ABELIAN »-GROUPS WITHOUT PROPER ISOMORPHIC PURE
DENSE SUBGROUPS

BY
G. S. Monk'

Introduction

This paper is concerned with finding abelian p-groups G, without non-zero
elements of infinite height, that have the property that if H is a pure dense
subgroup of G which is isomorphic to G, then H = @. This, of course, is a
generalization of the problem, first solved by Crawley [2] and later considered
by Pierce [8] and Hill and Megibben [5], of finding p-groups G without any
proper isomorphic subgroups whatsoever.

In §1 we show that the problem reduces completely to one on the socle of
the group and that it can be solved in several cases. Furthermore, as a corol-
lary to this work, we extend a result of Hill and Megibben on the existence of
groups without proper isomorphic subgroups [5; Theorem 6.3]. In §3 we show
that the class of groups we are interested in is contained in a class studied by
Pierce in [8], namely, those groups G such that the Jacobson radical of the
endomorphism ring of G is equal to the ideal of height increasing endo-
morphisms of G. Furthermore, these classes are identical for groups with
bounded Ulm invariants but not, in general, otherwise.

Unless otherwise stated, all groups referred to will be p-groups (for a fixed
p) without non-zero elements of infinite height. Topological statements will
be with respect to the p-adic topology. The torsion subgroup of the comple-
tion with respect to the p-adic topology of a group G will be denoted by G
and called the torsion completion of G. If G = @, then G will be called closed.
The height and order of an element ¢ will be denoted by %(g) and o(g) re-
spectively. If 0(g) = p™, then we will write e(g) = m. The endomorphism
ring of a group G will be denoted by E(G). Finally, the set theoretic dif-
ference of two groups A and B (such that A D B) will be denoted by A\B
and the cardinal 2% will be written as c.

1. Groups without proper isomorphic pure dense subgroups

(1.1) DerminiTioN. An endomorphism « on a group G will be called an
isometry if « is one-to-one and a (@) is pure in @. The endomorphism o will
be called dense if a (@) is dense in G.

(1.2) TurorREM. A dense isometry on a closed group is onto.

Proof. If ais a dense isometry on the closed group C, then a(C) is a direct
summand of C and C/a(C) is divisible. Thus C = a(C) & D for some divis-
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ible subgroup D. Inasmuch as a group without elements of infinite height
can have no non-trivial divisible subgroups, D = (0) and a(C) = C.

To find other groups on which every dense isometry is onto we first show that
the problem reduces to the socle.

(1.3) Lemma. The following conditions are equivalent for an endomorphism
aon a group G.

1) hla(x)) = h(x) for every x € G[p].

(i) Ala(x)) = h(x) for every z ¢ G.

(iii) o s an isomeiry on G.

Proof. That (i) implies (iii) and (iii) implies (i) is trivial. Assuming
that (i) holds, we can show, by induction on e(x), that (ii) holds. If
m = h(x) < h(a(z)), then h(pa(zx)) = m + 2, h(pz) > m + 2 and
& = p™y + 2z for some z ¢ G[p]. Inasmuch as a(z) = a(x) — p""a(y), we
infer that h(a(z)) > m + 1, so that by (@), A(2) = m 4+ 1. But then
h(x) = m + 1, a contradiction.

(14) LemMmA. An isometry o on a group G s dense if and only if «(G[p])
18 dense in G[p].

Proof. If a(G) is dense in @, e G[p] and ¥ is any natural number, there is
an element y in G such that A (x — a(y)) = k,

h(py) = h(pa(y)) 2 &k + 1

andy = p"w + 2z withz e G[p]. Thenh(x — a(z)) > k with z e G[p] as was to
be shown.

