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Introduction
This paper is concerned with finding abelian p-groups G, without non-zero

elements of infinite height, that have the property that if H is a pure dense
subgroup of G which is isomorphic to G, then H G. This, of course, is a
generalization of the problem, first solved by Crawley [2] and later considered
by Pierce [8] and Hill and Megibben [5], of finding p-groups G without any
proper isomorphic subgroups whatsoever.
In 1 we show that the problem reduces completely to one on the socle of

the group and that it can be solved in several cases. Furthermore, as a corol-
lary to this work, we extend a result of Hill and Megibben on the existence of
groups without proper isomorphic subgroups [5; Theorem 6.3]. In 3 we show
that the class of groups we are interested in is contained in a class studied by
Pierce in [8], namely, those groups G such that the Jacobson radical of the
endomorphism ring of G is equal to the ideal of height increasing endo-
morphisms of G. Furthermore, these classes are identical for groups with
bounded Ulm inwriants but not, in general, otherwise.

Unless otherwise stated, all groups referred to will be p-groups (for a fixed
p) without non-zero elements of infinite height. Topological statements will
be with respect to the p-adic topology. The torsion subgroup of the comple-
tion with respect to the p-adic topology of a group G will be denoted by
and called the torsion completion of G. If G , then G will be called closed.
The height and order of an element g will be denoted by h (g) and o (g) re-
spectively. If o (g) pro, then we will write e (g) m. The endomorphism
ring of a group G will be denoted by E (G). Finally, the set theoretic dif-
ference of two groups A and B (such that A B) will be denoted by A\B
and the cardinal 2u will be written as c.

1. Groups without proper isomorphic pure dense subgroups
(1.1) DEfinITION. An endomorphism on a group G will be called an

isometry if a is one-to-one and a (G) is pure in G. The endomorphism a will
be called dense if a (G) is dense in G.

(1.2) T.on.. A dense isometry on a closed group is onto.

Proof. If a is a dense isometry on the closed group C, then a (C) is a direct
summand of C and C/a (C) is divisible. Thus C a (C) D for some divis-
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ible subgroup D. Inasmuch as a group without elements of infinite height
can have no non-trivial divisible subgroups, D (0) and a (C) C.

To find other groups on which every dense isometry is onto we first show that
the problem reduces to the socle.

(1.3) LEMMA. The following conditions are equivalent for an endomorphism
a on a group G.

(i) h(a(x) h(x) for every x e G[p].
(ii) h(a(x) h(x) for every x e G.
(iii) a is an isometry on G.

Proof. That (ii) implies (iii) and (iii) implies (i) is trivial. Assuming
that (i) holds, we can show, by induction on e (x), that (ii) holds. If
m h(x) < h(a(x)), then h(pa(x)) >_. m - 2, h(px) _> m + 2 and
x p,+ly . z for some z e G[p]. Inasmuch as a (z) a (x) pm+la (y), we
infer that h(a(z)) > m -t- 1, so that by (i), h(z) > m -t- 1. But then
h (x) >_ m -t- 1, a contradiction.

(1.4) LEMMA. An isometry a on a group G is dense if and only if a (G[p])
is dense in G].

Proof. If a (G) is dense iu G, x e G[p] and k is any natural number, there is
an element y in G such that h (x a (y)) > k,

h(py) h(pa(y)) >_ q- 1

and y pw z with z e G[p]. Then h (x a (z)) > k with z e G[p] as was to
be shown.

Conversely, assuming that a (G[p]) is dense in G[p], we can show by induc-
tion on e (x), that for any natural number k, there is an element y e G such that
h (x a (y)) > k. For x e G, there exists w e G such that

h(px-- a(w)) >_ k - 1.

