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The subgroup M of the group G is said to be modular in G (M m G) if

(UuM) nV Uu (MnV) for allU, VGsuchthatU V,
and

(UuM) nV (UnV) uM for allU, V_GsuchthatM V.
In [5] we proved among other results that M/Ma is nilpotent and MO/Ma is
supersolvable for a modular subgroup M ofJa finite group G (Ma being the
core, M the normal closure of M in G). One of the problems that remained
open in [5] was to discover the exact structure of G/Ma, Ma/Ma, and M/Ma.
In the present paper we solve this problem modulo the quasinormal Sylow
subgroups of M/Ma. We prove the following

THEOREM. Let M be modular in the (finite) group G, and let Q/Ma be a q-
Sylow subgroup of M/Ma which is not quasinormal in G/Ma q a prime.

Then G/Ma Qa/Ma X K, where Qa/Ma is a P-group of order p’*.q, p a
prime, p > q, and (I Qa/Ma I, K I) 1.

(For the definition of a P-group see [6, p. 12] or [5].
An immediate consequence of this theorem is the following

COROLLAaY. Let M be modular in G, and let Ma 1 (to make notation
simpler).
Then G P X X P X K, where P is a P-group of order p. .q p q

primes, p, > q, (IPJ, JP.]) (JPI, IKI) 1 (i,j 1, r; i j),
and where M Q1 X X Qr X (M K), with Q being a q-Sylow subgroup
of P, and M K being quasinormal in G.

This corollary gives the solution of the problem mentioned above modulo the
quasinormal part M K of M, about which we cannot say very much (except,
of course, that it is quasinormal in G). Since it is obvious that a subgroup Q
is modular in a group G whenever G/Qa has the structure given in the Theorem,
we also cannot say anything about the structure of the complement K in
G/Ma
Some other consequences of the theorem are perhaps worth mentioning.

(1) Let M be modular in G, and let Q/Ma be a Sylow subgroup of M/Ma.
Then Q is modular in G.

(2) A minimal modular (but not normal) subgroup of a group is of prime
power order.

(3) Let M be modular in G, and let q be a prime dividing M Ma J. Then
there is a normal subgroup N of index q in G.
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These three corollaries are generalizations of well known theorems for quasi-
normal subgroups (see [4]).

It is obvious that the main theorem would follow from the same theorem
for the special case of a modular subgroup of prime power order (which we
prove in Section 2) together with (1). However, we are not able to prove (1)
directly (i.e. only using the lattice properties of the Sylow subgroup Q/Ma of
the nilpotent group M/Ma). One reason for this might be that there is no
lattice theoretical reason for Q to be modular in G. In fact, we shall give an
example of a nilpotent modular subgroup M (with Ma 1, of course) having
a Sylow subgroup Q which is not modular in G. This example also will show
that the (implicit) assumption Ma 1 in (1) cannot be replaced by the
weaker assumption that M is nilpotent. We shall, however, show that Q is
modular in G, if Q is the Sylow subgroup of M belonging to the largest prime
dividing the order of the nilpotent modular subgroup M. The proof of this
theorem occupies Section 3, whereas in Section 4 we give the proof of the main
theorem. In Section 1 we show that a modular subgroup is permutable with
any subgroup having relatively prime order, a result which again illustrates
the close connection between modularity and permutability.

All groups in this paper are finite; the notation is the same as in [5], except
that the order of G is now denoted by G I, the index of U in V is V U I, and
the subgroup lattice of G is 2 (G).

1. Modularity and permutability
It is well known that a quasinormal subgroup M of a group G (i.e. a sub-

group permutable with any subgroup of G) is subnormal and modular in G
[6, p. 5 and p. 7]. It is a result due to Heineken ([2, Satz 7]; see also the forth-
coming revised edition of [6]) that the converse statement is also true. We
summarize this in the following

LEMMA 1. The subgroup M of the group G is quasinormal in G if and only if
M is a subnormal and modular subgroup of G.

Since there are modular subgroups which are not subnormal (for example
the 2-Sylow subgroups of the nonabelian group of order 6), a modular subgroup
is in general not quasinormal. But we can show that it is still permutable with
many subgroups, namely with all subgroups of relatively prime order.

THEOREM 1. Let M be modular in the group G, and let U be a subgroup of G
such that (I i l, U I) 1.

Then M is permutable with U, i.e. UM MU.

Proof. If M is permutable with two subgroups U and U of G, then M is
also permutable with U U. So we can assume that U is cyclic of order
p, p a prime. By (2.1) of [5], we have that

[U u M/M] - [U/U n M] -- (U).



346 ROLAND SCHMIDT

Hence [U u M/M] is a chain of length n.

q a prime.
so we have

By [5, Lemma 2],

UuM:MI q’,

Since (I M I, P) 1, p" divides U u M M I. Hence p q, and

]UuM:M[ p [U: UnM],

i.e. UM MU. This proves the theorem.
In the following technical lemma we treat some of the situations which will

later on occur as "minimal counterexamples" in the proofs of our theorems.

LEMMA 2. Let p, q, r be primes, r > p > q.
(a) Let M be a subgroup of the group G such that GI pqr, M] q, and

Me G.
(b) Let G be as in (a), but let this time M] pq and Ma 1.
(c) Lete PQ X RS, wherelPl p,[Q[ ISI q, lRI r, and

where PQ and RS are nonabelian let M[ q.
In any of the above situations, M is not modular in G.