Conversely, assuming that a (G[p]) is dense in G[p], we can show by induc-
tion on ¢ (z), that for any natural number k, there is an element y e G such that
h(z — a(y)) =2 k. For z ¢ G, there exists w e G such that

h(pr — a(w)) >k + 1.
But then & (w) = h(a(w)) = 1, whence w = pw’ for some w’ ¢ G, and
hp —a@))) 2k +1
so that z — a(w’) = p"u + 2 with z ¢ G[p]. Thus
hx —aWw) —2) 2k

and since z ¢ G[p], there is an element » ¢ G[p] such that A(z — a(v)) > k.
Consequently,
h@—a +v)) 2k

and w’ + v is the desired element.
It is well known that a fixed endomorphism « on a vector space V over a field
F induces an F[X] module structure on V by

FX)v = fla)@)
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for all f(X) e F[X]. Given an endomorphism « on a group G, we can therefore
speak of the Z,[X] module structure on G[p] induced by o, or say that G[p]
is to be viewed as a Z,[X] module through a.

(1.5) LemMA. If the group G has finite Ulm invariants, then every isometry
a on G s dense.

Proof. Given z e G[p] and a natural number &, observe that o induces an
endomorphism o on the finite dimensional vector space (G[p])/ ((*G)[p]), so
that there is a polynomial f(X) in Z,[X] such that

7@) (@p)/ (@'®)p])) = 0
f@)@lpl) S @'@)p].
Suppose, for our fixed z, that g (X) e Z,[X] is of least degree such that
g() () ¢ @"@)Ipl.
Then g must have a non-zero constant term, for otherwise

g(a) (@) = agi(a) ()

for some ¢; € Z,[X] which, since
h(gi(a) (@) = h(agi(a)(@)) 2k
contradicts the minimality of the degree of g. Thus g can be written as

g(X) =2 a: X'

or

with ao 5 0, whence
& — a(X (—ai/a)a’ (z)) ¢ (0°G)[p]
and >my (—ai/a)a’ () is the desired element.
We recall that if « is an endomorphism on a group @, it has a unique exten-
sion & to G which is given by
a(x) = lim; a(z:)
where {x:}i=1 is any sequence in G such that z = lim; z;.

(1.6) Lemma. If ais a gense 1sometry on the group G, then its extension
@ to G is a dense isometry on G.

Proof. Since a(@) 2 a(G), a(G) is dense in G and G is dense in G, it fol-
lows immediately that @(G) is dense in G. If z ¢ G[p] and # = lim; g; with
g € G for every 4, observe that there is a subsequence {g;}io Of {g} im0 With
z = lim; g:, g: e Glp] and k(gi) < h(z) for every 5. Inasmuch as

h(z(@)) < sup: {h(a(g))} = sup: {h(gi)} < h(z)

we conclude that @ is an isometry.
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(1.7) Tueorem. If the group G has the property that (G[p])/ (Glp]) 7s
finite, then every dense isometry on G is an automorphism.

Proof. If ais a dense isometry on G, then by 1.6 and 1.2, its extension & to
@G is an automorphism of G. The induced map & on G[p]/G[p] is then onto
and hence one-to-one, since this quotient group is finite. Now, given z ¢ Q[p],
there is an element y e G[p] such that @(y) = . But since & is one-to-one, y
must also be in G[p] and « is onto G[p]. Inasmuch as the purity of «(G) im-

plies that « (G) is a maximal subgroup supported by « (G[p]), we conclude that
a(@) = G.

(1.8) DemniTION. Given a property (P) for endomorphisms on a vec-
tor space, we will say that the endomorphism « of the group @ eventually has
(P) if there is a natural number » such that a | ((p"G)[p]) has the property
P).

We recall the definitions, given by Kaplansky in [7], that an endomorphism
a of a vector space V over a field F is algebraic (locally algebraic) if V is
bounded (torsion) when viewed as an F[X] module through c.

(1.9) LemMma. An eventually locally algebraic one-to-one endomorphism a
on a group G is onto under either of the following two conditions: (i) a is a dense
isometry; (i) G has finite Ulm invariants.