But then h (w) h (a (w)) > 1, whence w pw’ for some w’ e G, and
h(p(x- a(w’))) >_. k,-[- 1

so that x a (w’) pu - z with z G[p]. Thus

h(z- .(0’) z) >_

and since z e G[p], there is an element v G[p] such that h (z a (v)) >_ k.
Consequently,

h(x- ,(w’ + v)) >_

and w’ + v is the desired element.
It is well known that a fixed endomorphism a on a vector space V over a field

F induces an F[X] module structure on V by

f(X). f(.) ()
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for llf(X) e F[X]. Given n endomorphism a on group G, we cn therefore
spek of the Z,[X] module structure ca G[p] induced by a, or sy that G[p]
is to be viewed s Z,[X] module through a.

(1.5) LE. If the group G has finite Ulm invarian$s, then every isomery
x on G is dense.

Proof. Givea x e G[p] ad nturl number/c, observe that a induces a
endomorphism a’ on the finite dimensional vector spce (G[p])/((pG)[p]), so
that there is polynomial f(X) in Z[X] such that

f(a’) ((G[p])/((pG)[p])) 0
or

f(a) (G[p]) (pG)[p].
Suppose, for our fixed x, that g (X) e Z[X] is of least degree such that

g(a) (x) e (pG)[p].
Then g must hve non-zero constant term, for otherwise

for some g Z,[X] which, since

h (x)) h (x)) >
contradicts the minimality of the degree of g. Thus g can be written as

g (X) =o a X

with a0 # 0, whence

X O/(Z=I (--a,/ao)a’-(x))e (pG)[p]
and 7 (_a/ao)a- (x) is the desired element.

We recall that if a is an endomorphism on a group G, it has a unique exten-
sion to G which is given by

a(x) lim, a(x,)
where {x,} is any sequence in G such that x lim x,.

(1.6) LE2t. If a is a dense isometry on the group G, then its extension
a to 0 is a dense isometry on .

Proof. Since a (0)
_

a (G), a (G) is dense in G and G is dense in (, it fol-
lows immediately that a(O) is dense in O. If x e O[p] and x lim, g with
g e G for every i, observe that there is a subsequence {g,} -0 of {g,} -0 with
x lim g, g e G[p] and h (g,) _< h (x) for every i. Inasmuch as

h(a(x)) <_ sup, {h(a(g;))} sup, {h(g)} _< h(x)

we conclude that a is an isometry.
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(1.7) THEOREM. /f the group G has the property that (0[p])/(G[p]) is
finite, then every dense isometry on G is an automorphism.

Proof. If a is a dense isometry on G, then by 1.6 and 1.2, its extension a to
( is an automorphism of (. The induced map a on G[p]/G[p] is then onto
and hence one-to-one, since this quotient group is finite. Now, given x G[p],
there is an element y e G[p] such that a (y) x. But since is one-to-one, y
must also be in G[p] and a is onto G[p]. Inasmuch as the purity of a(G) im-
plies that a (G) is a maximal subgroup supported by a (G[p]), we conclude that
a(G) G.

(1.8) DE’INITION. Given a property (P) for endomorphisms on a vec-
tor space, we will say that the endomorphism a of the group G eventually has
(P) if there is’ a natural number n such that a ((p’G)[p]) has the property
(P).

We recall the definitions, given by Kaplansky in [7], that an endomorphism
a of a vector space V over a field F is algebraic (locally algebraic) if V is
bounded (torsion) when viewed as an F[X] module through a.

(1.9) IEMMA. An eventually locally algebraic one-to-one endomorphism a
on a group G is onto under either of the following two conditions: (i) a is a dense
isometry; (ii) G has finite Ulm invariants.

Proof. First observe that if a is a one-to-one map on a group G and for a
given x in G[p], f(X) 1aX is a polynomial in Z[X] of smallest degree
such that f(a) (x) 0, then a0 0 and

x a (_,’.. (’- a,/ao)a- (x)).

For the proof of (i), we infer from this observation that for some natural
number ]c, ((pG)[p]) (pG)[p]. But then for x G[p], there is an element
y e G[p] such that

x-- a(y)e (pG)[p] a((pG)[p])
so that, by letting z e G[p] be such tha x a(y) a(z), it follows that
x a (y -t- z). Thus a (G[p]) G[p] and, as in the proof of (1.8), since a is
an isometry, a(G) G.