Proof. (a) Since r > p > q, by [3, Satz 2.11, p. 420], G’ and GIG’ are
cyclic. As M G, G’ is contained in the q-complement K of G. If G were
properly contained in K, then GM would be a proper normal subgroup of G
containing M; this would contradict M G. Hence G’ K, and therefore,
again by [3, Satz 2.11, p. 420], G {a, b}, where a" bq 1, b-tab aa,
s-- 1 (m), (pq, s- 1) 1. By [5, (2.7 )], we can take M {b}. Then
MuM G, since (b-1). b a-lb-ab a-, and therefore, as (pq, s 1 ) 1,
a e M u M". But [G/M] obviously is not isomorphic to [M"/M n Ma]; by [5,
(2.1)], M is not modular in G.

(b) Again G’ and GIG’ are cyclic. Since Ma 1, G’ n M 1, i.e.
M GIG’ is cyclic. Let N be a conjugate of M, N # M. Since

MnN <IMuN G,

we haveMnN 1. But then

[N u M/M] [G/M] A 2 (N) [N/N n M],

and hence by [5, (2.1)], M is not modular in G.
(c) Assume M is modular in G. By [5, (2.7)], we can take M to be SQ.

Clearly M u PR G, and hence

[G/M] [PR/PR n M] --- 2 (PR ).

Since PQ and RS are nonabelian, there exist q-Sylow subgroups Q and S of
PQ and RS, respectively, such that Qt # Q and St # S. Q1 St is a q-Sylow
subgroup of G, and clearly Q S u QS G. Hence

[G/M] [Q1 S/Q St, QS] 2. (QI S).
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Hence (PR) L (Q1 St), which is impossible, since PR is cyclic of order pr
and Q S is an elementary abelian q-group. This completes the proof of
Lemma 2.

In the second theorem of this section we treat the groups of prime power
order not permutable with a modular subgroup of G.

THEOREM 2. LetM be modular in the group G, and let S be a q-subgroup of G,
q a prime.

If M is not permutable with S, then M is maximal in M tS, and
M t S M p, p a prime, p > q.

Proof. Let G be a minimal counterexample to Theorem 2, and let M be
maximal among the modular subgroups of G for which the theorem is false.
By the minimality of G,

(1) MtS G.

Let M1 be a maximal subgroup of G containing M, and let $1 S n M. By
[5, (2.1)], S is a maximal subgroup of S and therefore modular in [S/M S].
Again by [5, (2.1)], M m [G/M], and hence by [5, (2.3)],

(2) M m G.

By [5, Lemma 1],

(3) G Mll p, p a prime.

Furthermore, sinceM (M u S) M M u (S n M1) M u S, the mini-
mality of G implies that either MS SM or M1 M q, where q is a
prime, q > q. In both cases,

(4) M M q, q a prime, n >_ 0.

Assume pl q (or especially n 0); call p q p.
Then G M p+, and therefore by [5, Satz 1], G/Ma is either a p-

group or a P-group of order p’+lr, p > r, r a prime. In the first case M would
be subnormal in G, and hence by Lemma 1, M <q G. This is impossible, since
MS SM. In the second case q divides G Ma I, since S Ma. If q p,
then IS S n M p+, since n W 1 is the dimension of the lattice
[SIS M] - [G/M]. But then G" M IS S n M I, which is impossible.
So we have q p, hence q r. SMa/Ma is contained in some q-Sylow sub-
groupof G/Ma. Theseq-Sylowsubgroupshaveorderq; henceMa MnSMa
is maximal in SMa. By the modularity of M, M is maximal in M t SMa
M S G. So M S M] p, p > q, which is a contradiction.--Hence

(5) p q, and n _> 1.

We now distinguish two cases.

Case 1. MI is the only maximal subgroup of G containing M. Let
x G\Na(M). Then MuM m G, by [5, (2.7)], MuM > M, and
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(M u M) u S G. By the maximality of M, (M t M)S S (M u M) or
G M uMI p, p > q, p a prime. If M t M were properly contained in
M1, we would therefore have

pq’ G" MuM] S" (MuM)nS q’+,
where n > 0. But this is impossible, since pi q .--Hence M M u M,
since M is the only maximal subgroup of G containing M. This is true for
any x GNa(M); hence D (M) ,aXa(M) (M u M) Mi > M. By [5,
Lemma 4] (and since M q G), ]M Ma] rs, r, s primes. If M were
properly contained in Mi, we would again get pi ql, which contradicts (5).--
So Mq M. If M G, then M M, which contradicts the second part
of (5). But if M M, [G/M] would be a chain, and therefore by [5,
Lemma 2] p q. So Case 1 leads to a contradiction.--We are therefore
left with

Case 2. There is a maximal subgroup M M of G containing M;let

S M n S.

By (2), (3), (4),and (5),MmG,G" MI p,[M’M q,p q
primes, and m 1. We consider Mt n M. Since

(MnM)nS SnSS,

we have M n M m G. If M were properly contained in M n M, then the
maximality of M would yield that (M n M)S S (M n M) and hence
G M nM q. This again contradicts (5).--So

(6) M MnM,hencen m 1.