Proof. First observe that if « is a one-to-one map on a group G and for a
given z in G[p], f(X) = D> 7 a; X' is a polynomial in Z,[X] of smallest degree
such that f(a) (z) = 0, then ay £ 0 and

z = a(Qt (—a/a)a’ " )).

For the proof of (i), we infer from this observation that for some natural
number k, o ((@*@)[p]) = (*@)[p]. But then for z e G[p], there is an element

y € G[p] such that
z — a(y) e @A)l = a(@*@)p])

so that, by letting 2 ¢ G[p] be such that x — a(y) = a(z), it follows that
z = a(y +2). Thus a(G[p]) = G[p] and, as in the proof of (1.8), since « is
an isometry, a(G) = G.

For (ii), suppose that « is locally algebraic on (pG)[p]. Since G has finite
Ulm invariants, it follows, as in the proof of (1.5), that there is a polynomial
f(X) € Z,[X] such that f(a) (G[p]) S (®*G)[p]. Therefore, a is locally alge-
braic on Gfp]. Thus, by our observation above, for each « ¢ G[p],

z = a(2 i (—ai/a)e’™ (z))

for some {a;}i=oin Z,. Hence o maps each (p"G)[p] onto itself and we infer
by a theorem of Pierce [8; 13.1] that « is an automorphism.

Thus we can produce groups without proper isomorphic pure dense sub-
groups or even without any proper isomorphic subgroups at all by finding
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groups all of whose endomorphisms are eventually locally algebraic. Follow-
ing closely the technique of Hill and Megibben [5], we will show that there are
many such groups.

In fact, we begin by citing a result in [5, Corollary 6.2].

(1.10) LemMma. If o 7s an endomorphism of a closed group C and if S is a
subsocle of C' such that | (C[p])/S| < ¢ and | a(S)| < c, then a s eventually
Oon C.

The following lemma is essentially a part of the proof of Theorem 6.3 in [5].
For the sake of completeness, we give its proof here.

(1.11) Lemma. Let W be a subspace of the vector space V over a field F and
let o be an endomorphism of V such that a(W) & W. Then either
(a — )(V) € W for some teF, or there is an element veV such that

{(W, @), («@))} L.

Proof. Denoting by a1, the endomorphism of V/W induced by «, we see
that the lemma is equivalent with the assertion that either (o, — ¢) (V/W) =0
for some teF, or there is an element 7¢ V/W such that { (7, (aa(?))} L.
However if there does not exist 7 ¢ V/W such that { (§), (a1 (5))} L, then every
element 7 ¢ V/W is an eigenvector for oy , whence a; is constant and there is an
element ¢ in F such that (u — ¢)(V/W) = 0.

(1.12) TuroreEM. Let C be a closed unbounded group with a countable basic
subgroup. Then there is a dense subsocle S of C, of infinite index in C[p], such
that for every pure dense subgroup G supported by S, every endomorphism of G s
algebrazc.

Proof. Since the basic subgroup B of C is countable, there are at most ¢
endomorphisms of C which are not eventually algebraic, and we can index this
set by {¢a}a<s Where u is an ordinal which does not exceed the first ordinal of
cardinality c.  'We now choose, inductively, a collection of elements {%a}a<, in
C[p] such that

{B[p]) (xa)y (‘Pa(xa))}aq; L.

If {Za}a<n has been chosen for A < u, view C[p] as a Z,[X] module through
ox and let W be the Z,[X] submodule of C[p] generated by { B[p], Ta , ¢a(Ta)}a<r -
Then, by 1.11, either there is an element 2\ ¢ C[p] such that

1) {B[p]’ (), (¢a(xa))}a<k 4
or
@) (e —=8)(Clph) S W

for some ¢t e Z, . But since B[p] is countable, A has fewer than ¢ predecessors,
and Z,[X] is a countable ring, W is of cardinality less than ¢. In view of
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(1.10) then, (2) implies that ¢ is eventually algebraic, which is a contradiction
and (1) holds, as was to be shown.

