
POINT-LIKE UPPER SEMI-CONTINUOUS DECOMPOSITIONS OF S’
BY

JOHN L. BAILEY

In this paper it is shown that point-like upper semi-continuous decompo-
sitions of S which satisfy certain conditions on the distribution of their non-
degenerate elements are topologically equivalent to S3. In [3], J. F. Wardwell
obtained similar results for arbitrary compact metric spaces but stronger hy-
potheses were necessary. The proof of Theorem 1 of [2] by R. H. Bing is used
to obtain a stronger result for S3. This proof shows that if for each arbitrary
open set U containing the nondegenerate elements of a point-like upper semi-
continuous countable decomposition G, if for each e > 0 there exists a homeo-
morphism h of E onto E which shrinks each element of G into a set of diameter
less than and which is fixed on E U, then E3/G E3. It is easy to see the
proof also applies to S.
A point-like set in S is one whose complement is topologically equivalent to

the complement of a point. For a decomposition G we define

H0 (G) g e G g is nondegenerate},

and define recursively

Hk(G) Ig e Ho(G) g n lim sup H(G)

This motivates a generalization for any ordinal number

H,(G) {g e Ho(G) g n lim sup H(G)

(In the following the symbol "=" will also mean "is homeomorphic to". It
should be clear from the context when this is meant and when strict equality is
meant.

Converting his results to the notation which I will use, J. F. Wardwell
proved in [3]:

LEMMA. If G is an upper semi-continuous decomposition of a compact metric
space M into point-like sets and there exists a positive integer ]c such that
Hk (G) , then M/G M.

THEOnEM. If G is an upper semi-continuous decomposition of a compact
metric space M into point-lilce sets, if o (lira sup H(G) is zero-dimensional,
and iffor some countable ordinal a, H,(G) 0; then M/G M.

In Theorem 2 of this paper the above theorem is proved for S with weakened
hypotheses. Theorem 2 is applied in Theorem 3 to show how "bad" a point-
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like upper semi-continuous decomposition G of S must be in order to have
S’/G S.
The following Lemmas and Theorem lead up to Theorem 2.

DEFINITION. We will say that a decomposition G has P (a) when G has the
property that for each open set U containing Ho(G) and for each positive
number there is a homeomorphism h of S onto itself, fixed on S U, which
shrinks each element of H, (G) to diameter less than .
LEMMA 1. If G is a point-like upper semi-continuous decomposition of S

with a countable number ofnondegenerate elements and if there is a countable ordinal
a such that G has P (a), then S’/G S".

Proof of Lemma 1. If G has P (0), the proof of the lemma is the same as the
proof of Theorem 1 of [2]. The method of proof will be to show that if G has
P (a) for some a, thenG has P (0). Let U be an arbitrary open set containing
H0 (G) and e an arbitrary positive number. The attack is to show that if h is
a homeomorphism fixed on S U which shrinks each element of H,. (G) to
diameter less than e, then there is an ordinal a+ less than a and a homeo-
morphism h+, fixed on S U, which shrinks each element of H,+ (G) to
diameter less than e. We assume for the moment that we can do this, and we
suppose that G has P (a). We let a a0; h0 will be the homeomorphism
guaranteed by P (a) for U and e. We proceed as indicated above to find a
strictly decreasing sequence {a} of ordinals. Since every strictly decreasing
sequence of ordinals is finite there will be a positive integer m such that a 0;
h will be the homeomorphism which is fixed on S U and which shrinks each
element of Ho(G) to diameter less than e. This will show that G has P (0).
It now remains to prove the following"

SuB-LEMMA. Let U be an arbitrary open set containing Ho (G and e an arbi-
trary positive number. If there is a homeomorphism h fixed on S Uwhich
shrinlcs each element of He (G) to size less than e, then for some a K there is a
homeomorphism h** fixed on S U which shrinks each element of H,(G) to
diameter less than .

Proof of Sub-Lemma. (If H (G) 0, the homeomorphism h may be as-
sumed to be the identity map. If this happens, G’ as defined below is equal
to G.)

Case I. is not a limit ordinal. Then for some a, a -t- 1.
Claim 1. Only a finite number of elements of H, (G) have diameter greater

than or equal to .
Proof of Claim 1. Because h is a homeomorphism, the decomposition

G /h (g) g e G} of S is also upper semi-continuous and for any ordinal %

H(G’) {h(g) geH(G)l.

Thus if g’ H(G’) the diameter of g’ is less than . Now suppose there are
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more thn finite number of elements of Ha (Gt) with diameter greter thn or
equal to . Pick countable set of these nd lbel it {g} =1. For ech i,
pick point p belonging to g. Since is compact, the set {p} =, hs t least
one cluster point p0. By upper se-continuity of G, p0 must belong to n
element of G’ th diameter greter thn or equal to . Cll this element g0.

