POINT-LIKE UPPER SEMI-CONTINUOUS DECOMPOSITIONS OF $S³$

BY

JOHN L. BAILEY¹

In this paper it is shown that point-like upper semi-continuous decompositions of $S³$ which satisfy certain conditions on the distribution of their nondegenerate elements are topologically equivalent to S^3 . In [3], J. F. Wardwell obtained similar results for arbitrary compact metric spaces but stronger hypotheses were necessary. The proof of Theorem ¹ of [2] by R. H. Bing is used to obtain a stronger result for S^3 . This proof shows that if for each arbitrary open set U containing the nondegenerate elements of a point-like upper semicontinuous countable decomposition G, if for each $\varepsilon > 0$ there exists a homeomorphism h of E^3 onto E^3 which shrinks each element of G into a set of diameter less than ε and which is fixed on $E^3 - U$, then $E^3/G = E^3$. It is easy to see the proof also applies to S^3 .

A point-like set in $Sⁿ$ is one whose complement is topologically equivalent to the complement of a point. For a decomposition G we define

 $H_0(G) = \{g \in G : g \text{ is nondegenerate}\},\$

and define recursively

 $H_k(G) = \{g \in H_0(G) : g \cap \limsup H_i(G) \neq \emptyset, \forall j < k\}$

This motivates a generalization for any ordinal number α :

 $H_{\alpha}(G) = \{g \in H_0(G) : g \cap \limsup H_{\beta}(G) \neq \emptyset, \forall \beta < \alpha\}.$

(In the following the symbol "=" will also mean "is homeomorphic to". It should be clear from the context when this is meant and when strict equality is meant.

Converting his results to the notation which I will use, J. F. Wardwell proved in [3]:

LEMMA. If G is an upper semi-continuous decomposition of a compact metric space M into point-like sets and there exists a positive integer k such that $H_k(G) = \emptyset$, then $M/G = M$.

THEOREM. If G is an upper semi-continuous decomposition of a compact metric space M into point-like sets, if $\bigcap_{i=0}^{\infty}$ (lim sup $H_i(G)$) is zero-dimensional, and if for some countable ordinal α , $H_{\alpha}(G) = \emptyset$; then $M/G = M$.

In Theorem 2 of this paper the above theorem is proved for S^3 with weakened hypotheses. Theorem 2 is applied in Theorem 3 to show how "bad" a point-

Received October 30, 1967.

Supported by ^a NASA traineeship.

like upper semi-continuous decomposition G of S^3 must be in order to have $S^3/G \neq S^3$.

The following Lemmas and Theorem lead up to Theorem 2.

DEFINITION. We will say that a decomposition G has $P(\alpha)$ when G has the property that for each open set U containing $H_0(G)$ and for each positive number ε there is a homeomorphism h of S^3 onto itself, fixed on $S^3 - U$, which shrinks each element of $H_{\alpha}(G)$ to diameter less than ε .

LEMMA 1. If G is a point-like upper semi-continuous decomposition of $S³$ with a countable number of nondegenerate elements and if there is a countable ordinal α such that G has $P(\alpha)$, then $S^3/G = S^3$.

Proof of Lemma 1. If G has $P(0)$, the proof of the lemma is the same as the proof of Theorem 1 of $[2]$. The method of proof will be to show that if G has $P(\alpha)$ for some α , then G has $P(0)$. Let U be an arbitrary open set containing $H_0(G)$ and ε an arbitrary positive number. The attack is to show that if h_n is a homeomorphism fixed on $S^3 - U$ which shrinks each element of $H_{\alpha_n}(G)$ to diameter less than ε , then there is an ordinal α_{n+1} less than α_n and a homeomorphism h_{n+1} , fixed on $S^3 - U$, which shrinks each element of $H_{\alpha_{n+1}}(G)$ to diameter less than ε . We assume for the moment that we can do this, and we suppose that G has $P(\alpha)$. We let $\alpha = \alpha_0$; h_0 will be the homeomorphism guaranteed by $P(\alpha)$ for U and ε . We proceed as indicated above to find a strictly decreasing sequence $\{\alpha_i\}$ of ordinals. Since every strictly decreasing sequence of ordinals is finite there will be a positive integer m such that $\alpha_m = 0$; h_m will be the homeomorphism which is fixed on $S^3 - U$ and which shrinks each element of $H_0(G)$ to diameter less than ε . This will show that G has $P(0)$. It now remains to prove the following:

SUB-LEMMA. Let U be an arbitrary open set containing $H_0(G)$ and ε an arbitrary positive number. If there is a homeomorphism h fixed on $S^3 - U$ which shrinks each element of $H_{\beta}(G)$ to size less than ε , then for some $\alpha < \beta$ there is a homeomorphism h^{**} fixed on $S^3 - U$ which shrinks each element of $H_{\alpha}(G)$ to diameter less than ε .

