SOME NON-SOLUBLE FACTORIZABLE GROUPS

BY
A. R. CamiNna anp T. M. GaGceN

1. Introduction
In this paper we prove the following theorem:

TuEOREM. Let G be a finite non-soluble group such that G = AB where A is a
cyclic group and B is a metacyclic group. Then G/S(G) = PGL(2, p), where
D 18 @ prime greater than 3.

Metacyeclic group will mean throughout a finite group all of whose Sylow
subgroups are cyclic. S(G) is the maximal soluble normal subgroup of G
and PGL (2, p), PSL (2, p) denotes the projective general linear and the pro-
jective special linear groups respectively of dimension 2 over a finite field of p
elements.

It will be shown in Section 3 that S (@) is not necessarily a direct factor of G.

For any subset T of a group G, C(T), N(T) and | T | denote respectively
the centralizer, normalizer and the number of elements in 7. The subgroup
generated by T will be written (T) and a Sylow p-subgroup of G will be called
an S,-subgroup of G. A subgroup H of a group @ is called a T.I. subgroup
if from 2 'Hz n H # 1 it follows that x ¢« N (H). All groups considered will be
finite.

2. Proof of the theorem

We note some properties of a metacyclic group G, see for example [9].
G/G@" and G’ are cyclic groups of co-prime orders and G’ n Z(G) = 1, where
Z (@) denotes the center of G.

We begin with two easy lemmas.

LemMa 1. Let G be a group which satisfies the following conditions:
(1) G contains a maximal subgroup B which is metacyclic.
(ii) @ has no non-trivial normal soluble subgroup.
(iii) @ has no normal subgroup of index prime to [G:: B].
Then Z(B) = 1 and B’ is a T.1. subgroup.

Proof. LetzeB' nB”’ geG. If x # 1, we have N ({(x)) = B, B’ since
(z) is a characteristic subgroup of B’. Since B is maximal, N ((z)) = B by
(ii). Hence B’ = Band sogeBby (i) and (ii). Note that only conditions
(1) and (ii) are used so far.

Now let z ¢ Z (B) have prime order p. Then N ({x)) = B by (i) and (ii).
We have two cases:

(a) An S,-subgroup of G is not contained in B. Let P be an S,-subgroup
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of Band P; = P an S,-subgroup of G. The normalizer of P in P, contains P
properly if Py > P. But (z) is characteristic in the eyclic group P and so if
Py > P, N((z)) n P, > P. This contradicts N ((x)) = B.

(b) An S,-subgroup of Gis contained in B. Then since (z) is characteristic
in P, N{(x) = N(P). ButN ({x)) = B has anormal p-complement and so does
N(P) = N({=z)). By Burnside’s Theorem [9, p. 137] G has a normal p-
complement. But p does not divide [¢:B]. This contradicts condition (iii).
This completes the proof.

LEMMA 2. Let G be a group satisfying conditions (1), (ii) and (iii) of Lemma
(i) which is doubly transitive as a permutation group on the cosets of B. If
C =< B s the stabilizer of two poinis, then B'C = Band B'nC = 1.

Proof. By Lemma 1, B" n C = 1. For if z ¢ B’ n C then there exists
g € G\B such that Bgz = Bg. It follows that g ¢ N ((z)) = B, a contradiction.

Now let P be an S,-subgroup of B which is not contained in B’. Assume
that P fixes only one point. Then N (P) fixes just one point. Thus
N(@P) £ B. But now P £ Z(N(P)) and P is an S,-subgroup of G. By
Burnside’s Theorem [9, p. 137], G hasa normal p-complement. Butp { [G:B].
This contradicts condition (iii).

Since G is doubly transitive, B is transitive on the cosets Bz, x ¢ B. Thus
the stabilizers of each of these cosets are conjugate. Hence C contains an
S,-subgroup of B for all p such thatp 4 |B’|. Thus B'C = B. This com-
pletes the proof.

Note that as G is doubly transitive, B has only two double cosets and so
|B|+ |B[*/|C| = [G:B] | B
Thus 1+ |B'| = [G:B].

We begin the proof of the main theorem. Let G be a minimal counter ex-
ample. We show that G has a unique non-abelian composition factor and it is
isomorphic to PSL (2, p), for some prime p > 3. It is easy to see that we are
then done. For let V be a minimal normal subgroup of G = G/S(G). Then
N = PSL(2, p) and G/N induces a group of automorphisms on N. Thus by
8], |G/N| £ 2. But PSL(2, p) is not factorizable as a product of a meta-
cyclic and a eyelic group and s0 G % N. Thus|G/N | = 2and G = PGL(2,p)
by [3].

