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1. Introduction
Let G be a connected Lie group, r a discrete subgroup and G/F be the space

of left cosets. Given any right Haar measure over G, induces a measure
over G/F. If/z (G/r) is finite, r is called a lattice. If G/F is compact, r

certainly being a lattice is called c-lattice. Let $ (G) be the set of all lat-
tices of G. We give $(G) topology induced from the notion of limit of
lattices introduced by Chabauty in [2]. We denote A (G) to be the group
of all open continuous automorphisms of G with the compact open topology.
It is clear that A (G) operates continuously on $ (G). In [2], Chabauty con-
jectured that given any lattice 1 of G, A (G)F with the induced topology
from $(G) is homeomorphic to the homogeneous space A (G)/N(r), where

N(r) {a" aeA(G), r}.

In [11], the author proved that if r is a finitely generated lattice of G such that
the restriction map

H (G, O) H (r, )
is sur]ective, then A (a)r is homeomorphic to A (G)/N (r). Here we shall
study this coniecture in linear Lie groups. We shall establish the following.

THEOR.M A. Let r be a finitely generated lattice of a linear Lie group which
is semi-simple without compact factor. If the set tr (r) {trace (v) v e r}
is discrete, then A (G)r i homeomorphic to A (G)/N (r).

Let be a fixed right Haar measure. There is a map v" $ (G) -* R, defined
by v(r) (G/r). In general v is not continuous. For an example, see
[6]. However the following is true.

THEOREM B. Let G be a connected semi-simple Lie group without compact
factor and r0 a lattice of G. If is a subset of $ (G) containing F0 such that the
restriction of v on is continuous at r0, then there exists a neighborhood X) of
F0 in and a positive integer n such that each r e is contained in at most n
discrete subgroups of G.

2. Some density properties
Suppose G is a topological group. A subgroup H of G will be said to

have Selberg property (or property (S)) if for any neighborhood U of e in
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( denotes the Lie algebra of G and the action of G on is given by the adjoint repre-

sentation.
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G and any element x in G, there exists an integer n > 0 with x UHU. As
shown by Selberg [9], every lattice has property (S). We show the converse
for nilpotent groups.

PROPOSITION 2.1. Let G be a connected nilpotent Lie group and H a subgroup
of G with property (S). Then G/I is compact.

Proof. Without loss of generality, we may assume that G is simply con-
nected. First consider the case that G Rr. Let/ R’ B Z. Suppose
that Rr/IrI is not compact. Then R A B where/ c A R+, B R,

R> 0. Let --. R/A be the natural projection map. From [1], we
know that v(H) has property (S) in Rr/A. But v(H) {01 and R/A R,
> 0 which is absurd. We now return to the general case. Let G. [G, G]

and G ---. GIGs. be the natural projection map. It is clear that GIGs. R,
for some r and , (H) has property (S). By what we have just proved above,
k (G)/k(H) is compact. Hence G/G. H is compact. By a theorem of Malcev
[7], we obtain that G/t is compact.

COROLLARY 2.2. Let G be a connected nilpoent Lie group and F a discrete
subgroup. Then F is a lattice iff F has property (S).

In [11], we see that Chabauty’s conjecture is always true for nilpotent Lie
groups. For solvable groups, we have the following.

THEORE 2.3. Let G be a connected solvable Lie group and F a lattice such
that .i (Ad 1), the Zariski closure in the ambient real linear group, contains
Ad (G). Then A (G)F is homeomorphic to A (G)/N (F).

Proof. G/F is compact; in particular 1 is finitely generated. Furthermore
by [8, Theorem 8.1],

H (G, ) _E H (F, G)

is an isomorphism. Hence from [11], A (G)r is homeomorphic to A (G)/N (F)

3.
Groups considered in this section are linear Lie groups. Given any subset

T of GL(m, R), we denote tr (T) {trace (t) te T} and l(T) be the linear
span in M(R).

LEMMA 3.1. Let F be a connected semi-simple Lie group and H a finitely
generated subgroup of G such that I (H) G. If r,, H-. G is a sequence of
trace-preserving homomorphisms with r,, ---> 1, then there exists ,, e A (G)
such that a, 1 and r, a [ for large n.

Proof. Since l(H) I(H) G, l(H) l(G). From limr 1,
it follows that there exists an integer no > 0 such that l(r,, (H)) l(G)
for n > no. In the sequel, n is assumed to be > no. Define/ (G) --. (G)

The argument used in the proof essentially follows [9, Lemma 4].
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by
[,, (_,.. s, h,) ,.. s r, (h), for se R, h e H, 1 i q.

We have o verify that ft, is well defined. Let B’I(G) X l(G) R be
defined by B (x, y) trace xy, x, y e L(G). Siace G is se-simple, l(G)
is a se-simple associative algebra and B is a nonsingular bilinear form. Let
_

s, h, 0. For any

_
t k e (G ), t e R, H, 1 j v,

(? s, h,) (_ tk) O. As r, preserves trace,

S(.sr, (h),

_
tr, ()) 0.

However l(r,(H)) l(G), and B is nonsingular, we have that
_

sr, (h) 0. Thus , is well defined. It is obous that , is an
algebra homomorpsm. Since , is surjective and l(G) is of finite dimen-
sion, , is an isomorphism.

(r(H)) ((H)) ,((H)) ,(G).