Thus, if we take S = Blp] ® (@ D_a<s (@) and G is a pure dense subgroup
such that G[p] € 8 and ¢ is an endomorphism of G, it cannot be that
¢ (Te) = ¢a(xa) for any a < p. Consequently, ¢ 5 ¢, for all & < u and ¢ is
eventually algebraic.

The following theorem, when taken with 1.9, contains an extension of
Theorem 6.3 in [5].

(1.13) TurorEM. Let C be a closed group with a countable basic subgroup
and let S be a proper dense subsocle of C of cardinality c. Then S supports a
pure dense subgroup G of C such that every endomorphism of G is eventually
algebraic.

Proof. Index the set of endomorphisms of C that leave S invariant but are
not eventually algebraic by {¢.}«<s Where u does not exceed the first ordinal of
cardinality ¢. 'We will inductively construct an ascending chain of subgroups.
{Ta}acs of C such that for every @ < u, (i) |Te| < No + ||, (i) Talp]
C pCn 8, (ii) If G is a subgroup of C such that T, S G and G[p] S S,
then ¢, (G) ¢ G-

Assuming that Ts has been given for every ordinal 8 < «, view C[p] as a
Z,[X] module through ¢, and let W be the submodule of pC n S generated by
Us<a (Ts[p]). Note that routine arguments yield that | Usca Ts| < No + ||
and |[W| < Ny + |a|. To form T, we apply 1.11 to the Z,-space pC' n S,
its subspace W and the endomorphism ¢, to consider two cases.

Case 1. There is an element z ¢ (pC) n S such that

{(W, ), (pa(®))} L.
Choose z € C[p]\S and 2’ ¢ C such that pz’ = z. Letting
To = (Upca Tg) + (@) + (0a(@’) — 2),

it is easily seen that | T | < No + ||, and To[p] S (C)n 8. Further, if
G is a subgroup containing T, such that Gp] € 8§ and ¢.(@) S G, then
2, ¢a(x') and ¢. (') — 2 are in G, whence z ¢ G[p] < 8, a contradiction. Thus
T, is the desired subgroup.

Case 2. There is an element ¢ € Z, such that

3) (pa — ) ((@C)n8) &S W.
Inasmuch as | S| = ¢, [(Clp])/ ((@C)[p])| = N0, and
S/((C)n8) = 8/((@C)lpln8) = (S + (C)p])/((@C)Ip])

= (Clp])/ ((@C)IpD),

it must be that | pCn S| = ¢. If we let K be the kernel of ¢, — ¢ restricted
to (pC)n S we then have, in view of (1) and the fact that | W| < ¢, that
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| K| = ¢. Thus we can choose z ¢ K\ (K n W) and, letting 2’ be such that
px’ = x, we have an element with the properties

“) e@) =2, pa'eS\W, (¢« — t)(@)eClpl.
We wish to show next that there is an element y ¢ C[p] such that
(5) (e — t) (&' + y) e CPI\S.

If there isno such element, then, for every y ¢ C[p],
(‘Pa - t) (27’ + y) eS»

whence
(¢a — 8)CP] S ((0a — ) (@')) + 8,
and
(6) (¢a — 1)’Clp] S ((0a — )*@")) + (0a — t)(S).

Writing the subgroup S as 8 = U @ ((pC)n 8), with U countable, we see
that

(e — 1) (8) S (0a — )(U) + (a — £)((pC) N 8)
S (e —t)(U)+ W.
We infer, then, from (6) that

(¢a = OCH] S ((0a = 1)'@)) + (pa — ) (U) + W.

Inasmuch as the cardinality of the right hand side of this formula is less than
¢, we conclude from 1.10 that ¢, is eventually algebraic, a contradiction.
Thus, an element y with the property (5) exists. Let

Te = (Up<a Ts) + @ + y).
Clearly, | Ta| < |a] + No. It is readily checked, using (4), that

Tulp] S pCn 8.