Proof of Sub-Lemma. (If $H_{\beta}(G) = \emptyset$, the homeomorphism h may be assumed to be the identity map. If this happens, G' as defined below is equal to $G.$)

Case I. β is not a limit ordinal. Then for some α , $\beta = \alpha + 1$.

Claim 1. Only a finite number of elements of $H_{\alpha}(G)$ have diameter greater than or equal to ε .

Proof of Claim 1. Because h is a homeomorphism, the decomposition $G' = \{h(q) : q \in G\}$ of S^3 is also upper semi-continuous and for any ordinal γ ,

$$
H_{\gamma}(G') = \{h(g) : g \in H_{\gamma}(G)\}.
$$

Thus if $g' \in H_{\beta}(G')$ the diameter of g' is less than ε . Now suppose there are

more than a finite number of elements of $H_{\alpha}(G')$ with diameter greater than or equal to ε . Pick a countable set of these and label it ${g'_i}_{i=1}^{\infty}$. For each i, pick a point p_i belonging to g'_i . Since S^3 is compact, the set ${p_i}_{i=1}^{\infty}$ has at least one cluster point p_0 . By upper semi-continuity of G' , p_0 must belong to an element of G' with diameter greater than or equal to ε . Call this element g_0' . But since p_0 is a cluster point of the p_i , g'_0 a lim sup $H_\alpha(G')$ is nonempty. This implies that $g'_0 \in H_\beta(G')$. But the diameter of g'_0 is not less than ε , a contradiction, Q.E.D. Claim 1.

Denote the elements of $H_{\alpha}(G')$ of diameter greater than or equal to ε by g'_{i} , ${}_{i=1}^{n}$. We shall now define h^{**} . Since no g_{i} belongs to $H_{\beta}(G')$ we can find mutually disjoint open sets ${V_i}_{i=1}^n$ such that for all $i, g_i \subset V_i \subset U$ and if $g \in H_{\alpha}(G')$, $g \neq g_i$, then $g \cap V_i = \emptyset$. Because each g_i is point-like it is possible to find a homeomorphism h_i of S^3 onto S^3 fixed on $S^3 - V_i$ such that the diameter of $h_i(g_i)$ is less than ε .

Now define

$$
h^*(x) = x \quad \text{if} \quad x \in S^3 - \bigcup_{i=1}^n V_i
$$

$$
= h_i(x) \quad \text{if} \quad x \in V_i.
$$

Since there are only a finite number of V_i , all are mutually disjoint, and each h_i is fixed on $S^3 - V_i$, h^* is a homeomorphism. If all elements of $H_\alpha(G')$ have diameter less than ε , h^* can be taken as the identity map.

Let $h^{**}(x) = h^*(h(x))$. Obviously, h^{**} is a homeomorphism. Let $g \in H_{\alpha}(G)$. If $g = h^{-1}(g'_i)$, then

diameter $(h^{**}(g))$ = diameter $(h^*(h(h^{-1}(g'_i))))$ = diameter $(h_i(g'_i)) < \varepsilon$.
 If $g \in H_1(G)$ $(h^{-1}(g_1))^n$ then $h(g) \in S^3$ h^{n+1} **V** g_2 If $g \in H_{\alpha}(G) = \{h^{-1}(g_i)\}_{i=1}^n$, then $h(g) \in S^3 - \bigcup_{i=1}^n V_i$, so

diameter $(h(q)) < \varepsilon$.

But $h^{**}(g) = h^{*}(h(g)) = h(g)$ so diameter $(h^{**}(g))$ homeomorphism of S^3 onto S^3 shrinking every element of $H_\alpha(G)$ to diameter less than ε . Since both h and h^* are fixed on $S^3 - U$, h^{**} is fixed there also.

Case II. β is a limit ordinal.

Claim 2. There is an $\alpha < \beta$ such that if $g \in H_{\alpha}(G)$, then the diameter of $h(q)$ is less than ε .