For (ii), suppose that a is locally algebraic on (pG)[p]. Since G has finite
Ulm invariants, it follows, as in the proof of (1.5), that there is a polynomial
f(X) e Z[X] such that f(a)(G[p]) (pG)[p]. Therefore, a is locally alge-
braic on G[p]. Thus, by our observation above, for each x e G[p],

x a(..., (--a,/ao)a- (x))
for some {a}-0 in Z. Hence a maps each (p’G)[p] onto itself and we infer
by a theorem of Pierce [8; 13.1] that a is an automorphism.
Thus we can produce groups without proper isomorphic pure dense sub-

groups or even without any proper isomorphic subgroups at all by finding
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groups all of whose endomorphisms are eventually locally algebraic. Follow-
ing closely the technique of Hill and Megibben [5], we will show that there are
many such groups.

In fact, we begin by citing a result in [5, Corollary 6.2].

(1.10) LEM.. If a is an endomorphism of a closed group C and if S is a
subsocle of C such that (C[p])/S < c and In(S)[ < c, then a is eventually
Oon C.

The following lemma is essentially a part of the proof of Theorem 6.3 in [5].
For the sake of completeness, we give its proof here.

(1.11 LEptA. Let W be a subspace of the vector space V over a field F and
let a be an endomorphism of V such that a(W) W. Then either
(a t)(V) W for some eF, or there is an element v e V such that
{w, +/-.

Proof. Denoting by al, the endomorphism of V/W induced by a, we see
that the lemma is equivalent with the assertion that either (a t) (V/W) 0
for some e F, or there is an element e V/W such that {(, (al ())} _l_.

However if there does not exist e V/W such that (), (al ()) _1., then every
element e V/W is aa eigenvector for a, whence a is constant and there is an
element ia F such that (al t) (V/W) O.

(1.12) THEOREM. Let C be a closed unbounded group with a countable basic
subgroup. Then there is a dense subsocle S of C, of infinite index in C[p], such
that for every pure dense subgroup G supported by S, every endomorphism of G is
algebraic.

Proof. Since the basic subgroup B of C is countable, there are at most c
endomorphisms of C which are not eventually algebraic, and we can index this
set by {.},<, where u is an ordinal which does not exceed the first ordinal of
cardinality c. We now choose, inductively, a collection of elements {xa}.<, in
C[p] such that

{BIn], (x.), +/-.

If {xa}<x has been chosen for < t, view C[p] as a Z[X] module through
x and let W be the Z[X] submodule of C[p] generated by B[p], x, (x)},<.
Then, by 1.11, either there is an element xx e C[p] such that

(1) {Sip], (x,), (,(x,))},<x .1_

or

t)(C[p]) w
for some e Z. But since B[p] is countable, k has fewer than c predecessors,
and Z[X] is a countable ring, W is of cardinality less than c. In view of
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(1.10 then, (2) implies that is eventually algebraic, which is a contradiction
and (1) holds, as was to be shown.
Thus, if we take S B[p] @ (@ a< (x,) and G is a pure dense subgroup

such that G[p] S and is an endomorphism of G, it cannot be that
(x) a (xa) for any a < . Consequently, , for all a < and is

eventually algebraic.
The following theorem, when taken with 1.9, contains an extension of

Theorem 6.3 in [5].

(1.13) TEOaEM. Let C be a closed group with a countable basic subgroup
and let S be a proper dense subsocle of C of cardinality c. Then S supports a
pure dense subgroup G of C such that every endomorphism of G is eventually
algebraic.

Proof. Index the set of endomorphisms of C that leave S invariant but are
not eventually algebraic by {.},<, where does not exceed the first ordinal of
cardinality c. We will inductively construct an ascending chain of subgroups.
{T}< of C such that for every < , (i) T -< 0 + Is I, (ii) T,[p]_

pC n S, (iii) If G is a subgroup of C such that T, G and G[p]

_
S,

then (G) G.
Assuming that T has been given for every ordinal < a, view C[p] as a

Z[X] module through and let W be the submodule of pC n S generated by
[J< (T[p]). Note that routine arguments yield that [Ja<- TI - R0 + al
and WI

_
R0 -t- ]a ]. To form T, we apply 1.11 to the Z-space pC S,

its subspace W and the endomorphism to consider two cases.
Case 1. There is an element x e (pC) S such that

{w, (x), (.(,))} +/-.