Now, if G is a subgroup of C such that G[p] S S, T. € G and ¢.(G) < G,
then
¥+ yeG, (pa— 1)@ +y)eGp] S8,

and the property (2) is contradicted.

We have therefore constructed the desired chain of subgroups. Now choose
a maximal subgroup @ of C such that G[p] = S and T, & G, for every a < u.
Then G is neat with a dense subsocle, whence it is pure and dense in C' (see
[4; Theorem 1]). Since @ does not admit any of the endomorphisms {¢a}a<y ,
every endomorphism of @ is eventually algebraic, as was to be shown.

We close this section with the remark that the subsocle S in (1.13) cannot
be taken to be countable because a group with a countable socle is itself count-
able and as we shall see in §3, such a group always has a dense isometry which
is not onto. It seems (to this author) doubtful that the conclusion of 1.13
could be obtained in case the cardinality of S is uncountable but less than c.
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2. A counterexample

We show in this section the (not very surprising) fact that the condition
that (G[p])/ (G[p]) be finite in (1.7) cannot be weakened. We include this
counterexample not only for its own sake but because, as we shall show, its
construction sheds some light on a problem posed by Pierce.

We fix for this section the following notation:

B = @ > i (b;) such that e(b;) = 7 + 1,

ae B given by a(b;) = b; + pb¢+1 ,

Blp] is a Z,[X] module through a.

(2.1) Lemma. Given f e Z,[X] such that f(1) £ 0, then f(a) 78 an isomelry
on Blp)].

Proof. Iff(X) = D> ma;X'andB = a — 1, then

fla) = 20t0a:i + Bg(B) = f(1) + B9 (8)
where g € Z,[X]. Then, for z ¢ G[p],

h(f(e) (@) = h(FQL)z + Bg(B) (x)) = h(z),

h(Bg(B)@)) > h(g(B) (=) 2 h(=).

(2.2) TueorEM. There is a dense subsocle S of B such that 2 (8) S 8, o is
not onto S and (B[p])/S s a countable injective Z,[X] module.

Proof. We first note that B[p] is a torsion-free Z,[X] module. To see this,
observe that it suffices to show that f(«) is one-to-one on B[p] for every prime
feZ,[X]. Iff(1) £ 0, then by (2.1), f(e) is an isometry and hence is one-to-
one. Iffisprimeandf(1) = 0, thenf(a) = r(a — 1) with r ¢ Z, , 5o that if,
forr;eZ (1 =0,1,2,--+),

f@) (X5 ribs) =0

r(200 ripbys) = 0

and p™™ | rr; for every <. Therefore, either r = 0 or X imo7:b; = 0.

Since B[p] is an uncountable torsion-free module and Z,[X] is countable,
B[p] is of uncountable torsion free rank. Further, since B[p] is of countable
rank, the module 4 = (B[p)])/ (B[p]) is of infinite rank. We have, therefore,
a Z,[X] monomorphism p

0— (& 2iwZ,X]) 5 M.

On the other hand, since Z,(X ), the ring of rational funections, is countable
and @ D im0 Z,[X] is a free Z,[X] module of countable rank, there is an
epimorphism o

since

then

4+l I

(@ X0 Z,[X]) 5 Z,(X) — 0.

However, since Z,(X) is injective, the epimorphism ¢ can be lifted to an epi-
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morphism 7 of M onto Z,(X), so that we have the commuting diagram

(@ Sz0x) > m.
a& T
Z,(X)

Viewing Z,[X] as a submodule of Z,(X), let
N ={m GM[T(m) eZp[X]}:

and let S be the subsocle of Bip] containing B[p] such that S/ (B[p]) = N.
Clearly 8 is dense in B[p] since it contains B[p]. Inasmuch as

o 1 e B/ BID) _ o
(Blpl)/S = S/(Blp)) =M/N = (Z, (X))/(Z, [X]),

(BIp])/S is countable and injective.
Since 7 is an epimorphism, there is an element g e B[p] such that
(g + Blp]) = X",
Clearly, g ¢ S, but a(g) € S, because
m(a(g) + Blp]) = r(X-g + Bp]) = X-7(g + Blp]) = 1.
In view of the fact that « is a one-to-one map on B[p), we then conclude that
a does not map S onto S.