1y S@) = 1.
_For if 8(@) # 1, let G = G/S(G). Then since G = AB, where
A = AS(@)/8(@), B = BS()/S(®) by the minimality of G we have the
result.

2 AnB=1.

Let N =((AnB)" :2¢@). Then N Gandifze¢G,x = abwhereae A,
beB.

(AnB)Y = (AnB) £ B.
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Hence N is a soluble normal subgroup of G and so N = 1.
(3) G has at least 2 classes of involutions.

If either | A | is odd or |B| is odd, an Se-subgroup of G is cyclic, whence G
has a normal 2-complement M. If for example M = A then M = A(Bn M)
is factorizable as a product of a metacyclic group and a cyelic group of odd
order.

Then M is soluble by [7, Satz 5]. This is a contradiction.

Thus we may assume that both | A | and | B| are even. Now an involution
of A is never conjugate to an involution of B by (2).

(4) @ is not 2-nilpotent.

For let M be a normal 2-complement of G, S an S;-subgroup of G which
contains an Sy-subgroup Y of A. Let S; < S be a proper normal subgroup of
S containing Y. Then MS; < MS = @G and MS, = A. Thus

MS, = (MS:n B)A and by induction M8, is soluble. Then G is soluble, a
contradiction.

(5) |A|and |B| are both divisible by 4.

If |A| or | B| is exactly divisible by 2, then an Se-subgroup S of @ has a
cyclic subgroup of index 2. But then S is either dihedral, semi-dihedral,
semi-abelian or abelian.

If S is abelian or semi-abelian, G is 2-nilpotent by Burnside’s Theorem if S
is abelian, since @ has 2 classes of involutions, and by [11, Theorem 1], if S is
semi-abelian. This contradicts (4). If S is semi-dihedral, S(G@) = 1 by [11]
Theorem 2 because G has 2 classes of involutions. This contradicts (1).

If S is dihedral, by [5], G contains a normal subgroup H =< PGL(2, q),
where ¢ = p", n = 1, p an odd prime, and | G/H | is an odd divisor of n or
G =~ A;. Remember G has 2 classes of involutions. Now A; is not fac-
torizable as a product of a metacyclic and a cyclic group. Since the S,-
subgroups of G are extensions of a cyclic group by a eyclic group, by [6],
n < 2if H= PGL(2,q). Butthen G = PGL(2,q). Now PGL(2,p") isnot
factorizable as a product of a metacyclic and a cyclic group. Hence
G = PGL(2, p), a contradiction.

(6) There exists a unique minimal normal subgroup M of G.

Forif My, M. < G, M1n M, = 1, are minimal normal subgroups of @, in-
duction on G/M,, G/M, shows that G has precisely two non-abelian composi-
tion factors so that M , M, are simple and isomorphic to PSL (2, p1 ), PSL (2, ps)
respectively, for some primes p1, p.. Now M3 M>< G and so C (M, M,) ] G.
It is clear that C (M1 M2) n My M, = 1 and so C (M1 M) = 1 because it is
solvable. Now |G/M, C(M;)| £ 2 since My =2 PSL(2, p,); see for example
[8]. Let D = C(M.) and consider C(M:) n D. Then C(M;) n D
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= C(My M;) = 1. Thus |D/M,| < 2 and so |G/M; M;| < 4. Now
G/M, M, is not eyelic of order 4 because if £ ¢ G\M; M, then

x2 6M1 C(M1) n Mz C(Mz) = M1 Mz.

Now let S be an S-subgroup of G. It follows that S is a product of two
cyclic groups. By Satz 2, Huppert [6], the Frattini subgroup ¢ (S) of such a
group S is itself a produet of two eyclic groups and in particular is 2-generated.
It follows that | ¢ (S)/¢(¢(S)) | < 4. Since S is 2-generated, | S/6(S) | < 4.
Now S/8 n M1 M, is an elementary abelian group and so

¢(8) = SnM, M, and [Sn M; M:¢(S)] = 2.

