nlim sup Hg(@) # @ forall B < a.

This implies 73 (¢) e Ha(@); but w3 (9) e w2z (Ho(G1)) = Ho(G) — H.(G),
a contradiction, Q.E.D. claim.
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By Theorem 1, 8°/Gy = 8°; s0, by Lemma, 2, 8°/G = §°, Q.E.D. Theorem 2.

The preceding theorem may be applied in a negative sense to show how
“bad” a decomposition G must be to have S*°/G # S°. The motivation for
this comes from consideration of the open question: Is there an upper semi-
continuous decomposition G of S* whose non-degenerate elements are a count-
able number of tame cells and such that 8°/G = §°?

TrEOREM 3. Let G be an upper semi-continuous decomposition of S° with a
countable number of point-like sets as nondegenerate elements such that S°/G = S°.
There is a subset F of Hy(G') such that the decomposition Gy of 8° with Ho(G;) = F
is upper semi-continuous, 8°/Gy # S, and Hy(G:) = Ho(Gs).

Proof of Theorem 3. Claim 1. There is a countable ordinal ao such that
Hopt (@) = Hay (@)

Proof of Claim 1. Suppose no such ao exists. Then for all countable a,
there is a set g, € Ha1a(G) — Ho(G). Since the sets H,(G) are nested, if
a # Bthen ga 5% gg. S0 {ga}aca is an uncountable set of distinet nondegen-
erate elements of G. A contradiction, Q.E.D. Claim 1.

Let Hao(G) =F = Ho(Gz) Then H1(G2) = Hl(Hao(G)) = Hao+1(G) =
H, (@) = Ho(G:).

Claim 2. @, is upper semi-continuous.

Proof of Claim 2. Let {gii~ be any subset of G, such that p;eg: and
{ps}i=1 converges to po. Each g belongs to G so upper semi-continuity of G
implies existence of goe @G such that lim sup {gdi=1 < ¢o. Since each g;
belongs to H., (@), if go is nondegenerate it belongs to Huy1 (G). But Heagir (G)

= Ha. (@) = Ho(G:) so goe Hy(G:) © G. and @, is upper semi-continuous,
Q.ED. Claim 2.

Claim 3. S°/G, #= S

Proof of Claim 3. Suppose 8°/G; = §°. Then by Theorem 2, 8°/G = §°,
a contradiction, Q.E.D. Claim 3 and Theorem 2.

In [1], Bing describes an upper semi-continuous decomposition G of E*
such that E’/G s E® which has a countable number of point-like sets (in this
case indecomposable continua) as nondegenerate elements. This decomposi-
tion has the same properties in S° and Ho(G) = Hy(G) so it serves as an illus-
tration of Theorem 3 with G, = G.
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