Thus to find a pure dense subgroup G of B such that « is a dense isometry
on G but is not onto, it would suffice to find a pure subgroup G of B such that
a(@) € Gand Glp] = S. That is, we must give an affirmative answer in this
case to the following problem posed by Pierce [6; p. 367]:

Let B be a basic group and P a subsocle of B such that Blp] £ P. Let ¢
be an endomorphism of B such that ¢ (P) € P. Does there exist a pure sub-
group G of B such that B € G, G[p] = P, and ¢ (@) < G?

Stringall shows in [9] that the answer to Pierce’s question is, in general, no.
However, it is not clear from the example he gives when, if ever, the answer
would be yes. We show next therefore:

(2.3) TurorEM. Let P be a dense subsocle of a closed group C and let ¢ be
an endomorphism of C such that o (P) & P. Then there s a pure dense sub-
group G of C such that ¢ (@) S G and Q[p] = P if and only if there is a sequence
of pairs of subgroups {H; , Gi}i= such that for i = 1,2,3, -+,

(a') Hl = C[p]’ Gl = P’

(b) Hiyn = {g eC|pgeGi,
(O) H;‘HG,'.H = Gi,

(d) Hi+ Gin = Hipa,

(e) «(G:) S Gi,e(H;) S H;.

Proof. For necessity, observe that if such a group G exists, then

G = Gp'1¢=1,2,---), Hi = C[p] and
Hiyy = {geC|pge@Gi, i=1,2---,
satisfy the conditions (a)-(e).
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On the other hand, given such a sequence of subgroups, take G = Ui-; G;.
Inasmuch as {Gi};=; forms an ascending sequence, @ is a subgroup of €' such

that ¢ (G) € G. Next note that repeated applications of (a), (¢) and (d)
yield

() GinClp] =P,G:+ Clp] = H;, fori =1,2,3,---.
We infer from the second of these formulas that pH; & pG:. Consequently,
Glp] = (Ui= Gi) n Clp] = Ui (Gin Clp]) = P,
GnpC = (Ui Gi) npC = UL (GinpC) C Uim pHiya © Uin pGis S pG.
Thus @ is a neat subgroup with P as its socle and G is pure and dense.

Remark. We see, then, that in order to find the group @G in Pierce’s problem,
it is necessary and sufficient to be able to carry out an inductive process.
Assuming the subgroups {H;, G:}i satisfying (a)-(e) are given, we obtain
Hyyy from (b) and the problem is to find Gia. Notice that by (b), Hey1/Gr
is a Z, vector space and by (e), it is a module over Z,[X] through &, the map
induced on Hj41/Gr by ¢. The conditions (¢)—(e) then require that Hy/G be
a direct summand of the Z,[X] module Hy1/Gr . It is easy to see, then, how
one could define endomorphisms so that even G, could not be found. Further,
this gives a hint of why we demanded that B[p]/S be an injective Z,[X] module
in (2.2).

2.4) TuroreM. There is a subgroup G of B such that Glp] = 8, a(G) S G
but o is not onto G.

Proof. Inasmuch as H; and Gy are given by the condition (a) in (2.3), we
must show that for {H;, G} satisfying (a)-(e), we can find Hyy1 and Gey .
As noted above, this reduces to showing that H;/Gy is a direct summand of the
Z o [X] module Hy1/Gr . It follows from condition (f) in the proof of 2.3 that
as abelian groups,

H:/Gy = (Blp])/S.

But this shows that H;/G; is a direct summand of Hi1/G;, since this iso-
morphism is clearly a Z,[X] isomorphism and by (2.2), (B[p])/S is an in-
jective Z,[X] module.