Hence (G) .(G). But dim G dim .(G) and (G) G where
(G) is the topological connected component of e in (G), so this yields

.(G) G. Clearly l(a). Set a ,a;the proof of the lemma
is thus completed.
We now prove Theorem A. Let {a (F)} be a sequence of lattices of G

converging to F in $ (G). From [11], we know that there exists r, F a (F)
a homomorphism, such that r lr. Suppose for the moment that r
preserves trace for large n. Then by the preceding lemma, there is an
aeA(G) such that r a,r.

a’ (F) a (F) and (G/a’ (F) a (G/F) (G/a, (F)).

It fofiows that a (F) a, (F). By the same 1emma, a lq. This shows
that the map

" A (G)r A (G)/N (r), (a (F) aN (r)

is continuous at F. By action of A (G), is continuous. It is clear that
is always continuous. Hence A (G)r A (G)/N (F). Thus in order to

complete the proof, it remains to show that r, preserves trace for large n.
Let , q be a set of generatom of F th , 1 i q. Let
be a word on 2q elements w, ..., wq. Given any w w, we

define () . and W" M(R)q M(R) by

W(X) X X., whereX (X, ...,Xq) eM(R)q.

Since the polynoal tings th coefficients in a field are Noethefian, there are
fitely many words , such that tr W(X) tr () 0, 1 i b
impfies tr W(X) tr () 0 for all word . But tr (F) tr (a, (F)) is
screte and r. lr. It follows that trW (r, ()) tr () 0, 1 i b
holds for large n where r. () (r (), r. (q)). Therefore r, pre-
serves trace for large n.
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COROLLARY 3.2. Let F be as in Theorem A and
Then A (G)F1 A (G)/N (1).

Proof. Let {.(r)l be a sequence of lattices converging to r. Let
r :F1 --* a(F1) be the sequence of homomorphisms constructed in [11].

Clearly [F r (a (F))] is bounded. Since F is finitely generated, F has
only finitely many subgroups with bounded index. Hence there is a subgroup
F0 of F with finite index and r. (F0) c a (F) for all n. Since tr (F) is discrete,
as shown above that r it0 preserves trace for large n. By Lemma 3.1,
there exists f e A (G) with It0 t. Iro for large n and . --* la. Then

o r --. lr, and

By [10], there are only finitely many lattices containing F0. Therefore
1 o r. lrl for large n. It follows that , (F) a, (F) for large n. Same
argument as used in the above proof leads to the conclusion

A (G)F, A (G)/N (F).

In this section, we shall give a proof of Theorem B which essentially fol-
lows that given in [10] with some modification. Suppose the theorem is
false. Then there is a sequence {1} of lattices in such that F. -- 10 and
the cardinal number of the set a(r.) {r:r $(G), r r.} increases
with n unboundedly. Since lim 1. 10, there is a compact subset K of G
such that r n K generates a subgroup of type (P) [10]. By the main lemma
in [10], (J:_ a(r) is uniformly discrete.4 Hence [r.r.] is bounded for all
n and all F e a(F,). Thus we may assume that the cardinal number of the
set

a(r:/) [r:r.]

is not bounded for certain fixed positive integer l. Since $ (G) is separable
metric [11] and F0 is contained in only finitely many lattices of G [10], there
exists a subsequence {i.} of {n} with b (r." l) a(r:/) and there is r’ e $(G)
such that

(1) the cardinal number of b (F. l) 2",
(2) r’ r0,
(3) d(r, P’) < 1/n for F e b (F l) where d is a fixed metric which in-

duces the topology of $ (G).

Let {H} be the sequence of lattices of G defined by

{H.+,, ..., H.+,} b(r.;/).
It is clear that limH r’. Since (G/r.) (G/r0), by the assumption,

A set $ of discrete subgroups is uniformly discrete if there is a neighborhood V of e
such thatVl 1= {e} for alll$.
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we have
(G/H,,) --. (1/l) (G/r0).

From [2], we know that lira inf (G/H,) >_ (G/F). Therefore
> [I"’I’0] >_ l. Let a, ..., a (/ >_ l) be a set of representatives of

r’/F0 and , in F0 such that -a .aer0, 1 _< i_< k, 1 _< j_< m
and {f, -.., } generates a subgroup of type (P). Since H. --. r’, there
exists a (n), fl (n) e H, such that a (n) --* a, (n) --* .. As (J:_ a (F,)
is uniformly discrete, a(n), f.(n) are uniquely determined for large n.
Further we have

--1(a) ,(n)-(n), (n) - , .,
(b) (2" + 1 f (2+),
(c) a,- (m)(m)a (m F, 2" -t- 1 <_ m <_ 2"+,
(d) the subgroup B (n) generated by {fl (n), f (n) is of type (P),

where n is sufficiently large.

From (a) through (c), we see hat a (s)a (t)-, 2" + 1 _< s, <_ 2+, belongs
to the normalizer N (B (n)) of B (n) in G for large n. Again by the main
lemma in [10], and the fact that normalizer of subgroup of type (P) is discrete
[10], [J_N (B (n)) is uniformly discrete. It follows that a (s) a (t),
2 -t- 1 _< s, _< 2"+ for large n. Since F, -. F0, a (n) --. a, 1 _< i _< k and

--1a a F0, we must have that a(m)-a(m) F., 2" -t- 1 <_ m _< 2"+ for
large n. Since /

_
l, and [H," F.] l, H+ H+ holds for

large n which contradicts our choice of {H,}. Thus the proof is completed.
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