SOME PROPERTIES OF LATTICES IN A LIE GROUP

BY
S. P. Wana!

1. Introduction

Let G be a connected Lie group, I' a discrete subgroup and G/T be the space
of left cosets. Given any right Haar measure u over @, u induces a measure
@ over G/T. If g(G/T') is finite, I' is called a lattice. If G/T' is compact, I'
certainly being a lattice is called a c-lattice. Let $(G) be the set of all lat-
tices of G. We give $(@) a topology induced from the notion of limit of
lattices introduced by Chabauty in [2]. We denote A (G) to be the group
of all open continuous automorphisms of G with the compact open topology.
It is clear that A (G) operates continuously on $(G@). In [2], Chabauty con-
jectured that given any lattice I' of G, A (G)I' with the induced topology
from 8(G) is homeomorphic to the homogeneous space 4 (G)/N (T'), where

N{I) ={a:aed(@), a() =T}.

In [11], the author proved that if I is a finitely generated lattice of G such that
the restriction map®

H'@G, G) == H\(T, @)

is surjective, then A (G)I' is homeomorphic to A (G)/N (I'). Here we shall
study this conjecture in linear Lie groups. We shall establish the following.

TaEOREM A. Let T be a finitely generated lattice of a linear Lie group which
18 semi-stmple without compact factor. If the set tr (T') = {trace (v): v eI}
18 discrete, then A (G)T is homeomorphic to A (G)/N (T').

Let u be a fixed right Haar measure. There is a map v ¢ $(G) — R, defined
by »(T') = (G/T'). In general v is not continuous. For an example, see
[6]. However the following is true.

TrEOREM B. Let G be a connected semi-simple Lie group without compact
factor and Ty a lattice of G. If W is a subset of 8 (G') coniaining T'y such that the
restriction of v on W s continuous at I'o, then there exists a neighborhood U of
Ty in W and a positive integer n such that each T €V 1s contained in at most n
discrete subgroups of G.

2. Some density properties

Suppose G is a topological group. A subgroup H of G will be said to
have Selberg property (or property (8)) if for any neighborhood U of e in
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2 ¢ denotes the Lie algebra of @ and the action of @ on G is given by the adjoint repre-
sentation.
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G and any element z in G, there exists an integer n > 0 with 2" ¢ UHU. As

shown by Selberg [9], every lattice has property (S). We show the converse
for nilpotent groups.

ProrosiTioN 2.1.  Let G be a connected nilpotent Lie group and H a subgroup
of G with property (S). Then G/H is compact.

Proof. Without loss of generality, we may assume that G is simply con-
nected. First consider the case that G = R". Let H = R°* ® Z’. Suppose
that R"/H isnot compact. ThenR" =4 ® B where H € A ~ R'"", B R/,
1> 0. Let r:R" — R'/A be the natural projection map. From [1], we
know that = (H ) has property (S) inR"/A. Butw(H) = {0} and R"/A ~ R/,
I > 0 which is absurd. We now return to the general case. Let G: = [G, G]
and A : G — G/@; be the natural projection map. It is clear that G/G; =~ R,
for some r and \ (H) has property (S). By what we have just proved above,
M@)/\(H) is compact. Hence G/G, H is compact. By a theorem of Malcev
[7], we obtain that G/H is compact.

CoroLLARY 2.2. Let G be a connected nilpotent Lie group and T' a discrete
subgroup. Then T s a lattice ¢ff T has property (S).

In [11], we see that Chabauty’s conjecture is always true for nilpotent Lie
groups. For solvable groups, we have the following.

TarorEM 2.3. Let G be a connected solvable Lie group and T' a lattice such
that A(Ad T'), the Zariski closure in the ambient real linear group, contains
Ad (@). Then A(G)T is homeomorphic to A(G)/N (T).

Proof. G/T is compact; in particular I' is finitely generated. Furthermore
by [8, Theorem 8.1],
H'(Q, Q) = H' (T, @)

is an isomorphism. Hence from [11], 4 (G)T is homeomorphic to A (G)/N (T')
3.