3. The Jacobson radical of E(G) and the height increasing
endomorphisms of G

In [8; §14] Pierce shows that for a group G, there is a ring homomorphism
of E(G) into a complete direct sum of endomorphism rings of vector spaces
over Z, which has as its kernel

H@G) = {pe E@)| k(o)) > h(x) for zeGp] and h(z) < «}.

He notes that the Jacobson radical J (@) of E(G) is contained in H (G) and
raises the question of when these two ideals are equal. We will show that this
question is closely related to those we have been considering.
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(3.1) TuroreM. If the group G has the property that every dense isometry
on G is onto, then H(G) = J(G). If, further, there is a finite bound on the Ulm
nwvariants of @G, then the converse also holds.

Proof. Since H (@) is an ideal in E (@), the condition that H (G) = J (@)
is equivalent with the condition that 1 — « be an automorphism for every o
in H(G). Thus the first part of the theorem would be established if we could
show that for a ¢ H (@), 1 — a is a dense isometry.

Given a ¢ H (@) and z e G[p], since A(x(x)) > h(x), we infer that
(A — a)(@)) =h@— a@)) = k),

whence by (1.3), 1 — «a is an isometry. For any z ¢ G[p] and any natural
number k,

z— (- a)(TH@) = & @) er6,

so that by (1.4), 1 — a is dense.

On the other hand, suppose @ has a finite bound on its Ulm invariants and
H(G) = J(@). Let o be a dense isometry on G. Then the endomorphism
induced by a on ((@*G)[p])/(®*'G)[p]) is one-to-one and hence an auto-
morphism. Thus, for each k, there is an integer m (k) (depending only on the
dimension of ((p*@)[p])/ ((**'G)[p]) such that af® = 1, where 1; is the
identity map on ((@*G)[p])/ ((»**'G)[p]) induced by the identity map 1 on G.
Since the number of distinct dimensions among the vector spaces

(@'OPD/ (@) b))

is finite, there is a common multiple m of the integers {m (k)| k = 0, 1,2, -- -},
so that for every k, 1 — (o)™ = 0. But clearly ()" = (¢")r and
I — @)= (1 —a"),sothat (1 —a™)x =0. Thusl — " e H(@) and
1 — (1 — &™) = o™ is an automorphism. But then o must also be an auto-
morphism and the proof is complete.

(38.2) CoroLLARY. If G 7s a countable group of unbounded order, then G has o
dense isometry which s not onto.

Proof. Inasmuch as, in our case, such a group must be the direct sum of
cyclic groups of unbounded order, we have by [8, Corollary 14.7] that
J (@) < H(G), whence by (3.1), G has a dense isometry which is not onto.

We show next that there is a group G with finite but unbounded Ulm in-
variants such that H (@) = J (@), while G has a dense isometry which is not
onto. For this we need the following theorem of A. L. S. Corner [1]:

(38.3) TurorEM (Corner). Let C be a closed p-group with unbounded count-
able basic subgroup B and let ® be a topologically separable closed subring of
E (C) such that ®(B) & B and such that for all positive integers m, ® satisfies the
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Sollowing:

(Cm) f @ €® is such that ¢ ((p"C)[p™]) = 0, for some n, then ¢ ¢ p™®.
Then there is a pure subgroup G of C such that B S G and

E@G) =% 0 E.(@@),
where o ¢ By (G) if and only if for each k, there is an n such that o ((p"G)[p*]) = 0.

Remark. The topology on E (C) referred to in this theorem is the p-adic
topology given by a neighborhood basis at 0 consisting of {p*E (C)}5=o -

With Corner, we note first that

(84) LeEmMMmA. Let R be a subring of E (C) that satisfies (C1). Then R satis-
fies (Cn) for every natural number m.