Now [G/M] is isomorphic to the subgroup lattice of the elementary abelian
q-group S/S n S. Hence no maximal subgroup of G containing M can be
normal in G, since M G. By [5, Lemma 1], G/Ma is nonabelian of order
r s, r > s, r, s primes (i 1, 2). Let N/Ma be the normal subgroup of
index s of G/Ma.
Assume, S N for i 1 or 2. By the modularity of M we get
N (M n N) u S andM nNmN. Since G was a minimal counterexample,

N’MnN S" MnS q or N,’MnN p, p > q;

but this is impossible, since ]N M n N[ G M p q .So S is not
contained in N, and hence

(7) q (i 1,2).

Now Ma n Ma Ma, by (6). Furthermore

]M" MnM,a] ]M," M,a] G" N, q,

dhence]M’Ma] qorq. IfM’Ma] q, thenNnM =Ma,and
hence [N/Ma] [G/M]. So N/Ma has exactly q + 1 minimal subgroups,
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which is impossible, since N1/Mal rl ql with r > s q.--Hence
M Me q, and therefore

G/Me Me/Me X Me/Me,
where lie/ie r q, r > q, Me/ie rl q, r > q, and M/Me q.
By (5), r r, and therefore by Lemma 2, (c), M/Me cannot be modular in
G/Me.

This contradiction shows that also Case 2 cannot occur. This is a final
contradiction and so we have proved the theorem.

2. Modular subgroups of prime power order
In this section we prove the main theorem for modular subgroups of prime

power order.

THEOREM 3. Let M be modular in the group G, and let M q", q a prime.
IfM is not quasinormal in G, then

G/Me Me X K,

where Me/Me is a P-group of order p’q, p a prime, p q, and
(IMe/Me I, K[) 1.

Conversely, ifM is a subgroup of Gfor which G/Me has the above structure, then
M is modular in G.

Proof. To prove the first part of Theorem 3, let G be a minimal counter-
example, and let M be a modular subgroup of G for which the theorem is false.

Since then also G/Me, M/Me is a counterexample to the theorem, we have

(1) Me=l,

by the minimality of G.
We have to distinguish two cases.

Case 1. Me G. Then G is supersolvable [5, Satz 4]. Let p be the largest
prime dividing G I, and let P be the p-Sylow subgroup of G. If q p, then
M P, and hence G Me P would be a p-group. By Lemma 1, M would
be quasinormal in G, a contradiction.--Hence

(2) p>q.
Let N be a minimal normal subgroup of G contained in P. Then NI p.
If MN/N would be quasinormal in G/N, then G/N (MN/N)aN would be a
q-group. So any maximal subgroup of G containing MN would be normal in
G, and therefore MN G, by the assumption in Case 1. HenceM would be a
maximal subgroup of G. By [5, Lemma 1], G/Me G would be a P-group of
order pq, which is impossible.--Hence the induction hypothesis yields that

G/M (MN)e/M K (with MI/N (MN/N)eN),

where (MN)/MI is a P-group of order r’q, r a prime, r > q, and (I K I, rq) 1.
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Since M G, K 1, and hence we have

(3) G/M is a P-group of order r’q, r a prime, r > q.

Since MN/N M, (I M [, IN I) 1, and MN/N is a q-Sylow subgroup of
G/N,

(4) M is a q-Sylow subgroup of G.

If r p, G M p+, by (3) and (4). But then [5, Sat 1] implies that
G is a P-group, a contradiction.--Hence

(5) rp.

Then by (3), N P. Let R be an r-Sylow subgroup of G. Then R is per-
mutable with any conjugate M of M (Theorem 1). Since G is supersolvable
and r q, R RM for all x e G. SinceMa G, R < G. LetR be a minimal
normal subgroup of G contained in R; R r. If MR/R were quasinormal
in G/R, MR/R would be normal in G/R (by (4)), hence MR G, by the
assumption in Case 1. But N is clearly not contained in MR .--So, as before,
the induction hypothesis implies that

(6) G/M is a P-group of order s’q, s a prime, s > q,

where M:/R (MR/R)a/,. This is only possible if R R, since other-
wise p, q, and r would divide the order of the P-group G/M. Hence

(7) G PRM, where lPI p, R[ r (and therefore s p).

Especially, n 1 in (3), m 1 in (6). Now M n M has order a power of
q and is therefore contained in M. By (1), M M 1, and therefore
is either prq or prq. The first case is impossible by Lemma 2, (a); in the second
case G M X M, and so Lemma 2, (c) gives a contradiction.--Hence Case 1
cannot occur. We are left with

Case 2. M G. Let U be a proper subgroup of G containing Ma. If
M were quasinormal in U, then M M G, and hence by Lemma 1,
M <:lq G, which is impossible. So the induction hypothesis yields that
U/Mv MV/Mv K, where MV/Mv is a P-group of order p’q, p > q, and
(I K I, Pq) 1. Hence M is a q-Sylow subgroup of U, especially of M.
Therefore MM( M M and MMa Ma 1. So finally we have shown

(8) Me is a P-group of order p’q, p a prime, p q,

and

(9) ifM UG, thenU=MaXK,where(IKl,pq) 1.

Let P be a p-Sylow subgroup of Ma. We want to show that Mq
is a Hall

subgroup of G. So assume that P is not a p-Sylow subgroup of G, and let S
be a p-Sylow subgroup of G containing P. Then MaSI p’. q, and so by
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(9) MS G. Hence G M p, and therefore by [5, Satz 1] G is a P-
group. But this implies thatM G, contrary to the assumption in Case
So

(10) P is a p-Sylow subgroup of G.