Proof of Claim 2. Suppose that for all $\alpha < \beta$ there is a $g_{\alpha} \in H_{\alpha}(G)$ such that diameter $(h(g_{\alpha})) \geq \varepsilon$. Pick a sequence of $\alpha_i < \beta$ such that $\lim_{i \to \infty} \alpha_i = \beta$. Pick $g_i \in H_{\alpha_i}(G)$ such that diameter $(h(g_i)) \geq \varepsilon$. For each i, pick $p_i \in h(g_i) \equiv g'_i$. The ${p_i}_{i=1}^{\infty}$ have an accumulation point p_0 since S^3 is compact and p_0 will belong to some g'_0 in G'. By upper semi-continuity of G', diameter $(g_0') \geq \varepsilon$. Observe that if $g \in H_\alpha(G)$ then $g \in H_\gamma(G)$ for all $\gamma < \alpha$. So, since $\lim_{i\to\infty} \alpha_i = \beta$,

$$
g_0' \cap \limsup H_\alpha(G') \neq \emptyset \quad \text{for all} \quad \alpha < \beta.
$$

Therefore $g'_0 \in H_\beta(\mathbf{G}')$ implying that $g_0 = h^{-1}(g'_0) \in H_\beta(G)$. This contradicts the hypothesis that diameter $(h(q)) < \varepsilon$ for all $q \in H_6(G)$, Q.E.D. Claim 2.

In this case h^{**} can be taken to be the identity map, Q.E.D. sub-lemma and lemma.

The lemma enables us to prove the following theorem, which is just Wardwell's theorem for S^3 with weakened hypothesis. Notice that the hypothesis that $H_{\alpha}(G)$ be empty in the following theorem necessarily limits G to at most a countable number of nondegenerate elements.

THEOREM 1. If G is an upper semi-continuous decomposition of $S³$ into pointlike sets and if there is a countable ordinal α such that $H_{\alpha}(G) = \emptyset$ then $S^3/G = S^3$.

Proof. G has $P(\alpha)$; the theorem follows from Lemma 1.

Theorem ¹ may be generalized by using the following lemma:

LEMMA 2. Let G and G_2 be upper semi-continuous decompositions of S^3 into point-like elements, and suppose the set of nondegenerate elements of G_2 is a subset of the set of nondegenerate elements of G. Let π_2 be the natural map of S^3 onto S^3/G_2 and let $G_1 = {\pi_2(g) | g \in G}$, a decomposition of S^3/G_2 . If $S^3/G_2 = S^3$ and $S^3/G_1 = S^3$, then $S^3/G = S^3$.

Proof of Lemma 2. The following situation arises:

$$
S^3 = S^3/G_1 = (S^3/G_2)\n\begin{array}{ccc}\n & & S^3 \\
& \downarrow & \\
S^3 & = S^3/G_2 & S^3/G \\
& \downarrow & \\
S^3 & = S^3/G_1 = (S^3/G_2)/G_1\n\end{array}
$$

 π , π_1 , and π_2 are natural maps as indicated. We define f taking $(S^3/G_2)/G_1$ onto S^3/G by $f(x) = \pi \circ \pi_2^{-1} \circ \pi_1^{-1}(x)$. Notice that upper semi-continuity of G and G_2 implies that of G_1 .

Claim. f is a homeomorphism.

Proof of claim. The proof consists essentially of using the definition of open sets in a decomposition space.

1. f is a function. Let x belong to $\frac{S^3}{G_2}$, $\frac{\pi^{-1}}{G_1(x)}$ is a single element of G_1 , the decomposition of S^3/G_2 . By definition of G_1 , $\pi_1^{-1}(x) = \pi_2(g)$ for some $g \in G$. Therefore $\pi_2^{-1} \circ \pi_1^{-1}(x) = g$, for some $g \in G$. So $\pi \circ \pi_2^{-1} \circ \pi_1^{-1}(x)$ is a single point of S^3/G and f is a well-defined function.