Choose z e C[p]\S and x’ e C such that px’ x. Letting

T (tJ<. T) + (x’) + (.(x’) -z),

it is easily seen that T,I <: 0 - [a I, and T[p] (pC) n S. Further, if
G is a subgroup containing T, such that G[p] S and (G) G, then
x’, (x’) and Ca (x’) z are in G, whence z G[p] S, contradiction. Thus
Ta is the desired subgroup.

Case 2. There is an element e Z such that

(3) (q t) (pC) a S)

_
W.

Inasmuch as SI c, (C[p])/ (pC)[p])I o and

(pC) S) S/ (pC)[p] S) .. (S -]- (pC)[p])/ ( (pC)[p])

(C[p])/ (pC)[p]),

it must be that pC S c. If we let K be the kernel of , restricted
to (pC) S we then have, in view of (1) and the fact that WI < c, that
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Ki c. Thus we can choose x e K\ (K ,] W) and, letting x’ be such hat
px’ x, we have an element with the properties

(4) e (x’ 2, px’ S\W, (, (x/ ) C[p].

We wish to show next that there is an element y C[p] such that

(5) (, t)(x’ zr y e C[p]\S.
If there is no such element, then, for every y e C[p],

(=- )(z’ + y),
whence

and

(6) (,, t)C[p] (q t) (x’) ) q- ( t) (S).

Writing the subgroup S as S U ( ((pC)r, S), with U countable, we see
that

(= ) () (= ) (V) + ( ) ((pC). S)

+
We infer, then, from (6) that

(=- )’C[p] ((=- )’(’)) + (- )(V) + W.

Inasmuch as the cardinality of the right hand side of this formula is less than
c, we conclude from 1.10 that = is eventually algebraic, a contradiction.
Thus, an elemen y with the property (5) exists. Let

T= (U<= T) - (x’+ y).

Clearly, T - al -t- N0. It is readily checked, using (4), that

T,[p] pC r S.
Now, if G is a subgroup of C such that G[p] S, T. G and . (G) G,
then

x’ -t- y G, (,, (x’ q- y)G[p]

_
S,

and the property (2) is contradicted.
We have therefore constructed the desired chain of subgroups. Now choose

a maximal subgroup G of C such that G[p] S and T= G, for every a < .
Then G is neat with a dense subsocle, whence it is pure and dense in C (see
[4; Theorem 1]). Since G does not admit any of the endomorphisms {}<,
every endomorphism of G is eventually algebraic, as was to be shown.
We close this section with the remark that the subsocle S in (1.13) cannot

be taken to be countable because a group with a countable socle is itself count-
able and as we shall see in 3, such a group always has a dense isometry which
is not onto. It seems (to this author) doubtful that the conclusion of 1.13
could be obtained in case the cardinality of S is uncountable but less than c.
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2. A counterexample
We show in this section the (not very surprising) fact that the condition

that (G[p])/(G[p]) be finite in (1.7) cannot be weakened. We include this
counterexample not only for its own sake but because, as we shall show, its
construction sheds some light on a problem posed by Pierce.
We fix for this section the following notation:
B i0 (bl)such that e(b) i - 1,
a e B given by (b) b - pb+l,
B[p] is a Z[X] module through a.

(2.1) LEMMA.
on B[p].

Given f Z,[X] such that f (1) O, then f(a) is an isometry

If f(X) 1 as X and a 1, then

f(a) _,,"=oa,-+- g() f(1) q- #g(#)

where g e Z..[X]. Then, for x e G[p],

since
h(f(a)(x)) h(f(1)x - #g(#)(x)) h(x),

h(ae(a)(x)) > > h(x).

