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Introduction
A fundamental result, due to Lumer [4], in the theory of complex semi-inner

product spaces, is that if T is an operator on a s.i.p.s., then

(1) lJTII -<- 41W(T)I, where JW(T)! sup{J[Tx, x]i:iJxll 1}.

Bohnenblus and Karlin, in an earlier study [1] of the geometry of the unit
sphere of a Banach algebra, showed that if A is a Banach algebra with identity,
then

(2) Jlall - eb(a), all aA,
where (a) Maxl. lim ([[ 1 W rza JJ- 1)/r.

If A is an algebra of operators on a s.i.p.s., it follows immediately from Lemma
12 of [4] that W(a) (a), all aeA; thus (1) may be replaced by

(1’) I T eW(T)l.
Here we first sharpen the estimates used in [4] to obtain a direct "semi-inner

product space" proof of (1’). To do this we introduce the integral formula

1 f.T-
2iN ( T)

dF, all positive integers N,

in place of the more usual
1 fe d-T"

Then we give an example of a two-dimensional s.i.p.s. X so that the shift
operator T on X satisfies []T 1 and W(T)[ 1/e. This proves that e
is the best possible positive constant in the inequalities (1’) and (2). If Y is
the closed terval [l/e, 1] and Z the unit circle, then X is the subspace of
C (Y X Z) generated by f* (y, z) ezy (log y) and g* (y, z) y.
The author would like to acknowledge a helpful conversation with E.

Bender.
The notation and terminology used here for semi-inner product space

notions is that of [4]. All normal spaces considered here have complex scalars
and are complete. If h is a contuous function on a compact Hausdorff space,
h will denote the "sup" norm of h. r and s will always denote non-
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negative real numbers, while ), , , and z will denote complex numbers. If
T is an operator, r (T) will denote its spectral radius.

1. The proof of
We take the following lemma virtually intact from [4, p. 33].

L.. 1.1. Let T be an operator on the semi-inner product space X so that
W(T)! < 1. Then

(3) (I T)-1 - (1 W (T) )-1.
Proof. Since r (T) -< W (T)I < 1, I T is invertible. Now if II x Jl 1,

we have via the Schwarz inequality that

ll(I- T)x!l >-I[(I- T)x, x]l

_
[x, x]- I[Tx, x]l 1 -iW(T)[.

Therefore, for all x,

I1 (1 T)x II
Set x (I T)-ly, where I] Y Ii 1, to obtain

1 -> (1- W(T)i)Ii(I- T)-lyll,

from which (3) immediately follows.
Next we present the integral formula referred to in the introduction.

If T is an operator on the Banach space X so that r (T) < 1,LEMMA 1.2.
then

(4) T
2riN ( T)N d, for each positive integer N,

where C is the unit circle in the complex plane.

Proof. Observe that (4) can be obtained by differentiating

1 fe dT
2ri - T

formally N 1 times under the integral sign with respect to T. This differ-
entiation is both natural and easily justifiable within the framework of the
Lorch theory of analytic functions in commutative Banach algebras [3]. A
proof via the standard operational calculus [2, p. 566], goes as follows: First
notice that (4) is valid if T is replaced by a complex number z of absolute value

1. But if r is a positive number between r (T) and 1, C is the circle of
radius r about 0 in the complex plane, and is a complex number of magnitude
1, the operational calculus shows that

f
2i Jc, ( z)N(z T) ( T)"
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Thus

2r-- (i" T) di"

Lemmas 1.1 and 1.2 together yield

LEMMA 1.3. Under the hypotheses of 1.1,

(5)

Proof.

T Ii N (1 W (T)I)N __< 1, all positive N.

The usual absolute estimates applied to (4) yield

1 r,IIT 11 -< N- maxlrl=, . T
all N.

(5) now follows from a simple application of (3).

Remark. WhenN lin (5) we havelITIl(1- W(T)I)-< 1. If
is taken to be 2, thenl- IW(T)I =< 1/2, so41W(T)]

_
2 ilTll. This is

the proof of (1) that appears in [4].

THEORE 1.4. If T is an operator on a s.i.p.s. X, then

Proof. If W(T)i 0, it follows directly from (5) that T 0. If
W(T)I O, we may assume without loss of generality that W (T)I 1.

For each positive integer N, apply (5) to the operator T/(N + 1) to obtain
!1 T ll (N/(N + 1))

_
1.

Let N --* oo to obtain II T Ii - e.