Groups considered in this section are linear Lie groups. Given any subset
T of GL(m, R), we denote tr (T') = {trace (¢) : te T'} and I(T') be the linear
span in M,, (R).

LemMa 3.1. Let T' be a connected semi-simple Lie group and H a finitely
generated subgroup of G such that A (H) D G. If r.: H— G is a sequence of
trace-preserving homomorphisms with rn — lg, then there exists ane A(G)
such that an — 1g and 1. = o, |x for large n.}

Proof. Since I(H) D AH) D G, I(H) = I(G). From lim,r, = la,
it follows that there exists an integer mo > 0 such that I(r,(H)) = I(G)
for n > mo. In the sequel, n is assumed to be > ny. Define 8, : I(G) — I(G)

8 The argument used in the proof essentially follows [9, Lemma 4].
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by
Bn(Cdaisihi) = D dasira(hi), fors;eR, hieH,1 <7< q.

We have to verify that 8, is well defined. Let B:I1(G) X I(G) — R be
defined by B(x, y) = trace zy, z, y ¢ L(G). Since G is semi-simple, [(G)
is a semi-simple associative algebra and B is a nonsingular bilinear form. Let
Zg=1 s; hy = 0. For any E;ﬂ iy ]0,‘ El(G), tjGR, kjeH, 1L ] < v,
Oo%a8:hi) (Qotaatikj) = 0. As r, preserves trace,

B(Zg-l sirn(hi)) Z;-rl thn (kl)) = 0.

However I(r,(H)) = I(@), and B 1is nonsingular, we have that
> ysira(hi) = 0. Thus B, is well defined. It is obvious that 8, is an
algebra homomorphism. Since 8, is surjective and [(G) is of finite dimen-
sion, 8, is an isomorphism.

Alrn(H)) = AB.(H)) = B2 (A(H)) D Ba(@).

Hence A(G) D B.(G). But dim @ = dim B8,(G) and A(@)’ = G where
A(G)° is the topological connected component of e in A (@), so this yields
B.(G) = G. Clearly 8, — lie . Sebt a, = B.|e; the proof of the lemma
is thus completed.

We now prove Theorem A. Let {a.(I')} be a sequence of lattices of G
converging to I'in § (G). From [11], we know that there exists 7, : I' = o, (T")
a homomorphism, such that r, — 1r. Suppose for the moment that r,
preserves trace for large n. Then by the preceding lemma, there is an
ay e A(G) such that 7, = an|r.

an(T) C aa(T) and E(G/an(T)) = B(G/T) = a(G/an(T)).

It follows that ay (I') = a,(I'). By the same lemma, an — 1g. This shows
that the map
$: 4@ —>AG)/NT), ¢()) =aN()

is continuous at I'. By action of A4 (G), ¢ is continuous. It is clear that
¢ ! is always continuous. Hence A (G)I' &~ A(G)/N(I'). Thus in order to
complete the proof, it remains to show that r, preserves trace for large n.

Let v1, - - - , vz be a set of generators of T' with va; = vai1, 1 <7< ¢ Let
® be a word on 2¢q elements wy, -+-, wy. Given any w = w;, + - w;,, We
define w(y) = i, -+ vi, and W : M,,(R)* —» M, (R) by

W(X) = Xi, -+ Xi,, where X = (Xi, -+, Xag) ¢ Mn(R)™.

Since the polynomial rings with coefficients in a field are Noetherian, there are
finitely many words w1, -+ , w such that tr W(X) — trwi(y) = 0,1 <7< b
implies tr W (X) — trw(y) = 0 for all word w. But tr (I') = tr (a.(T')) is
discrete and r, — 1y . It followsthat tr W;(r,(y)) — trw;(y) = 0,1 <2<b
holds for large n where r.(y) = (a(v1), ***, "a(v2,)). Therefore r, pre-
serves trace for large m.
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CoroLLARY 3.2. Let T be as in Theorem A and T1¢8(G) with Ty D T.
Then A (Q)Ty =~ A(G)/N (I1).

Proof. Let {a,(T1)! be a sequence of lattices converging to I'i. Let
75t T1 — a,(T1) be the sequence of homomorphisms constructed in [11].