2. f^{-1} is a function from S^3/G to $(S^3/G_2)/G_1$. Notice that

$$
\pi_1 \circ \pi_2 \circ \pi^{-1} \circ f = f \circ \pi_1 \circ \pi_2 \circ \pi^{-1} = \text{identity map},
$$

so $f^{-1}(x) = \pi_1 \circ \pi_2 \circ \pi^{-1}(x)$. If x belongs to S^3/G , then $\pi^{-1}(x) = g$, a unique element of G. Thus $\pi_2(g)$ belongs to \bar{G}_1 , so $\pi_1 \circ \pi_2(g) = \pi_1 \circ \pi_2 \circ \pi^{-1}(x)$ is a unique point of $(S^3/G_2)/G_1$. Thus f^{-1} is a well-defined function. This shows directly that f is one-to-one and onto.

In parts three and four g will denote an element of a decomposition, g' the corresponding point of the decomposition space.

3. f is open. Let W be an open set in $(S^3/G_2)/G_1$. Since π_1 and π_2 are continuous, $U = \pi_2^{-1} \circ \pi_1^{-1}(W)$ is open.

Sub-claim. $\pi(U) = \{g' \in S^3/G : g \subseteq U\}.$

Proof of sub-claim. (1) It is clear that

$$
\pi(U) \supseteq \{g' \in S^3/G : g \subseteq U\}
$$

(2) Let
$$
g' \in \pi(U)
$$
. This implies $g \cap U \neq \emptyset$ and $\pi_1 \circ \pi_2(g) \in W$. So

$$
\pi(U)
$$
. This implies $y \cap U \neq y$ and $\pi_1 \circ \pi_2(y)$
\n $U = \pi_2^{-1} \circ \pi_1^{-1}(W) \supseteq \pi_2^{-1} \circ \pi_1^{-1}(\pi_1 \circ \pi_2(g)) = g.$

It follows that $\pi(U) \subseteq \{g' \in S^3/G : g \subseteq U\}$, Q.E.D. sub-claim.

That $\pi(U)$ is open follows directly from the sub-claim and the definition of open sets in an upper semi-continuous decomposition space. So

$$
f(W) = \pi \circ \pi_2^{-1} \circ \pi_1^{-1}(W) = \pi(U)
$$

and f is open.

4. *f is continuous*. Let U be an open set in S^3/G . Continuity of π implies that $\pi^{-1}(U)$ is open. An application of the proof of the sub-claim shows that $\circ \pi^{-1}(U)$ is open. Another application shows that $\pi_1 \circ \pi_2 \circ \pi^{-1}(U) = f^{-1}(U)$ is open, proving that f is continuous, Q.E.D. claim.

Since f is a homeomorphism of $(S^3/G_2)/G_1$ onto S^3/G and $(S^3/G_2)/G_1 = S^3$, it follows that $S^3/G = S^3$, Q.E.D. Lemma 2.

The following theorem is a corollary of Theorem ¹ and Lemma 2; it strengthens Theorem 1.

THEOREM 2. If G is an upper semi-continuous decomposition of $S³$ into pointlike sets and if for some countable ordinal α , G_2 is a decomposition of S^3 such that $H_0(G_2) = H_\alpha(G)$ and $S^3/G_2 = S^3$ then $S^3/G = S^3$.

Proof of Theorem 2. Let $G_1 = {\pi_2(g) : g \in G}$ be a decomposition of S^3/G_2 , where π_2 is the natural map of S³ onto S^3/G_2 . Since $H_0(G_2) = H_\alpha(G)$ the upper semi-continuity of G implies that of G_1 and G_2 .

Claim. $H_{\alpha}(G_1) = \emptyset$.

Proof of claim. Suppose $g \in H_\alpha(G_1)$. Then g n lim sup $H_\beta(G_1) \neq \emptyset$ for all $\beta < \alpha$. So $\pi_2^{-1}(g)$ n π_2^{-1} (lim sup $H_\beta(G_1)$) $\neq \emptyset$ for all $\beta < \alpha$. Now
 π_2^{-1} (lim sup $H_\beta(G_1)$) $\neq \emptyset$ for all $\beta < \alpha$. Now

 $\pi_2^{-1}(\limsup H_{\beta}(G_1)) = \limsup H_{\beta}(\{\pi_2^{-1}(g) : g \in G_1\})$

$$
= \limsup H_{\beta}(\{g : g \in H_0(G) - H_{\alpha}(G)\}) = \limsup H_{\beta}(G),
$$

SO

$$
\pi_2^{-1}(g) \text{ n lim sup } H_\beta(G) \neq \emptyset \text{ for all } \beta < \alpha.
$$

This implies $\pi_2^{-1}(g) \in H_\alpha(G)$; but $\pi_2^{-1}(g) \in \pi_2^{-1}(H_0(G_1)) = H_0(G) - H_\alpha(G)$, a contradiction, Q.E.D. claim.