Assume M is not a q-Sylow subgroup of G. Let T be a q-subgroup of G con-
taining M as a maximal subgroup. By (9) T M G, and hence by (8),
G p,.qO.. Since M is not subnormal in G (by Lemma 1), there is a q-
Sylow subgroup T of G not containing M. Let H T u M. Then

[H/M] [T/T n M] - 20 (T).

So if T is cyclic, [H/M] is a chain of length 2, and so by [5, Lemma 3] H M
is a prime power. But H M pq, a contradiction.--Hence T is elemen-
tary abelian, and therefore M is the intersection of exactly q q- 1 maximal sub-
groups of H. One of these (namely M n H) is normal in H. HenceM <:1 H,
which is impossible, since M is not contained in the q-Sylow subgroup T of
//.--So

(11) M is a q-Sylow subgroup of G.

By (10) and (11), M is a normal Hall subgroup of G. By a theorem of Zas-
senhaus and Schur [3, 18.1, p. 126] there is a complement K to M in G. Since
(I K I, q) 1, KM MK (by Theorem 1), and therefore KM q
Hence p does not divide KM [, and therefore M n KM M. So M < KM,
i.e. K __c Na (M). This is true for any complement K to Mo, especially for all
the conjugates of K. Hence K c__. No(M). So Ka n M c..C_. NMa(M) M
(since M is a P-group). Since M q and M 1 G, Ka n M 1. Hence
Ka K (i.e. K <:] G), and therefore G M X K, (I Ma I, KI) 1. This
contradicts the choice of G and M.
So we have shown that also Case 2 cannot occur, and this completes the

proof of the first part of Theorem 3.
The second part of the theorem is a trivial consequence of the following

LEMMA 3. Let G H X K, (I H I, [Ki) 1, and let M be a modular sub-
group of H. Then M is modular in G.

Proof. Since (I H ], KI) 1, by [6, Theorem 4, p. 5]

(G) (H) (g).

Let U, V 2 (G) such that U __c V; then U Ux X U, V V X V, where
U

___
Vx

_
H and U V. __c K. Since M is modular in H, we get

(v u M) Y ((V u M) r,) (V, Y)

(Uu (Mn V)) )< U
U u (M n V),
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the first condition to be satisfied by a modular subgroup. The other one is
proved in the same way.
The second part of Theorem 3 now follows immediately. Since M/M

is a P-group (and therefore has a modular subgroup lattice), G/M
M/Mo K, and (I M/Mo I, K I) 1, by Lemma 3 M/M is modular in
G/M. Hence by [5, (2.3)] M is modular in G. This completes the proof
of the theorem.

Obviously, Theorem 3 gives criteria for quasinormality of modular sub-
groups of prime power order. We formulate two of them as corollaries to
the theorem.

COROLLARY 1. A modular subgroup of prime power order which is not a
Sylow subgroup of the group G is quasinormal in G.

COROLLARY 2. Let M be a modular q-subgroup of G, q a prime, and let
M" Mol q. Then M is quasinormal in G.

As another consequence of Theorem 3 we generalize a result about the
normalizer of a quasinormal q-subgroup to the modular case.

COrOLLaRY 3. Let M be a modular subgroup of order q’ of G, q a prime.
Then G" No(M) p, p a prime, p >_ q, and No(M) contains every

element of order relatively prime to p and q.

Proof. For quasinormal subgroups, this is well known (with p q; see for
example [4, p. 169]). If M is not quasinormal in G, then by Theorem 3
G/Mo M/Mo X C/Mo, where Ma/Mo is a P-group of order p’q, p a
prime, p > q, and ([ C/Mo I, MO/Mo [) 1. Clearly C normalizes M;
hence every element of order prime to p and q is contained in No (M). Further-
more No(M) MC (since M/Mo is a P-group), and therefore

G No(M)] p.
We conclude this section with an example showing that M in Theorem 3 is

in general not a direct factor of G. Since M is a normal Hall subgroup of G,
it certainly has a complement C in G; but C need not be normal in G.

Example 1. Let G be the direct product of a nonabelian group PQ (where
PI P > q Q I, p, q primes) and a nonabelian group RS (where SI

q > r R I, r a prime), and let M QS be a q-Sylow subgroup of G. Then
Mo S, M PQS, G/Ma M/Mo X RMo/Mo and hence M is modular
in G, by the second part of Theorem 3. But since R 4 G, G is not the direct
product of M and some complement of it.

3. Oilpotent modular subgroups
Let M be a nilpotent modular subgroup of the group G, and let Q be a

q-Sylow subgroup of M. We would like to prove that Q is again modular in
G. By the second part of Theorem 3, we only have to show that G/Qo has
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the structure given for G/M( in the first part of this theorem. Therefore we
try to carry out the program given in the proof of Theorem 3, for the q-Sylow
subgroup Q of M. It is clear that this will be somewhat more difficult, and,
in fact, the following example shows that it is not quite possible.