(2.2) THEOREM. There is a dense subsocle S of B such that a (S) S, a is
not onto S and (/[p])/S is a countable injective Z[X] module.

Proof. We first note that/[p] is a torsion-free Z,[X] module. To see this,
observe that it suffices to show that f(a) is one-to-one on B[p] for every prime
f Z,[X]. If f(1 ) 0, then by (2.1),f(a) is an isometry and hence is one-to-
one. If f is prime and f(1) 0, then f(a) r (a 1 ) with r e Z, so that if,
forreZ(i 0,1,2,...),

f r, 0
then

r(E7 r, pb,+) 0

and p+llrr for every i. Therefore, either r 0 or -0 ri b 0.
Since B[p] is an uncountable torsion-free module and Z[X] is countable,

B[p] is of uncountable torsion free rank. Further, since B[p] is of countable
rank, the module M (/[p])/(B[p]) is of infinite rank. We have, therefore,
a Z[X] monomorphism p

0 -- (@ :’,-o Z,[X]) Z. M.
On the other hand, since Z (X), the ring of rational functions, is countable
and -0 Z,[X] is a free Z,[X] module of countable rank, there is an
epimorphism a

ET-o (x) --, o.
However, since Z(X) is injective, the epimorphism a can be lifted to an epi-
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morphism r of M onto Z (X), so that we have the commuting diagram

&(x)

Viewing Z,[X] as a submodule of Z (X), let

N M
and let S be the subsocle of/}[p] containing B[p] such that S/(B[p]) N.
Clearly S is dense in B[p] since it contains B[p]. Inasmuch as

([[p])/S ._ (/[P])/(B[p]) =M/N (Z, (X) )/(Z, IX]),
S/(B[p])

([[p])/S is countable and in]eetive.
Since r is an epimorphism, there is an element g e/[p] such that

r (g q- B[p]) X-1.
Clearly, g e S, but a (g) e S, because

r(a(g) q- B[p]) r(Z.g q- B[p]) Z.r(g q- B[p]) 1.

In view of the fact that a is a one-to-one map on/[p], we then conclude that
a does not map S onto S.
Thus to find a pure dense subgroup G of/} such that a is a dense isometry

on G but is not onto, it would suffice to find a pure subgroup G of/} such that
a (G) G and G[p] S. That is, we must give an affirmative answer in this
case to the following problem posed by Pierce [6; p. 367]"

Let B be a basic group and P a subsocle of/} such that B[p]

_
P. Let

be an endomorphism of/} such that (P) P. Does there exist a pure sub-
group G of/ such that B G, G[p] P, and (G) G?

Stringall shows in [9] that the answer to Pierce’s question is, in general, no.
However, it is not clear from the example he gives when, if ever, the answer
would be yes. We show next therefore"

(2.3) TEOREM. Let P be a dense subsocle of a closed group C and let be
an endomorphism of C such that (P P. Then there is a pure dense sub-
group G of C such that (G) G and G[p] P if and only if there is a sequence
of pairs of subgroups {Hi, G} =o such that for i 1, 2, 3,

(a) HI C[p], G P,
(b) H,+, {g eC[pgeG,},
(c) Hr G+, G,
(d) H q- G+, H+,,
(e) o(G) g G, o(H) g H.
Proof. For necessity, observe that if such a group G exists, then

G G[p] (i 1, 2, ...), HI C[p] and

H+ {geCIpgeG}, i 1,2,...,
satisfy the conditions (a)-(e).
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On the other hand, given such a sequence of subgroups, take G (J-I G.
Inasmuch as {G} 21 forms an ascending sequence, G is a subgroup of C such
that (G) G. Next note that repeated applications of (a), (c) and (d)
yield

(f G n Cp] P, G - C[p] H fori 1, 2, 3, ....
We infer from the second of these formulas that pH

_
pG. Consequently,

G[p] (U,I G) n C[p] Ul (G, n C[p]) P,
G n pC (U G) n pC U (G n pC) UpH+ UpG+ pG.

Thus G is a neat subgroup with P as its socle and G is pure and dense.