We fix for the remainder of this section the following notation:
B=& Z:—OE?-O (bni), e(bm‘) =n+ 1, 1= 0’ 1’ PR (]
a is the endomorphism on B given by

a®y) = bijq1, J<t
a(b;,-) = bio .
(38.5) TurorEM. The set

R = {Zip¥i(e)lfie2X1)

is a topologically separable closed subring of E (B) that satisfies (Cn) for every m
and s such that R (B) & B.

Proof. Tt is clear that R is a subring of E (C) which takes B into B.
Further, R is separable since it has

Ro = {fi(a) | f: e Z[X]}
as a dense subset. We show next that R, has the property (Ci). If

f(a) = Z’,Lor.' aieRo
f@)(@"B)lp]) = 0

for some n, then choosing m > k, n,
Z?—o 7P "bmi = Zf—o T o (@"bm) = 0,
which implies that forz = 0,1, --- , k, pri = r; for some r; in Z, and
fla) = p X tmoria’ e pRy.
From this we conclude that R satisfies (C1) since if

(S0 07:@) @"B)lpl = 0,

is such that
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then _
fo(@) ((@"B)[p]) = 0,
whence fo (o) = pfo(a) for some f3(X) ¢ Z[X] and
Yo pfi(a) = plfola) + i p fi(e)).
Thus, by (3.4), R satisfies (Cn) for every m.

Finally, suppose that 8¢ R~ (the closure of B). Then B8eR,. We will
form a sequence of polynomials {f;(X )} in Z[X] such that for each k

(B — 2tp¥i(@)) e P"ME(B).

Clearly, then 8 = %~ pfi(a) which isin R. First note that 8 ¢ Ry implies
that there is an fy(X) € Z[X] such that

B — fo(a) e pE(B).
Assuming that we have {f;(X)}%o with the property

(1) B — 2iwpfi(a) = Py e "E(B),
note that for some g (X) ¢ Z[X]
@) B = g(a) = p"™ 5 p"E(B).

Combining (1) and (2), we infer that
g(a) — Xiaopfi(a) = p™ (v — po),

(g(@) = 2w pfi(a)) (BIP*™]) = 0.
Since Ry has the property (Cit1), it follows that
g(a) — 20 p¥i(@) = p"frna (o),
with fi+1(X) € Z[X]. Thus
g(a) = ZZipYi(a),
and, combining this with (2), we get the desired result.

Now, applying Corner’s theorem, we obtain a pure dense subgroup G of B
such that B C G and

whence

E@G) = E.(G) ® R.

(3.6) TurorEM. The group G has the property that H(G) = J (@), but also
has a dense 1sometry which is not onio.

Proof. TFirst observe that for any endomorphism ¢ of G, ¢ = 8 + v with
BeE,(G) and vy eR. But since each v ¢ R, when applied to B[p], can be
written as f(a) with fe Z,[X], we infer that every endomorphism ¢ of @ is
eventually equal to f(a) for some f(X) € Z,[X].
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Now, if ¢ € H (G), there is an integer & such that
0= 2toaa’ on (0'G)[p),
with ¢;¢Z,,72 = 0,1, 2, -+, m. Then choosing n > m, £k,
@(P"bni) = 2005 @i P"baga1 + DoTonits G P"Dnpipnat -

On the other hand, since A (¢ (p"ba,;)) > n, it follows that ¢ (p"ba,;) = 0 for
j=0,---,n,and 1 — ¢ is eventually algebraic. However, as was pointed
out in the proof of (3.1), forpin H (@), 1 — ¢is an isometry. Thus, by (1.9),
1 — ¢ is an automorphism and H (@) = J (G).

Finally, note that « € R, so that « is an endomorphism of G. Further, since
« is clearly an isometry on B, we have by (1.5) and (1.6) that « is a dense
isometry on B. If a is onto, then o ¢ E (@) and there is an integer k such
that

= 2teaid’ on (P'@)p),
with aseZ,,4 = 0,1,2, -+, m. But then

1= >raa™ on ("G)p]

which leads to a contradiction by applying this map to p"ba, where n > k,
m + 1. Thus « is not onto and is the desired dense isometry.
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