Put T = SnM; M,. Then T is an S,-subgroup of My M. and T/¢(T) = 16.
Hence ¢(S)/¢(T) n ¢(S) is elementary abelian of order at least 8, a contra-
diction. Now let M be the unique minimal normal subgroup of G. Then
CM)< G CM)YaM =1andso C(M) = 1.

Now if M = PSL(2,p) we are done because | G/M | < 2 by [3] and as before
G=PGL(2,p). AlsoG@ = MA = MBforif MA < G,MA = (MAnB)A
and by the minimality of G, M =2 PSL(2, p). Note that, if K is any proper
normal subgroup of @ which is factorizable into a product of a cyclic and a
metacyclic group, we are done since K = M.

(7) B is maximal in G.

Let B = B be a maximal subgroup of G. Then R = B(R n 4) and by the
minimality of G, R has at most one non-abelian composition factor and this is
isomorphic to PSL (2, p). But

U=(RnA)Y:2¢eH<G.
Now RnAY = RnA)® = RnA) <R, aed,beB
Thus R contains a normal subgroup U of G and so ¥ =< R. Then

M = PSL(2, p) and we are done. Hence B is maximal in G.

(8) @ satisfies the conditions of Lemmas 1 and 2. We consider G as a
permutation group on the cosets of B. Since B is maximal, G is primitive.

We have already verified conditions (i) and (ii) of Lemma 1. Let |4 | = a.
AsBnA = 1,[G:B] = a. Let K be a normal subgroup with [G': K] prime to
a. Thend < K. But K =2 M and MA = G by (6). Hence K = G and
we have condition (iii) of Lemma 1.

Now « is not prime by (5) and so G is doubly transitive by Theorem 25.4 of
[10].

©) IfB=BCBnC=1|NC)|=2|C|

For N(C)n B = Cby Lemma 1. The result follows from the double transi-
tivity of G and Theorem 9.4 of [10].
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Let te A be theinvolutionin A. We may suppose without loss that te N (C).
(10) Any subgroup K of G containing A satisfies K n B’ = 1.

For (KnB')" = (KnB') = K,aeA,beB,and so K contains a proper
normal subgroup of G, the normal closure of K n B’. But K = A(K n B)
is of known type and so K = M and M = PSL(2, p).

Hence any maximal subgroup of G containing A is a product of two ¢yclic
groups and so is supersoluble by [6] and metabelian by [9], 13.3.2.

1) c@) = A.
L=(CA)nB)Y:ze@H]Ga.
(C(4)n B)® = (C(4)n B)’ < B.
Thus L is soluble normal subgroup of G and L = 1.

(12) An S;-subgroup of C (¢) is an extension of a cyclic group by a cyelic
group.

Let T = C(t) =2 A. Then T is supersoluble and metabelian. Consider
AT’'. Since T” is abelian by Fitting’s Lemma, [9, 4.5.6], T' = Ty ® T, where
AT is nilpotent and [4, T5] = Ts.

Suppose AT; > A. Then ATy n B # 1 and we may choose

zeATynBnN(4)

of order p, a prime. Note that N(4) n ATy = A(N4r,(4) n B). Then if
y € A has order prime to p, [z, y] = 1 since AT, is nilpotent. Now [z, A] 1,
because by (11), C(4) = A. Let an S,-subgroup of A be (), where z has
order p". Ifpisodd, 2 = 2" andso|C(z)n ()| = p*". Thus in the
permutation representation of G, x fixes | A |/p = v = |C(z) n A | points.

Nowwv||A|landy —1||A| =1 =|B'|=5. Thusy' <|A|. Hence
|A| = p’. If|A| = p’, we have a contradiction since pisodd. If|A4| < p’,
[x, A] = 1, again impossible.

Ifp=2F=2"0ore =2 since if 2° = 27", n = 2, we may argue
asforpodd. Thus|C(z)n (z)| = 2 and in the permutation representation of
@ on the cosets of B, z fixesy = | A |/2" points, and vy = 28, where & is odd.
Let | B| = 2™p, where p is odd.

Then 2"p; + v = | 4 |, for some p; .

Thus either | 4 | is exactly divisible by 2 or m = 1. This is not the case by
5).

Hence we have ATy = A. Now | T:| is odd because AT, is supersoluble
and if | T, | is even there exists an element of order 2 in T normalized by 4.
Since A n T> = 1 we have a contradiction to (11).