Example 2. Let G PQ R, where PQ is a nonabelian group of order
pq, p and q primes, p > q, and R P. Let M QR. M is nilpotent, and
by [5, (2.3)], M is modular in G. If Q were modular in G, [5, (2.1)] would
imply that

2. (PR [PR u Q/Q] [G/Q] [R u Q/Q] 2 (R ),

for any q-Sylow subgroup Q Q of G. But a group of order p and a cyclic
group of order pq, p > q, do not have isomorphic subgroup lattices.--So Q
is not modular in G.

This example shows that a q-Sylow subgroup Q of a nilpotent modular sub-
group M of a group G need not be modular in G again. We shall, however,
show that Q is modular in G if q is the largest prime dividing the order of M.
We begin with the following

LEMMA 4. Let M be a nilpotent modular subgroup of the group G, and let
Q be a q-Sylow subgroup of M, q a prime.

If Q is not quasinormal in G, then Q is a q-Sylow subgroup of G and
IQ: Ql q.

Proof. Let G be a minimal counterexample to Lemma 4, and let M, Q be
such that the lemma is false. Assume,

We want to show that this implies that.Q <:]q G, which will give a contradic-
tion. So let X be a p-subgroup of G, p a prime. If MX XM, then also
QX XQ, by [3, Satz 4.8, p. 676] (if p q), or since Q is a subnormal, hence
normal, q-Sylow subgroup of MX (if p q). If MX XM, then by
Theorem 2 we have that M is maximal in M u X. If Q is a q-Sylow subgroup
of M u X, then again Q would be normal in M u X, and hence QX XQ. If
not, then let R be a q-Sylow subgroup of M X containing Q. Then
Q MnRismaximalinR, by[5, (2.1)]. HenceQ <R,Q < M, and so
again Q < M u X, i.e. QX XQ. So in any case Q is permutable with X;
hence Q <:]q G, which is not the case.--Therefore

(1) Q is not subnormal in G.

By (1), there is a q-Sylow subgroup S of G which does not contain Q. Since q
divides M M n S I, but does not divide M u S S I, M is not permutable
withS. By Theorem 2, MuS’MI r, raprime, r > q. HenceQisa
q-Sylow subgroup of M S, and therefore

(2) Q is a q-Sylow subgroup of G.
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Assume there is a proper normal subgroup N of G containing Q. Then Q is a
q-Sylow subgroup of the nilpotent modular subgroup M n N of N. If Q were
quasinormal in N, then by Lemma 1, Q < G, contradicting (1). By the
minimality of G we have that Q Q[ q. Since Q is a Sylow subgroup of
N, we have Q Qa, and now [Q:Qa[ q (together with (2)) gives a
contradiction to the choice of Q.--Hence

(3) Qo G

Certainly M Q, since otherwise Theorem 3 would give a contradiction. So
let p q be a prime dividing M I, and let P be a p-Sylow subgroup of M.
We want to show that P < G, and for this we show that P is normalized by
any q-Sylow subgroup T of G. If T Q, then clearly T normalizes P. If
T Q, then (as before S) T is not permutable with M, and hence

ITtM:MI s,

saprime, s> q. LetH MuT. Then by [5, Lemmal],[M:MHI t,
a prime. Since T MH, q. But then P M., which implies that
P <3 H. So inany event T Na(P), and by (3) weget

(4) P<3G.

Now QP/P <q G/P would by (2) imply that QP <3 G. By (3) we would
get that G QP M, which is not the case. So the induction hypothesis
yields IQP/P: (QP/P )a/e q. Let (QP/P )a/e KIP. Then Kn Q
is a q-Sylow subgroup of the nilpotent (since K

_
M) normal subgroup K

ofG, andhenceKnQ G. SincelQ:KrQI KQ K q, we have
that K n Q Qa. But this (together with (2)) contradicts the choice of Q.
This completes the proof of the lemma.
We are now able to prove

LEMMA 5. Let M be a nilpotent modular subgroup of the group G, and let Q
be a q-Sylow subgroup of M which is not quasi,wrmal in G, q a prime.

(a) Then Q:Qal P’q, p a prime, p > q.
(b) If q > 2, then Q/Qa is a P-group of order p"q, p > q.

Proof. We give the proofs for (a) and (b) simultaneously, as far as pos-
sible.
So let G be a minimal counterexample to (a) or (b), and let M, Q be such

that (a) or (b) is false.
Then also G/Qa, M/Qa, Q/Qa is a counterexample to (a) or (b), and hence

(1) Qa 1,

by the minimality of G. Now Lemma 4 implies that

(2) Q is a q-Sylow subgroup of G and QI q.

Assume there is a proper normal subgroup R of G containing Q. By the
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minimality of G (and since Q is not quasinormal in R) we have that
QR QR p’q, p a prime, p > q (or that Q/Q is a P-group, in case (b)).
But since Q is a q-Sylow subgroup of R, Q Qe, Q Qe, and this gives a
contradiction.--Hence

(3) Qe G.

Especially,

(4) ie G.

By Theorem 3,

(5) MQ.

Now let N be a minimal normal subgroup of G. Assume

QN <:]q G.

Then QN <:l G, hence by (3), QN G. Since M G, N M. So
N n Me 1, and therefore Me MeN N divides G N q. As
Q 4 G, Me 1. But then by [5, Satz 4], G is supersolvable. Hence N t,
a prime, and therefore GI tq, which is impossible by (5).--So we have

shown

(6) QN is not quasinormal in G.

