HAAR SERIES AND ADJUSTMENT OF FUNCTIONS
ON SMALL SETS

BY
J. J. PricE!

1. Introduction

D. E. Menshov proved that a measurable function finite almost everywhere
on [0, 27] can be changed on a set of measure less than ¢ to a function whose
Fourier series converges uniformly [3]; see also [1, Chapter VI].

One may ask whether an analogous result holds for orthonormal systems
other than the trigonometric system. For the Walsh functions an affirmative
answer was given by B. D. Kotlyar [2] and, with different techniques, but
later, by the author [4]. For Haar functions the question is trivial; the Haar-
Fourier series of every continuous function converges uniformly and a finite
measurable function agrees with a continuous function except on a set of
measure less than e.

Nevertheless, one aspect of our results on Walsh functions suggests a non-
trivial question about Haar functions. In the cited paper, we constructed
subsets W of the Walsh functions with the following property: Every con-
tinuous (or finite, measurable) function can be adjusted on a small set so that
the modified function has a uniformly convergent Walsh-Fourier series involv-
ing only those Walsh functions in W.

In this paper, we characterize families of Haar functions which have an
analogous property.

DerinirioN 1. Let ® be an orthonormal set of functions in L*[0, 1] not
necessarily complete. Let M (&) be the closed linear manifold of L7[0, 1]
spanned by ®. Then ® has property U if, given a continuous function f on
[0, 1] and an & > 0, there exists a function g such that

(a) geM(2),

(b) g(x) = f(x) except on a set of measure less than ¢,

(¢) the expansion of g in the system ® converges uniformly.

Our objective is to determine which subsystems of the Haar functions have

property U. We shall investigate also a similar question involving absolute
convergence of Haar series.

DErFINITION 2. An orthonormal set has property A if it satisfies the con-
ditions of Definition 1 relative to absolute convergence instead of uniform
convergence.

Recently A. A. Talayan [7] constructed certain orthonormal sets having
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property A. We shall show that the Haar functions and certain subsets of the
Haar functions have property A.?
Our results are contained in the following theorem.

THEOREM 1. Let H = {h,} be a family of Haar functions, total tn measure on
[0, 1]. Let f be a continuous function on [0, 1] and let € > 0 be given. Then
there exists a function g such that

(a) g(x) = f(x) except on a set of measure less than ¢,

() g@) = D net Cahn(), the series converging uniformly and absolutely.
CoRroLLARY. For families of Haar functions tke following are equivalent:
(a) totality in measure (TM),

(b) property U,
(c) oproperty A.

Proof. According to Theorem 1, TM = U and TM = A. Now U= TM.
This is immediate from the definition of TM. Also A = TM as can be
seen by an easy application of Egoroff’s Theorem.

2. Adjustment of step functions
We begin by quoting two results that will be needed.
TureorEM A. Let H = {h.} be a family of Haar functions and let E, denote

the support of h, . Then H is total in measure on a set G C [0, 1] #f and only if
G C lim sup E, except perhaps for a set of measure zero.

TueorEM B. If a sequence of functions 7s total in measure on a set G, it re-
mains so when a finite number of its elements are removed.

Theorem A was proved by Robert E. Zink and the author [5]. Theorem B
is due to A. A. Talayan [6].

From now on, H = {k,}7 will denote a family of Haar functions that is total
in measure of [0, 1]. w(8) will denote the Lebesgue measure of S. I(n, j)
will denote the dyadic interval [7-27", (j 4+ 1)-27"). If

Z;o cnha ()

is the Haar-Fourier series of f we shall set

(@ f) = 2ienha(®), @@ f) = 2i|enka(®)l.

LemMA 1.  Let I be a subinterval of [0, 1]. Let N be a positive integer and let
& > 0. Then, there exist huy y huy y *+* 5 huy 0 {ha}w Such that their supports
E..; are disjoint, contained in I, and

”’(I - Ul{En,) <e.

2In a conversation with the author, Y. Katznelson sketched a proof that the
trigonometric functions do not have property A.
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Proof. {h.}y is total in measure by Theorem B. Therefore, by Theorem A,
if
J = interior of I n lim sup,y» Ea,
then I — J is a null set.
Each point of J is contained in infinitely many sets E,. Since u(E,) — 0
as n — o, the family of supports

&§ ={E,:n = N, E, C interior of I}

is a covering of J in the sense of Vitali. Therefore, by the Vitali Covering
Theorem, there exist Eu,, En, , * * + , En, in € which satisfy the assertion of the
lemma.

Lemma 2. Let x be the characteristic function of I(n, j). Let m and N be
gien positive integers.  Then there exists a funciion g with the following
properties.

(a) g 1s a linear combination of the functions {h.}y .