But since p0 is cluster point of the p, g0 a lim sup H(G’) is nonempty.
This implies that g0 e H( But the diameter of g0 is not less thn ,
contradiction, Q.E.D. Claim 1.

Denote the elements of H (G’) of diameter greter thn or equal to s by
g}. We shll now define h**. Since no g belongs to H (G’) we cn find
mutually disjoint open sets {V} such that for ll i, g V c U nd if
g e H (G’), g g, then g a V . Because ech g is point-like it is possible
to find homeomorphism h of S onto S fixed on S V such that the di-
ameter of h(g) is less thn e.
Now define

h* (x) x if x e D= V
h(x) if x eV.

Since there re only fiMte number of V, ll re mutually disjoint, nd each
h is ed on S" V, h* is homeomorphism. If ll elements of H(G’)
hve diameter less thn , h* cn be tken s the identity mp.

Let h**(x) h* (h (x)). Obviously, h** is homeomorphism. Let g eH(G).
If g h-* (g), then

diameter (h** (g)) diameter (h* (h (h- (g)) diameter (h (g)) < .
3If g eH(G) {h-(g)},= then h(g) ,= V so

diameter (h(g) < .
But h** (g) h* (h (g)) h (g) so diameter (h** (g))
homeomorphism ofS onto S shrinking every element ofHa (G) to diameter less
thn . Since both h nd h* re fixed on S U, h** is fixed there lso.

Case II. t is limit ordinal.
Claim 2. There is an a < / such that if g e H(G), then the diameter of

h (g) is less thn s.
Proof of Claim 2. Suppose that for all a </ there is a ga e Ha (G) such that

diameter (h (ga)) >_ . Pick a sequence of a < such that lim
Pick geH(G) such that diameter (h(g)) >_ e. For each i, pick
pe h(g) =- g. The {p}= have an accumulation point p0 since S is com-
pact and p0 will belong to some g’0 in G. By upper semi-continuity of G’,
diameter (g0) >_ . Observe that if g e Ha (G) then g eH (G) for ll < a.

So, since lim a

g0limsupHa(G’) for all a < .
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Therefore g e H (G’) implying that go h-1 (g’0) e He (G). This contradicts
the hypothesis that diameter (h(g)) < e for all g e He(G), Q.E.D. Claim 2.

In this case h** can be taken to be the identity map, Q.E.D. sub-lemma and.
lemma.
The lemma enables us to prove the following theorem, which is iust Ward-

well’s theorem for S with weakened hypothesis. Notice that the hypothesis
that Ha (G) be empty in the following theorem necessarily limits G to t most
a countable number of nondegenerate elements.

THEOREM 1. If G is an upper semi-continuous decomposition of S into point-
like sets and if there is a countable ordinal a such that H,, (G) 0 then SS/G S.

Proof. G has P (a); the theorem follows from Lemma 1.

Theorem 1 may be generalized by using the following lemma:

LEMMA 2. Let G and G2 be upper semi-continuous decompositions of S into
point-like elements, and suppose the set of nondegenerate elements of G. is a subset
of the set of nondegenerate elements of G. Let . be the natural map of S onto
S3/G and let G1 v (g g e G}, a decomposition of S/G. If S/G S and
S/GI S, then S/G S.

Proof of Lemma 2. The following situation arises"

S S3/G

s slU

r, 1, and r are natural maps as indicated. We define f taking (S/G)/G
--1 --1onto Sa/G by f (x) r o r o r (x). Notice that upper semi-continuity of

G and G implies that of G.
Claim. f is a homeomorphism.
Proof of claim. The proof consists essentially of using the definition of open

sets in a decomposition space.
1. f is a function. Let x belong to (S/G)/G r- (x) is a single element of

G, the decomposition of S/G. By definition of G, 71"-1 (X) "/i’2 (g) for some
-1 -1 (x) is a sin--1 -1 (x) g, for some gg e G. Therefore r r

gle point of S/G and f is a well-defined function.
2. f-1 is a function from S/G to (S/G)/G Notice that

--1 7i.--1r o r o r o f f o o o identity map,

SO f-1 (X)--71"1 o 71"2 o (X). If X belongs to S’/G, then r
-1 (x) g, a unique

element of G. Thus r. (g) belongs to G1, so 1 z (g) z o . o z-1 (x) is a
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unique point of (S3/G2)/G1. Thus f-1 is a well-defined function. This shows
directly that f is one-to-one and onto.
In parts three and four g will denote an element of a decomposition, g the

corresponding point of the decomposition space.
3. f is open. Let W be an open set in (S3/G2)/G1. Since 1 and are

continuous, U v. o vl (W) is open.
Sub-claim. (U) g eS/G" g UI.
Proof of sub-claim. (1) It is clear that