Remark. We see, then, that in order to find the group G in Pierce’s problem,
it is necessary and sufficient to be able to carry out an inductive process.
Assuming the subgroups/H G}

_
satisfying (a)- (e) are given, we obtain

H+ from (b) and the problem is to find G+I. Notice that by (b), H+I/G
is a Z vector space and by (e), it is a module over Z,[X] through , the map
induced on H+I/G by . The conditions (c)-(e) then require that H/G be
a direct summand of the Z[X] module H+I/G. It is easy to see, then, how
one could define endomorphisms so that even G could not be found. Further,
this gives a hint of why we demanded that B[p]/S be an injective Z[X] module
in (2.2).

2.4) THEOREM. There is a subgroup G of [ such that G[p] S, a (G)

_
G

but is not onto G.

Proof. Inasmuch as H and G are given by the condition (a) in (2.3), we
must show that for {H, G}

_
satisfying (a)-(e), we can find H+ and G+.

As noted above, this reduces to showing that H/G is a direct summand of the
Z[X] module H+/G. It follows from condition (f) in the proof of 2.3 that
as abelian groups,

H/G (B[p])/S.

But this shows that H/G is a direct summand of HI/G, since this iso-
morphism is clearly a Z[X] isomorphism and by (2.2), (Bp])/S is an in-
jective Z[X] module.

3. The Jacobson radical of E(G) and the height increasing
endomorphisms of G

In [8; 14] Pierce shows that for a group G, there is a ring homomorphism
of E (G) into a complete direct sum of endomorphism rings of vector spaces
over Z which has as its kernel

H(G) {qeE(G)ih((x)) > h(x) for x eG[p] and h(x) < }.
He notes that the Jacobson radical J (G) of E (G) is contained in H (G) and
raises the question of when these two ideals are equal. We will show that this
question is closely related to those we have been considering.
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(3.1) THEOREM. If the group G has the property that every dense isometry
on G is onto, then H (G) J (G). If, further, there is a finite bound on the Ulm
invariants of G, then the converse also holds.

Proof. Since H (G) is an ideal in E (G), the condition that H (G) J (G)
is equivalent with the condition that 1 a be an automorphism for every a
in H (G). Thus the first part of the theorem would be established if we could
show that for a e H (G), 1 a is a dense isometry.

Given a e H (G) and x e G[p], since h (a (x)) > h (x), we infer that

h((1 a)(x)) h(x- a(x)) h(x),

whence by (1.3), 1 a is an isometry. For any x G[p] and any natural
number k,

x <1 a)(Z: a’(x)) a pG,

so that by (1.4), 1 a is dense.
On the other hand, suppose G has a ite bound on its Ulm variants and

H (G) J (G). Let a be a dense isometry on G. Then the endomorphism
duced by a on ((pG)])/(+G)]) is one-to-one and hence an auto-
morphism. Thus, for each k, there is an integer m (k) (dependg only on the
dimension of (G)[p])/((p+G)[p]) such that a() 1, where 1 is the
identity map on (pG)[p])/((p+G)]) induced by the identity map I on G.
Sce the number of distinct dimensions among the vector spaces

( (pG)[p])/(@+G) [p])

is finite, there is a common multiple m of the tegers m (k)] k 0, 1, 2, },
so that for every k, 1 (a) 0. But clearly (a) (a) and
1- (a) (1-a),sothat (1-a)=0. Thusl-aeH(G) and
1 (1 a) a is an automorphism. But then a must also be an auto-
morphism and the proof is complete.

(3.2) Coaoav. IfG is a countable group of unboun&d or&r, th G has a
dense isometry which is not onto.

Proof. Inasmuch as, in our case, such a group must be the direct sum of
cyclic groups of unbounded order, we have by [8, Corollary 14.7] that
J (G) H (G), whence by (3.1), G has a dense isometry which is not onto.