We now separate the proofs of (a) and (b), and we first prove (a).
By (6) and the minimality of G we have (using (2) and (3))

(QN/N)ev (QN/N)eIN ]G N p’*q,

p a prime, p > q. If Me 1, we could choose N Me. Since M is nil-
potent, this would imply that Q Ca (N) < G. By (3) Ca (N) G, and
hence NI r, where r is a prime, and G N X R, where R is an r-comple-
ment in G (obviously, p r q). But then Q

_
R G, a contradiction.---

Hence

(7) Ma=I.

By [5, Satz 4], G is supersolvable, and hence

(8) IN r, raprime, p r q.

By (5), (7), and (8) the p-Sylow subgroup P of M is different from 1. If
P <q G, then P would be normalized by any q-Sylow subgroup of G [4, p.
169], and therefore by Qe G. This contradicts (7).--Hence P is not quasi-
normal in G, and therefore by Lemma 4 P is a p-Sylow subgroup of G and
IP Pel IPl p. So finally

(9) IG] pqr, r > p > q.
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But now Lemma 2, (b) gives a contradiction which proves part (a) of the
lemma.
To prove (b), we again consider GIN. By (6) and the minimality of (7

this time we have that

(10) GIN is a P-group of order p"q, p > q.

MN/N is a nilpotent subgroup of GIN containing the q-Sylow subgroup
QN/N. By the structure of a P-group,

(11) MN QN.

Assume N M. Then Ma n N 1, and hence Mal MaN’NI
divides MN:NI q, i.e. Ma 1. This would imply that G is super-
solvable, hence that NI r, r a prime, and therefore IMNI qr. Since
N M, M Q, which contradicts (5).--Hence

(12) M=QN.

Since M is nilpotent, Q _Co (N) <:l G, and therefore by (3),

(13) N_Z(G),INI r, raprime.

By (2) and by part (a) of the lemma, r p, and so

(14) GI p,+lq, p > q.

By (12), N is the q-complement of M. Since N was an arbitrary minimal
normal subgroup of G, we have shown that

(15) N is the only minimal normal subgroup of G.

Let P be the p-Sylow subgroup of G. Suppose x is an element of order p
in P; let X {x}. Since PIN is elementary abelian (by (10)), we have
that X

_
N. Again by (10), X <:] G. Hence Q operates on X and centralizes

xv. By [3, Satz 5.12 (a), p. 437] Q centralizes X. But this is impossible,
since XQ/N is a P-group.--Hence

(16) expP p.

We consider Z (P). By (16) Z (P) is an elementary abelian p-group of order
pro, m >_ 1. Clearly N Z (P), and Q leaves N invariant. By Maschke’s
Theorem [3, p. 122] Z (P) N X S, where S is invariant under Q. This
implies S <:l G, which contradicts (15), unless S 1. Hence

z(P) N.

By (10), (16), and (17) P is an extraspecial p-group of exponent p. Hence
[3, Satz 13.7, p. 353] there is a nonabelian subgroup P1 of order p3 of G con-
taining N. By (10), P1 < G. Consider H PQ. Let P {a, b, c},
a’ b’ c’ 1, a-lb-ab c, ac ca, bc cb (cf. [1, p. 145]), and let
Q {x}. ThenN P {c}. Since H/N is a P-group, we have a a (N),



MODULAR SUBGROUPS OF FINITE GROUPS II 35

b b8(N),wheres 1 (p),sq 1 (p). Hencea a8. b b.
where0_u,v < p. By (13) c c. Hence

c c (b-ab) a-b-ab
i.e. s 1 (p). But since sq 1 (p) and q > 2, we get s 1 (p), which is a
contradiction.--This completes the proof of Lemma 5.

Remark. The assumption q > 2 in part (b) of Lemma 5 cannot be omitted
(although we used it only in the last line of the proof). This is shown by
the following

Example 3. Letp > 2beaprime, andletP {a,b,c} withaT bY

c 1, a-lb-lab c, ac ca, and bc cb. Let a be the automorphism of P
b b-1defined by a a-1, (c c), and let G be the semidirect product

of P and {a}. Then G/{c} is a P-group of order 2p, and hence M {c, a}
is modular in G. Clearly M is nilpotent, and Q {a} is a 2-Sylow subgroup
of M. Since Q 1 G, Qa 1. Furthermore {a, a} is nonabelian of order 2p,

Qa. G. Henceand hence a e For the same reason b e Qa, and therefore Qa
QO/Qa is not a P-group.
We are now able to prove the result announced at the beginning of this

section. In order to avoid giving the same argument twice we use Theorem
5 (which is proved in the next section) in the proof of Theorem 4 (of course,
we shall not use Theorem 4 in the other proof).

THEOREM 4. Let M be a nilpotent modular subgroup of the group G, let q
be the largest prime dividing M I, and let Q be the q-Sylow subgroup of M.
Then Q is modular in G.

Proof. Let G be a minimal counterexample to Theorem 4, and let M, Q be
such that the theorem is false.

Since then also G/Qa, M/Qa, Q/Qa is a counterexample to the theorem,
we have

(1) Qa 1.

Furthermore by Lemma 4,

(2) Q is a q-Sylow subgroup of G, and QI q.

Now if Ma 1, then Q m G by Theorem 5. Hence

(3) Ma 1.