S/G g U}

(2) Let g’ e r(U). This implies g n U 0 and rl o r.(g) e W. So
-1 -1 -1 -1u ,. o (w)

___
o (_, o()) .

It follows that r(U)

___
{g’ eS/G g U}, Q.E.D. sub-claim.

That r (U) is open follows directly from the sub-claim and the definition of
open sets in an upper semi-continuous decomposition space. So

--1 --1f(w) o o (w) (u)
and f is open.

4. f is continuous.
that -I(U) is open.

o (U) is open.

Let U be an open set in S’/G. Continuity of r implies
An application of the proof of the sub-claim shows that

-l(v f-l(vAnother application shows that rl o r o

is open, proving that f is continuous, Q.E.D. claim.
Since f is a homeomorphism of (S/G2)/G1 onto S/G and (S/G)/G1 S,

it follows that S/G S, Q.E.D. Lemma 2.
The following theorem is a corollary of Theorem 1 and Lemma 2; it

strengthens Theorem 1.

THEOREM 2. If G is an upper semi-continuous decomposition of S into point-
like sets and if for some countable ordinal a, G. is a decomposition of S such that
Ho (G H, (G and S3/G. S then S/G S.

Proof of Theorem 2. Let G1 {r (g) g e G} be a decomposition of Sa/G2,
where r is the natural map of S onto S/G.. Since Ho(G) H, (G) the
upper semi-continuity of G implies that of G and G.

Claim. H, (G1) 0.
Proof of claim. Suppose g e H,(G). Then g n lim sup H(G1) 0 for

-1 - (lim sup H (G1)) # 0 for all/ < a. Nowall/<a. Sor,. (g) nr2

-’ G,}-1 (lira sup H (G1)) lira sup H ({ (g) g eqT2

SO

lim sup H(Ig" g eHo(G) H,(G)} lim sup H(G),

-1
r,. (g) n lim sup H (G) # 0 for all/ < a.

--1 --1 -1 (H0 (G1)) H0 (G) H, (G),This implies (g) H,(G); but . (g) 2
a contradiction, Q.E.D. claim.
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By Theorem 1, S3/G1 S’; so, by Lemma 2, S/G S, Q.E.D. Theorem 2.
The preceding theorem may be applied in a negative sense to show how

"bad" a decomposition G must be to have S/G S. The motivation for
this comes from consideration of the open question" Is there an upper semi-
continuous decomposition G of S whose non-degenerate elements are a count-
able number of tame cells and such that S3/G S?
THEOREM 3. Let G be an upper semi-continuous decomposition of S with a

countable number of point-like sets as nondegenerate elements such that S"/G S.
There is a subset F of Ho (G such that the decomposition G. of S with Ho (G2) F
i.s upper semi-continuous, S/G2 S", and H1 (G Ho (G ).

Proof of Theorem 3. Claim 1. There is a countable ordinal a0 such that
H,0+l (G) H,0 (G).

Proof of Claim 1. Suppose no such a0 exists. Then for all countable a,
there is a set g, e H,+I (G) H, (G). Since the sets H, (G) are nested, if
a / then g, g. So {g,},u is an uncountable set of distinct nondegen-
erate elements of G. A contradiction, Q.E.D. Claim 1.

LetH (G) F H0 (G.). Then H1 (G) H(H (G)) H+(G)
H, (G) Ho(G).

Claim 2. G_ is upper semi-continuous.
Proof of Claim 2. Let {g} =1 be any subset of G such that p e g and

{p}= converges to p0. Each g belongs to G so upper semi-continuity of G
implies existence of go e G such that lira sup {g/= -- go. Since each g
belongs to H, (G), if go is nondegenerate it belongs to H,0+l (G). But H,o/ (G)

H, (G) H0 (G:) so go e H0 (G)

___
G. and G is upper semi-continuous,

Q.E.D. Claim 2.
G S.Claim3 S /

Proof of Claim 3. Suppose S/G S. Then by Theorem 2, S’/G S",
a contradiction, Q.E.D. Claim 3 and Theorem 2.

In [1], Bing describes an upper semi-continuous decomposition G of E
such that E/G E which has a countable number of point-like sets (in this
case indecomposable continua) as nondegenerate elements. This decomposi-
tion has the same properties in S and Ho(G) H(G) so it serves as an illus-
tration of Theorem 3 with G G.
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