We show next that there is a group G with finite but unbounded Ulm -variants such that H (G) J (G), while G has a dense isometry which is not
onto. For this we need the followg theorem of A. L. S. Corner [1]"

(3.3) TEoa (Comer). Let C be a closed p-group with unboun&d count-
able basic subgroup B and let be a topologically separable closed subring of
E (C) such that (B) B and such that for all positive ingers m, satisfies the
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following"

(C.,) if is such that q((p’C)[p"]) O, for some n, then p’.
Then there is a pure subgroup G of C such that B G and

E (G) E,(G),

where a E. (G) if and only iffor each k, there is an n uch that a ( (p’*G)[p] O.

Remark. The topology on E (C) referred to in this theorem is the p-adic
topology given by a neighborhood basis at 0 consisting of {pE (C)}=0.
With Corner, we note first that

(3.4) LEMMA. Let R be a subring ofE (C) that satisfies (C ). Then R satis-
fies (C,,,) for every natural number m.

We fix for the remainder of this section the following notation:
B 7_o _o (b.,), e (b.,) n + , i O, , ..., n;
a is the endomorphism on B given by

a (b bo

(3.5) THEOREM. The set

is a topologically separable closed subring of E ([ ) that satisfies (C,) for every m
and is such that R (B B.

Proof. It is clear that R is a subring of E (C) which takes B into B.
Further, R is separable since it has

Ro {f,(.) f, e Z[X]}

as dense subset. We show next that R0 has the property (C). If

f(a ) ---o r, a’ Ro
is such that

f(a ) ( (p’$ )[p] 0

for some n, then choosing m > k, n,

Y-o r,v, ._o r, ’(, o,
which implies that for i O, 1, k, pr r for some r in Z, and

f(a) p -o r, e pRo.

From this we conclude that R satisfies (C) since if



hell
f() ((p"/)[p]) 0,

whence fo (a) pfo (a) for some fo (X) e Z[X] and

E-0 7,() ’0() + E,- -,(-)).
Thus, by (3.4), R satisfies (C) for every m.
Fally, suppose that e R- (the closure of R). Then e RT. We will

form a sequence of polynoals {f (X)}0 in Z[X] such that for each k

Clearly, then -0p(a) which is in R. First note that e R implies
that there is an fo (X) e Z[X] such that

fo(a) e pE ().
Assumg that we have {f (X)}-0 with the property

(1) -oP(a) p+ e p+E(),
note that for some g (X) e Z[X]

(2) g (a p+ e p+E().

Combing (1) and (2), we fer that

g (a) -0p(a) p+( p),
whence

(e() L0p?,(.))([+]) o.
Sce R0 has the propey (C+), it follows that

with f+ (X e Z[X]. Thus

+e(.) -0 p?,(.),
and, combing this th (2), we get the desired result.
Now, applng Corner’s theorem, we obtain a pure dense subgroup G of

such that B G and

(3.6) TEoaE. The group G has the property that H (G) J (G), but also
has a dse isometry which is not onto.

Proof. First observe that for any endomorphism of G, W with
e E,(G) and e R. But since each e R, when applied to [p], can be

written as f(a) th f Z[X], we fer that every endomorphism of G is
eventually equal to f(a) for some f(X) e Z[X].
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Now, if o e H (G), there is an integer/ such that

0aa on (pG)[p],

withaeZ,i 0,1,2,...,m. Then choosingn > re, k,

On the other hand, since h((p"b,.)) > n, it follows that (p"b,.) 0 for
j 0, n, and 1 is eventually algebraic. However, as was pointed
out in the proof of (3.1), for in H (G), 1 is an isometry. Thus, by (1.9),
1 is an automorphism and H (G) J (G).

Finally, note that a e R, so that a is an endomorphism of G. Further, since
a is clearly an isometry on B, we have by (1.5) and (1.6) that a is a dense
isometry on/. If a is onto, then a-e E (G) and there is an integer k such
that

-1 =0 a, a on (pG)[p],

withaseZ,i= 0,1, 2, m. But then

1 "o a, a+1 on (pG)[p]
which leads to a contradiction by applying this map to p"b,.o where n > k,
m .4- 1. Thus a is not onto and is the desired dense isometry.
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