By Theorem 1, $S^3/G_1 = S^3$; so, by Lemma 2, $S^3/G = S^3$, Q.E.D. Theorem 2. The preceding theorem may be applied in a negative sense to show how "bad" a decomposition G must be to have $S^3/G \neq S^3$. The motivation for this comes from consideration of the open question: Is there an upper semicontinuous decomposition G of S^3 whose non-degenerate elements are a countable number of tame cells and such that $S^3/G \neq S^3$?

THEOREM 3. Let G be an upper semi-continuous decomposition of S^3 with a countable number of point-like sets as nondegenerate elements such that $S^{\prime}/G \neq S^3$. There is a subset F of $H_0(G)$ such that the decomposition G_2 of S^3 with $H_0(G_2) = F$ is upper semi-continuous, $S^3/G_2 \neq S^3$, and $H_1(G_2) = H_0(G_2)$.

Proof of Theorem 3. Claim 1. There is a countable ordinal α_0 such that $H_{\alpha_0+1}(G) = H_{\alpha_0}(G).$

Proof of Claim 1. Suppose no such α_0 exists. Then for all countable α , there is a set $g_{\alpha} \in H_{\alpha+1}(G) - H_{\alpha}(G)$. Since the sets $H_{\alpha}(G)$ are nested, if $\alpha \neq \beta$ then $g_{\alpha} \neq g_{\beta}$. So $\{g_{\alpha}\}_{{\alpha} \in \Omega}$ is an uncountable set of distinct nondegenerate elements of G. A contradiction, Q.E.D. Claim 1.

Let $H_{\alpha_0}(G) = F = H_0 (G_2)$. Then $H_1 (G_2) = H_1 (H_{\alpha_0}(G)) = H_{\alpha_0+1}(G)$ $H_{\alpha_0}(G) = H_0(G_2).$

Claim 2. G_2 is upper semi-continuous.

Proof of Claim 2. Let ${g_i}_{i=1}^{\infty}$ be any subset of G_2 such that $p_i \in g_i$ and ${p_i}_{i=1}^{\infty}$ converges to p_0 . Each q_i belongs to G so upper semi-continuity of G implies existence of $g_0 \in G$ such that $\limsup \{g_i\}_{i=1}^{\infty} \subseteq g_0$. Since each g_i
belongs to $H_{\alpha_0}(G)$, if g_0 is nondegenerate it belongs to $H_{\alpha_0+1}(G)$. But $H_{\alpha_0+1}(G)$
= $H_{\alpha_0}(G) = H_0(G_2)$ so $g_0 \in H_0(G_2) \subseteq G$ belongs to $H_{\alpha_0}(G)$, if g_0 is nondegenerate it belongs to $H_{\alpha_0+1}(G)$. But $H_{\alpha_0+1}(G)$ $H_{\alpha_0}(G) = H_0 (G_2)$ so $g_0 \in H_0 (G_2) \subseteq G_2$ and G_2 is upper semi-continuous, Q.E.D. Claim 2.

Claim 3. $S^3/G_2 \neq S^3$.

Proof of Claim 3. Suppose $S^3/G_2 = S^3$. Then by Theorem 2, $S^3/G = S^3$, a contradiction, Q.E.D. Claim 3 and Theorem 2.

In [1], Bing describes an upper semi-continuous decomposition G of E^3 such that $E^3/G \neq E^3$ which has a countable number of point-like sets (in this case indecomposable continua) as nondegenerate elements. This decomposition has the same properties in S^3 and $H_0(G) = H_1(G)$ so it serves as an illustration of Theorem 3 with $G_2 = G$.

REFERENCES

- 1. R. H. BING, Point-like decompositions of $E³$, Fund. Math, vol. 50 (1962), pp. 431-453.
- 2. \longrightarrow , Upper semi-continuous decompositions of $E³$, Ann. of Math., vol. 65 (1957), pp. 363-374.
- 3. J. F. WARDWELL, Continuous transformations preserving all topological properties, Amer. J. Math., vol. 58 (1936), pp. 709-726.

UNIVERSITY OF TENNESSEE KNOXVILLE, TENNESSEE