Thus AT:/T, < C(t)/Ts and an S,-subgroup R of C(t) contains a normal
cyclic subgroup Y < A such that RB/Y is also cyclic.

n—1—1
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(13) If R is non-abelian or if R is abelian and | Y| > |R/Y |, an S,-
subgroup of C (¢) is an S,-subgroup of G.

For if R is non-abelian or if R is abelian with | Y| > |R/Y |, {¢) is a charac-
teristic subgroup of B. Clearly, then R is an Se-subgroup of G.

(14) An S:-subgroup S of G is not an extension of a cyclic group by a cyclic
group.

We apply the result of [2] to show that if S has a normal cyclic subgroup S;
such that S/8S; is eyclic of order =4, G is soluble. We thus have that, apply-
ing (12) and (13), an S,-subgroup of C(¢) is abelian and |Y| £ |R/Y|.
Now let X < C be an S;-subgroup of C, te N(C), X = (). Then|C({)nX |
> |Y| = 4 Itisclear that if & = 1, {2t = ™" . Thus &’ ¢ C(t).
Let Y = (), 4" = 1,4 "=t Thenby (13)n s m — 1. Now[z y] =1
because an Se-subgroup of C (¢) is abelian.

It follows that 4° = y '«”. Note that ¢ ¢ Z ((x, y)).

Let 2™ ¢ U where U is an elementary abelian group, U < (z, y). Then
|U| < 4sinceif |U| =8, Un (@, y) = ¢, 2™ ). But

Ct)n(z, gy = <x2, -
Caleulate C(U) n (z, y). Let & e U\(z"" ") be an involution. Then
CU)nz,y) = Clt)nz g = &) X &)

But then C' (U) n{z, y)is of type (2",2) wheren > 1. Forifn = 1,|{z,y)| =8
and an S,;-subgroup of G is dihedral of order 8, a contradiction.

Now apply Theorem 4 of [4]. Since z*"" " is not weakly closed in (z, y), there
exists g € @ of odd order such that

geN(CU)n{z,y)nN{U)
such that z*" % = 2®"". But (z*"" ") is a characteristic subgroup of
C(U)na,y) = @) X &)
This is a contradiction and completes the proof.

Note. Professor N. It6 has communicated a proof of the following unpub-
lished result to the authors.

TueEorREM. Let G be a simple doubly transitive group such that the stabilizer
B of a single point is metacyclic. Then G =< PSL (2, p), for some prime p > 3.

Using this result the above proof can be considerably shortened. In par-
ticular, steps (10)-(13) can be eliminated. Also the use of the main result in
[5] can then be avoided.

Some examples. The following groups were introduced by Schur [8]. They
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contain a normal subgroup H =2 SL(2, p), p > 3 a prime. There are two
cases:

1. If p = —1 (mod 4), let U(p) denote the group of all 2 X 2 matrices
over GF (p) of determinant ==1.

2. If p = +1 (mod 4), let U(p) < GL(2, p*) be the group generated by
the following matrices

G Gy 62

where o ¢ GF (p°) is a primitive 2(p — 1) root of unity.

It can be shown, see [8], that U (p)/Z (U (p) = PGL(2,p)). We show that
the groups U (p) can be factored into a product AB where A is cyclic and B is
metacyelic. |U(®)| = 2p(®* — 1). Again there are two cases:

1. p= —1 (mod 4). Let a ¢ GF (p) be a primitive (p — 1)/2 root of

unity. Let
/(1 1 a 0
5={(6 1)-G =)

Then | B| = p(p — 1) and B is metacyclic, | B’ | = p.

We construct a matrix of order 2(p + 1) such that the cyclic subgroup 4 it
generates intersects B trivially. Let p ¢ GF (p*) be a primitive 2(p + 1) root
of unity. Then

T = (8 _(:’._1) € GL(2, pz)

has order 2(p + 1). Let

_ 1 p 1)
V=oFi\-1 o)
Then y 'zy e U (p) as may be verified. Now A = (y 'zy). Since the unique
element of order 2 in A is central in U(p) and | A n B| < 2, it is clear that

AnB-=1.
2. p=1 (mod4). Let B be the group generated by the matrices

61 G )

Then | B| = 2p(p — 1) and B is metacyclic.
We construct a matrix of order (p + 1) as follows. If p* = 7,

1 = (6 _(1_1> € GL(2, pz)

has order (p + 1) since p = 1 (mod 4) and again conjugation gives
y 't yeU(p). Similar argument shows that An B = 1 and U(p) = AB.
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