If QM,/Ma were quasinormal in G/Ma, then QMa <:l G (by (2)). As
QMa

_
M is nilpotent, Q would be normal in G. This is obviously not the

case. Hence QMa/Ma is not quasinormal in G/Ma, but since (by the
minimality of G) it is modular in G, we have by Theorem 3 that

(4) G/M, (QM()a/M( X K/M(, where (QMa)’/Ma is a P-group of
order p’q, p a prime, p > q, and (I K/Ma I, Pq) 1.
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Let N (QM). Since q is the maximal prime divisor of M l, IN" Mi
p"q, and p > q, M is a normal Hall subgroup of N. Hence there is a

complement C to M in N. Now let Q, x e G, be any conjugate of Q in G.
Then MQ c_. M, and since M is nilpotent, Q c__. C(M). Since C is
isomorphic to N/M, C is a P-group of order pq, and therefore C Q
c C(M). So N M X C, whence C <] G, i.e. C QO. Finally by (4)
we have therefore G K Q, where (I K I, QI) 1. But now by the
second part of Theorem 3 Q is modular in G, a contradiction.This proves
Theorem 4.

4. Proof of the main theorem
For the proof of the main theorem we need a technical result. In order to

formulate it we make the following

DEFINITION. Let X, Y be subgroups of the group G such that Y X.
Then we denote by (X" Y) the number of prime factors of IX" Y I, i.e.

(X" Y) r, if X’YI I]’-p, pprimes.

Now we can state

LEyIM. 6. Le M be modular in the group G, and let U be a subgroup of G.
Then

(a) a(V u M" M) (V" V n M),
(b) r(U u M" U) (M" U n M).

Proofi Obviously (b) is a consequence of (a). So we need only to prove
(a). We do this by induction on the order of G.

Let M m G, U __c G; consider U u M. Clearly M m (U u M); let N be a
maximal modular subgroup of U u M containing M. By [5, Lemma 1] either
N <:1 U u M, or N is maximal in U u M and U u M N P, P a prime. In
the first case

[Mu U’N[ [Nu U’N[ [U’UnN[,
nd hence especially

(1) a(M u U" N) (U" V n N).

In the second case N n U is maximal in U, and hence

a(U" UnN) 1 (UuM" N),

i.e. (1) also holds in this case. Since NI < G I, the induction hypothesis
implies that

(2) ((U n N) u M" M) ((V n Y)" (V n N) n M).

But since M is modular in G (and M _c N _.c U u M), we have that

(UnN) uM (UuM)nN N,



MODULAR SUBGROUPS OF FINITE GROUPS II 359

and therefore (2) becomes

(3) a(N:M) (U r N U n M).

Now (1) and (3) yield the desired result.

THEOREM 5. Let M be modular in the group G, and let Q/Ma be a q-Sylow
subgroup of M/Ma, q a prime. Then Q is modular in G.

Proof. Let G be a minimal counterexample to Theorem 5, let M be modular
in G, and let q be the maximal prime divisor of M[ for which the theorem is
false.

Since then also G/Mo, M/Ma is a counterexample, we have

(i) M=i.

By [5, Satz 2],

(2) M is nilpotent.

Let Q be the q-Sylow subgroup of M. By Lemma 4,

(3) Q is a q-Sylow subgroup of G and Q] q.

We want to show that QO is a P-group. By Lemma 5, (b), this is clearly true
if q > 2. So assume (for the moment that

(4) q=2.

Since M Q, there is a prime r q dividing Mi and an r-Sylow subgroup
R of M. Since q 2, r > q, and therefore by the maximality of q, R is modular
in G. If R would not be quasinormal in G, then by Theorem 3, G R X K,
where R is a P-group of order s’r, s a prime, s > r, and (I K I, rs) 1. Now
Q_K, sinces> r> q. ClearlyMnKmKand (MnK)K 1 (by (1)).
Hence the induction hypothesis yields that Q is modular in K. By Lemma 3,
Q m G.--This is impossible, and hence we have shown that R is quasinormal
in G. This holds for any prime r dividing MI which is different from q;
hence

(4a) T <:lqG,

where T is the 2-complement of M.
Let H MQ. Since T <:lq G and (I T I, Q I) 1 for every conjugate Q

of Q, Q

_
No(T) for every x e G, and hence

(4b) T H.

We consider H/T. M/T is modular in H/T, and has order q. If M/T were
quasinormal in H/T, then M <:l H (by (3)), hence Q H (by (2)), espe-
cially Q <:l QO <:l G. So Q would be a subnormal q-Sylow subgroup of G,
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hence Q <:l G, which is impossible.--Hence M/T is not quasinormal in H/T,
and therefore by Theorem 3,

HIT M/T K,

where Mn/T is a P-group of order p’q, p a prime, p > q, and (I K [, pq) 1.
Now M" Qn Qa (by (3)), and hence M" H. So H/T is a P-group,
and therefore finally

(4c) Qa/T n Qa is a P-group of order p’q, p >. q.

Since M is nilpotent, Q C(T) <:l H. Since Q" Qo, Qa
_

C. (T), and
therefore T n Qa Z (Q). Since the center of a P-group is 1, T Qa Z (Qa),
by (4c). Hence T Qa <:l G, and therefore T n Qa 1, by (1). So finally,
(4c) yields that Qa is a P-group.
Hence we have shown that, regardless whether q 2 or not, we have

(5) QO is a P-group of order p’q, p a prime, p > q.