(b) g(x) = 0 outside of I (m, j).

(¢) g(x) = x(x) except on a set of measure less than 27",
@) |g@)| < 2" for all x.

) |se(x;9) = ar(z;g) < 2" for all x and k.

Proof. Choose a number & such that 0 < § < % and
d4+8+ " >1 -2
This is possible since
limpyp @+ 4 - +6") =1—-2"">1-—2™"

Let 8 = 3 — e. By Lemma 1, there exist ki, , hny, + 5 hny in {Aa} ¥ with dis-
joint supports E,, contained in I (n, j) such that

1) p(I(n,j) — Ui E,,) < 2¢-27"
Define
h(@) = 208 bng (@) Bny ()| 7
ll(x) = 1, a:eP1 ,

=—'17 erl’

Then

= 0, otherwise,

where P; and @, are finite unions of dyadic intervals and p(Py) = u(Q:).
Because of the latter fact, it follows from (1) that

BP1) =p@)> G —&)27" =827

We now apply the same technique to each component of @,. We obtain
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L(z), a linear combination of the functions {ha}x,, N2 > max;<i<i 7, such
that

LE)= 2 zePs,
= -2, zeQs,
= 0, otherwise,
where P; and @: are finite unions of dyadic intervals, P, u @, C @, and

p(P2) = p(Q) > 8-u(Q1)

Then li(z) + L(x) = 1onPyuPrand | Lh(z) + L(z)| S 1 + 2 for all .
We continue in this way. After m + 1 steps we obtain

9@) = h@) + L) + - + (@),

a function which obviously satisfies (a) and (b). g(z) = 1 on the set Ur** P;
whose measure is

S u@P) > 27 e > 21— 2.

Thus g(z) = x(z) except perhaps on a set of measure less than 27", Fur-
thermore, it is clear from the construction that

lg@)| =1 4+2+44 - +2"< 2"
and that
|si(x; )| < an(z; g) < 27 for all z and k.

By applying Lemma, 2 in an obvious way, we can approximate step func-
tions in the sense of Lemma 2. We shall omit the routine proof and just state
the result.

LemMA 3. Let f be constant on each of the dyadic intervals I (n,7),0 S j < 2.
Let m and N be given positive integers. Then there exists a function g with the
following properties.

(a) g s a linear combination of the functions {hi}y .

(b) g(&) = f(x) except on a set of measure less than 27",

() max, |g(x)| < 2" max, |f(x)|.

(d) max, |s(@;9)| < max, ai(x; ¢) < 2" max, |f(z) | for all k.

3. Proof of Theorem 1.

Let a continuous function f and a positive number € be given. f may be
represented as the sum of a series

f(x) = Z:o=0 fr(x)

where f, is a step function constant on the intervals I (n,, ) and {n,} is increas-
ing so fast that

|fr(2)| < 2™, r> 0.
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Choose p such that 277 < & For each r, apply Lemma 3 to f, with
m =r -+ p + 1. Inthis way we may obtain a sequence of functions {g,} such
that

(i) ¢.(x) = f.(x) except on a set of measure less than 27777,

@ii) ¢ () is a linear combination of the Haar function in H,

(iii) the Haar functions involved in g, have greater subseripts than those
involved in g1, g2, *** , gra,

(iv) max, |g ()| < 2772 = o7 e 5 0,

(v) max, |s@; ¢) | £ max, a(x; ¢.) < 272 = 97 for all
k,r > 0.
Set

@) g(x) = 2= g- (x).

The series converges uniformly because of (iv). g(x) = f(x) except for a set
of measure less than
TPl o 9 < g,

If we replace each g, by its expression in terms of Haar functions in H, we ob-
tain from (2) a Haar series for g. Since a subsequence of its partial sums con-
verges uniformly to g, this Haar series is the Haar-Fourier series of g. Write
the series as

3) Z: Cn b ().
There is an increasing sequence of positive integers {»,} such that

22;1 Cn o () = Z;—l g:(x).
If Vy § k < Vrgl then

“) (@5 9) = 2t 9i(®@) + 8(; graa).

The sum on the right side of (4) converges uniformly to g(x) ask — ». Ac-
cording to (v), max, | & (z; gry1) | < 2777** and so

limgae 8k (2; grs1) = 0 uniformly.
Therefore
limg.e s:(x; g) = g(x) uniformly.

It remains to show that the series (3) converges absolutely. It suffices to
prove that the increasing sequence {a,, (z; ¢)} is bounded. Using (v), we
have for all x,

O, (T3 9) = Gy (@; g0) + D51 Gy (@5 95) < MK, Gy, (5 g0) + 2 5= 277
= max, a,, (x; go) + 277 = constant.

This concludes the proof of Theorem 1.
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