2. An example in which il T lJ
We begin by constructing a two-dimensional positive cone P of continuous

non-negative functions on the closed interval Y [l/e, 1]. Let f and g be
defined on Y by f(y) ey log y and g (y) y, and set

P {rf+ sg’r,s >= 0}.

The following relevant properties of f are verified via the calculus"

(a) f(1/e) 1, f(1) 0, f => 0, f and ff are strictly decreasing on Y,
f’ (l/e) 0, and f’ (1) 0.

(b) $(y )/y ff (y e, all y e Y.

From (a) and elementary calculus we have the following"

(c) if h e P and h 0, h assumes its maximum at exactly one point, which
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we denote by yh. For notational convenience, choose some point of Y and
denote it by y0.

We now define a mapping of P X P into the .non-negative reals by

[u, v] u (y )v (y u (y [ v ][ u, v e P.

will be called a semi-inner product for P (although, of course,
(P, ]) is not a semi-inner product space) because satisfies the
conditions

(i) [u + u, v] [u, v] + [u, v],
Oi) [ru, v] r[u, v], r O,
0ii) [u,u] ]]u]]and

Let S be the "shift" mpping of P into itself given by S (rf + sg) rg.
We cn now define S and ]W (S)] by

IS sup{Sh:heP,]h] 1} nd

]W(S)] sup [Sh, h] h eP, I h 1}.

We will show that S [ 1 and ]W (S)[ 1/e. Then we will construct a
complex s.i.p.s. X (described in the introduction) modeled closely enough on
P so that the results S 1 and W(S)[ 1/e can be carried over to
T and W(T)] l/e, where T is the shift operator on X which is

analogous to S.

Proof. Clearly[[S(ff+sg)[[ r[[g][ ]l ff W v ][, so [[ S [[ 1. Since

LEMMA 2.2. W (S) 1/e.

Proof. For each y e Y let

he P, h 1, and yn y},
and set

Wu sup {[Sh, h]:h

It is sufficient to show that ech Wu 1/e. Observe that when

[Sh, h] [rg, h] rye,
so

Wu sup{ry:

Now when y l/e, F/ {f}, so W/ 1/e.
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hen 1/ <: 1, it is not hard to see that r r iff the two linear
equations

(1) if(y) sy 1 and rf(y) s 0,

are satisfied. But (1) has the unique solution

r if(y) f’ (y)y)- 1/ey
and

s --f’ (y) (f (y) f’ (y)y)- --f’ (y)/ey.
Thus W (1/ey)y lie.
FMly we consider the case y 1. rf + sg lies in F iff r 1If (1) and

s 1. Therefore A 1/f (1) 1/e; 2.2 is proved.

Now let Z denote the unit circle in the complex plane and define f* and g*
on Y X Z by f* (y, z) z](y) and g* (y, z) g (y). Set

X {f* + g*" , complex].

We provide X with a se-inner product as foows: Select, for each e X,
some pot (y, z,) of Y X Z at which [ attains its maximum. For , in
X define

[,

Clearly the norm duced on X by is the sup norm.

We now establish the strong relation between the norms in P and in X.
Dee U" X P by

v(f* + *)
Clearly U maps X onto P.

L 2.3. ][ U()ll II, all e X.

Proof. Write Xf* T g*.
If (y, z) Y X Z, then sce
1(, z) ix ]*(, z) + [ *(, z)l x f() + [ (),

If y e Y, there are real numbers a and r so that

Xf* (y, e’(-’) ) + g* (y, e’(-) ).
Therefore
We shaft also need the following lemma, which establishes a rink between the

se-er products of P and of X.
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LEMMA 2.4. I b X and b 0, then y, y().

Proof. Since

I! (y, z) u() (y) I u
all the terms in the preceding inequality are equal.
its maximum at y so y y(,).

Now let T be the shift operator on X defined by

T(W+ g)

NoSe that UT SU.

T II 1, and W (T)! lie.

Therefore U() assumes

T I! sup {ll T ll" li 1}

sup {11 UT,, l[ II ’ l[ 1} (by 2.3)

sup {[[ SUe, l] "1t 1}

Now consider Xf* -t- g* e P, where II 1.

I[T, ] x e* (u, z)l (u,, z)l
X[y Xlyu() (by 2.4)

[su, u].

Therefore W (T)[ sup I[SUb, Ub]" be P, ] 1 W(S) 1/e.
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