We want to show that Qa is a Hall subgroup of G. By the Frattini argument
we have G Qa. Na (Q); furthermore Qa Na (Q) N,a (Q) Q, by (5).
Hence G: Qai Na(Q):Q I, i.e. (by (3)) we have only to show that p
does not divide [Na(Q)]. So assume

(6) p divides Na (Q) I.
Let X be a subgroup of order p of Na(Q), and let L X.Qa.

(6a) ILl p,+l q,n >_ 1.

Then

ClearlyLrNa(Q) N.(Q) QX. SinceM

_
Na(Q), M r L

_
QX,

i.e. MnL QorMnL QX. NowMnL Q(i.e. QmL) givesacon-
tradiction" by Theorem 1, either Q <:lq L or L Q X K, (I Q !, ]K]) 1.
In the first case Q <:l L (by (3)), hence Q <:l Qa, contradicting (5); in the
second case K 1 (by (6a)), and so Q L Qa, which is obviously not
the case.--Hence M n L QX, i.e.

(6b) p divides

Let P be the p-Sylow subgroup of M; by (1) and (6a), Lemma 4 implies that
P <:]q G. Hence P is normalized by every conjugate of Q, i.e. by Qa. Since
M is nilpotent, P centralizes Q, i.e. P n Qa

_
Ca (Q) Q. Hence P n Qa 1,

and so P Ca(Qa). Since Ca(QO) <l G, also pa Ca(Q). Finally
pan Qa Z (Qa) 1, hence

(6c) paQa pox Qa.
pa is a p-group (since P <q G). We want to show that the subgroup 2(Pa)
generated by the elements of order p in pa is contained in P. This will con-
tradict (1).

So assume, there is an element a e pa, a P, o (a) p. Let b e Qo such that
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o(b) p, andletQ-- {x}. By (5) and (6c) wehavethata a,b b,
wherek 1 (p),k--- 1 (p). Letc ab. Thenc ab,andhence

(6d) {c}uQ {a,b,x}.

Now M poQ pQ, and therefore PQ m poQo. So PQ is maximal in
PQ t {c}, since (by (6c)) c} P. But since a P and b P,

PQ PQ t {a} PQ t {a, b} PQ t {c}

(by (6d)), which is impossible.--Hence we have shown

(6e) gt (PO) P.

But since Po <3 G, (6e) contradicts (1). This contradiction shows that (6)
is false, i.e. that

(7) Qo is a (normal) Hall subgroup of G.

By a theorem of Zassenhaus and Schur,

(8) QO has a complement K in G, and all such complements are conjugate
in G.

Let T again be the q-complement of M. We want to show that T

_
K,

i.e. that T is contained in any complement of QO. Let (as before) H M. Qo,
let P be a subgroup of order p of QO, and let H PM. Since P Q is non-
abelian, Q H. Hence M H ;let M be some conjugate of M in H.
Since M is a maximal subgroup of H, M M is maximal in both M and M,
and hence normal in both groups, i.e. M M <:l H. Since Q H,
Q M M; sinceM Mis maximal inM, finallyM M T. So
T <3 H, i.e. P N(T). This is true for any subgroup P of order p of
Qo, and clearly also for Q. Hence by (5),

(9) T <I H MQ.
Now T QO Ca(Q) Q, and therefore T Qa 1. So by (9),
H T X QO, andhenceT C(Q). NowC(Q) rQ Z(Qa) 1,
and therefore by (7) and (8), Ca(Q) Ka. So finally

(10) T

___
Ka.

Since Q is not contained in K, we have M n K T, and therefore
M M r, K q, i.e. (M M r K 1. By Lemma 6,1K t M K is a

prime. Since (q, IKI) landQKM, wehaveKM KQand
KQ:KI q. Hence (KtQ) aQ Q,i.e.Q<IKQ. So any com-
plement K to Q in G is contained in N(Q), whence K N(Q). So
KaQuiNas(Q) Q,i.e.KaQ 1. HenceK K, and therefore
G QO K, (IQl, KI) 1. By (5) andLemma3, Q is modular in G,
a final contradiction. This completes the proof of the theorem.
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The main theorem announced in the introduction is a trivial consequence of
Theorem 3 and Theorem 5. The corollary to the main theorem follows if one
observes that if P and Q are two different Sylow subgroups of M, then P Q
(because (I p I, Qal) 1, if Q lq G, and because P r Qa

_
Ca(Q) n Qa Q,

if Q is not quasinormal in G), and that therefore pO n Qa 1. Therefore G
is the direct product of all the Qo for which Q is not quasinormal in G and the
intersection K of all the p q-complements. So G has the structure given in
the corollary. The corollaries (1) to (3) of the introduction are also im-
mediate consequences. (1) is just Theorem 5. If M is a minimal modular
(but not normal) subgroup of a group G, then Ma 1, and so by Theorem 5,
M is a q-group; hence (2) is shown. And if q is a prime dividing M Ma I,
then let Q/Ma be the q-Sylow subgroup of M/Ma. If Q (Iq G, then [4, Satz 1]
gives the existence of a normal subgroup N of G with G N q; if Q is not
quasinormal in G, then by Theorems 3 and 5, G/Ma Qa/Ma X K/Ma,
where Qa/Ma is a P-group of order p’q. But then KP c G, G KP[ q,
if P is the p-Sylow subgroup of G. Thus also (3) is proved.
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