Clearly [Ty : 7, (@ (T'))] is bounded. Since I} is finitely generated, Iy has
only finitely many subgroups with bounded index. Hence there is a subgroup
Ty of I" with finite index and 7, (Ty) € a,(T') for alln. Since tr (T') is discrete,
as shown above that r,|r, preserves trace for large n. By Lemma 3.1,
there exists 8, ¢ A (@) with B.|r, = tu]r, for large n and B, — l¢. Then

ﬁ;l or, — 1[‘l and }3;107’,. (Pl) DTy,

By [10], there are only finitely many lattices containing T'y. Therefore
Ba' or, = I, for largen. It follows that 8, (1) = a, (1) for large n. Same
argument as used in the above proof leads to the conclusion

A ~ A(G)/N ().
4.

In this section, we shall give a proof of Theorem B which essentially fol-
lows that given in [10] with some modification. Suppose the theorem is
false. Then there is a sequence {I',} of lattices in W such that I', — T’y and
the cardinal number of the set a(T',) = {I': Te8(G), I' D T,} increases
with #» unboundedly. Since lim, I', = Ty, there is a compact subset K of @
such that T', n K generates a subgroup of type (P) [10]. By the main lemma
in [10], Un—1 & (T',) is uniformly discrete.* Hence [I':T,] is bounded for all
n and all Tea(T',). Thus we may assume that the cardinal number of the
set

a(T,:l) = {T:Te8$(@), [M:T,] = 1}

is not bounded for certain fixed positive integer I. Since 8(G) is separable
metric [11] and T, is contained in only finitely many lattices of G [10], there
exists a subsequence {4,} of {n} with b(T;,:1) C a(T';,:1) and thereisT' ¢ $(G)
such that

(1) the cardinal number of b(T;, ;) = 27,

2) >oT,,

B) d@,I") < 1/nfor T eb(T;, ; I) where d is a fixed metric which in-
duces the topology of 8 (G@).

Let {H,} be the sequence of lattices of G defined by
{Howya, =+ 5 Hpra} = 0Ty, 5 1).
It is clear that im H, = T’. Since z(G/T:,) — £ (G/Ty), by the assumption,

4 A set $ of discrete subgroups is uniformly discrete if there is a neighborhood V of ¢
such that VA I' = {e} for all T €8.
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we have
E(G/H,) — (1/1)a (G/To).

From [2], we know that lim inf @(G/H,) > #&(G/T’). Therefore
w > [[':Tg > 1. Letay, -+, ax (k > 1) be a set of representatives of
I'/Ty and By, « -+, Bm in T such that o; Bjaselo, 1 K i<k 1<j<m
and {B1, -+, Bm} generates a subgroup of type (P). Since H, — I’, there
exists a;(n), 8;(n) e H, such that a;(n) — a;, Bi(n) — B;. As Ur_ia(T,)
is uniformly discrete, a;(n), B;(n) are uniquely determined for large n.
Further we have

(@) a:i@m)78;(m)ai(n) — o B; as,

(b) B;(2" + 1) = --- = B;(2""),

(¢) @i'(m)B;j(m)ai(m)els,, 2" + 1 <m < 2,

(d) the subgroup B (n) generated by {8:(n), « -, Bm(n)} is of type (P),
where 7 is sufficiently large.

From (a) through (c), we see that a;(s)as )™, 2" + 1 < s, ¢ < 2", belongs
to the normalizer N (B(n)) of B(n) in G for large n. Again by the main
lemma in {10], and the fact that normalizer of subgroup of type (P) is discrete
[10], U5—1 N (B(n)) is uniformly discrete. It follows that ai(s) = a:(t),
2" 4+1< st < 2" forlargen. Since Iy, —» Iy, a;(n) = i, 1 < ¢ < kand
o7 a; ¢ Ty, we must have that a;(m) "a;(m) ¢Ty,, 2" + 1 < m < 2" for

large n. Since & > I, and [Hn:Ty)] = [, Hypya = -+ = Hy+1 holds for
large n which contradicts our choice of {H,}. Thus the proof is completed.
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